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ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems

Abstract

Distributing computational load to many processors is a critical issue for efficient program execution on
multiprocessor systems. Finding a good load distribution algorithm is one of the most important research
topics for parallel processing. Tools for evaluating load distribution algorithms are very useful for this kind
of research, This paper describes a svstem called ParaGraph that gathers periodical statistics of the
computational and communication load of each processor during program execution, in both the higher
level of programming language and lower level of implementation, and presents them graphically o the
user.

1. Intreduction

in the Japanese Fifth Generation Computer Systems Project, parallel inference systems have been
developed for promoting parallel soltware research and development, The systzm adogis a concurrent logic
programming language K111} as the kernel and consists of a parallel inference machine, PIM2) and its
operating system, PIMOS3),

For efficient program execution, the computational load must be appropriately distributed 1o cach
processor. On scalable loosely-coupled multiprocessor systems, load balancing and minimization of
communication overhead are essential, but become more difficult compared w tightly-coupled systems as
communication costs increase. Although many load distribution algorithms have been developedd), 5,
none have been sufficient 10 exceute every program cffcctively, Finding a good load distribution algorithm
is one of the most important research wpics for paralle! processing.

Tools for cvaluating load distribution alporithms are vary useful for this kind of research. The objective
of the ParaGraph system 15 to help programmers design and evaluate load distribution algorithms on
looschy-coupled mulliprovessor systems. ParaGiraph gathers profiling information during program execution
un the parallel inference machine, PIM, and displays it graphicafly based on the X window system6).

Many performance displays have been devised for piilization, communication, and task information7)-8),
For example, graphical meters?) represent processor-ulifizaton and praphical animation on a processor
configuralion maps) represents intemrocessor-communication of message-passing programs. Such
specialized views provide an intuitive feeling for dynamic behavior, bul it is difficult w determine where
the performance botilenecks are. Because the excution of paratlel programs often raise complex phenomena,
simple observation of each phenomena can not provide full information needed 1o detect performance
bottlenccks, For example, suppose that when tasks are not mutually independent and must communicate
with each other closely. The program is less efficient because of communication overhead. But graphical
melers may show processors work hard, although most of processing time must have been consumed on
message-handling, In this case, it is wsciul W compare the aclivity of processors with frequencies of
scnding and receiving messages along execution time. Thus, bottlenecks are often determined by comparing
with some pieces of profiling information each olbier. In ParaGraph system, every kind of profiling
information can be displayed based on three common axes (o be eusy o compare, Because such profiling
information can be viewed as having three axes: what, when, and where,



In Section 2, how load distribution can be deseribed in KL 1 on PIM are described. Section 3 describes
the implementation of the ParaGraph system and graphical representation of progrm execulion, and
Section 4 discusses how useful praphical displays are 1o detect performance bottlenecks with examples of
VErous Programs.

The contents of this paper pardally overlap the subject of a previoous paperd),

2. Load Distribution Algorithms
2.1 Load distribution in KL1

The parallel inference machine runs a concurrent logic programming language called KL11), 3}, 10). A

KL1 program consists of a collection of guarded Horn clauses of the form:
H: G, G, B.. B, (mn=1)

where H, G, and B, are atomic formulas. H s called the head, G, the guard goals, and B, the body
goals, The puard pan consists of the head and the puard poals and the body consists of body goals. They are
separated by the commitment operator ", A collection of puarded Hom clauses whose heads have the
same predicate symbol P and the same arity N, define a procedure P with arity N. This is denoted as P/,

The guard goals wait for instaniiations to variables (synchronizaton) and west them. When the guard part
of ane or more clauses succeed, one of those clauses is selected and its bady poals are called. These body
poals communicate with each other through their common variables, If variables are not ready for testing in
the guard part because the value has not been computed vel, testing is suspended,

In addition to the above hasic mechanism, there is a mapping facility which includes load distribution
specification, The programmer can annolate the program by atlaching pragmas 1o the body goals 1o specify
a processor (specified by Goal@nodeProc)). The programmer must tell the KL 1 implementation which
goals 1o execule on which processors.

next_gueen(N,LI1BR,DBL): 120, D=0
BL = [BLOBLL],
R = [ROR1},
BLO = [pet(Proc)BL2],  processor specification
ry_ext(N,LIB RO.DBL2 W@ ke (Praxc),
nexi_gqueen{MN,1J-1, BR1,BL1).

Fig. | A sample KL.] program.

Figure | shows a part of a KL1 program. If the goal next_gueen/T is commiticd 1o this clause, 1s body
goals are called. The goal try_ext/7 has a processor specification, and it is to be executed on processor
number "Proc”. Tis processor number can be dynamically computed.

2.2 Design [ssucs

Load halancing derives maximum performance by efficiendy utilizing the processing power of the entire
system, This is done by partitioning a program into mutually independent or almost independent tasks, and
distributing tasks w processors, Many load balancing studics have been devised, but they are tightly
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coupled to particular applications. Therefore, programmers have to build load distribution algorithms for
thewr own applications.

To distribute the computational load efficiently, the programmer should keep in mind the following
paints. Since load distibuton is implemented by using poals, the programmer should wnderstand the
execution behavior of each poal. When goals are executed on a loosely-coupled multiprocessor, the
programmer should investigate the load on individeal processors and the communication overhead between
Processors,

For evaluating load distribution afgorithms, wols must provide many graphic displays for the
programmer o understand the computational and communication load of each processor in bath the higher
program and lower implementation levels. No single display and no single profiling level can provide the
full infermation needed w deweet performance bowenccks.

3. System Overview

3.1 Gathering Information

To statistically profile large-scale program execution, KL1 implementation provides information
gathering facilities, low-level profiling and higher-level profiling. KL 1 implementation provides these
facilivies as language primitives, to minimize the undesirable inflluence w the execution behavior of
programs. These facilities have been implemented at the firmware level. The profiling facilities are
summarized as follows,

1} Low-level profiling

Profiles the low-level behavior of the processor, such as how much CPU tme went to the various basic
operations required [or program execulion,

2} lligher-level profiling

Profiles the higher-level behavior of the processon, such as how many tmes each piece of te program
Was executed.

To mumnee the perlurbation, the gathered profiling information resides in cach processor's local
memory during program execution, and after execution, ParaGraph collects this information and convens
into some standard form.

Since profiling information is automatically produced by the KL implementation, programmers do not
have o modify the application programs,

3.1.1 Low-level Profiling

The basic low-level activities can be categoriced in computstion, communication, garbage collection,
and 1dling. Computation means normal program cxecution such as poals’ reductions and suspensions,
communication means sending and receiving inter-processor messages, parbage collection means itself, and
finally, idling means doing nothing.

The processor profiling facility measures how much time went 1o ¢ach category for each processor. Such
information can be perindically gathered o show gradual changes of behavior, The profiling facility can
also measure frequencies of sending and receiving various kinds of inlerprocessor messapes11)-12),

© A throw_poal messapge transfers a KL goal with a theow goal pragma 1o a specified processar,
A read message requests for some value from the remete processor when 2 clause selection condition
3



Tequires it
* An answer_value message replies 1o a read message when the request value becomes available.
* A unify message requests body unification (giving a value to a variable],

3.1.2 Higher-level Profiling

KL1 provides a mechanism for grouping goals and controlling their execution in a meta-level. This
mechanism can be considered 10 be an interprewer for the KL 1 lanpuage, Tt also provides profiling facility at
a higher level than processor profiling. Low-level profiling gathers a number of important statistics from
many aspects that help analyzing performance bottenecks, but it provides no information on where in the
program is the root of such a behavior.

To correlate execution behavior with a portion of the program, higher-level profiling measures how
many times goals associaled with each predicate are reduced or suspended (due o vnavailability of data
required for reduction). Transition of behavior can be observed by periodically pathering the information.

3.2 Graphic Displays

The profiling information can be viewed as having three axes: what, when, and where. lo sequential
exccution, “where” is a constant and the "when" aspect is not important, since the executon order is
strictly designated. Therefore, simple tools like gprof provided with UNIX™) suffice. However, all three
axes an: important when parallel execution is concomed.

If such massive information is not presented carefully, the user might be more confused than informed,
Therefore, ParaGraph provides graphic displays based on three axes. We named cach representation using
the terms "Whal," "When,” and "Where." The wem “What" is the visualization target corresponding o the
type of profiling information such as low-level processor behavior, higher-level processor behavior, and
interprocessor message frequencies. The term "When" and "Where" indicate time expressed by a cycle
number and the processor number respectively,

Figure 2 shows the graphic displays of ParaGraph. These displays are execution behavior of all solution
search program of N queen problom.

Every type of profiling information can be easily displayed with the views described below with a
menu-oricnted user interface such as the botlom-right window in Figure 2. If the window size is too small
to display everything in detail, coarser display aggrepating several cycles or several processars together is
possible to see the overall behavior at a glance. Scrolling on the vertical and horizonta! directons are also
possible if details are 1o be examined. 1t s also possible w dispiay only sclected "What” items,

Note: UNIX is a rademark of AT&T Bell Laboratories,
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Fig.2-Examples of graphic displays: a What = When view (top-left), an overall What = Where view
(top-right), and a When =< Where view (botom-lefi) and a menu-oriemed user imerface (howom-laf).

3.2.1 A What = When View

There are two kinds of views in terms of "What" and "When" items. One is a What X When view which
shows the behavior of each "What" item during execution. A graph is displaved of a "Whal” item in ordes
of the total volume. The x axis is the cycle numbers, and the y axis is the rate of processor utilization, the
number of messages, and the number of reductions or suspensions corresponding to the wype of profiling
information. Since every graph is drawn with the same scale on the vertical axis, it is easy w compare with
"What" items.

The other is an overall What * When view which shows the behavior of all "What" ikems during
execution. Each "What" item is stacked in the same praph and displayed by a line. The y axis represents the
averape rate of processor utilization, the wtal number of messages, and the total number of reductions and
suspensions corresponding to the type of profiling information.



These views are helplul for example, if a program has sequential bottlenccks such as ught
synchronization, In this case, the number of goal reductions will be down at some portion during program
exccution. Such a problem will be detected casily by observing program execution.

The top-left window in Figure 2 shows received message frequencics on all processors with What
When view. In this window, four kinds of receiving message frequencies are displayed on cach graph. These
messapes are displayed in order of the wotal number of received messages. The other messages are displayed
by scrolling vertically.

From this, we know that esch received message frequency on all processors is less than 2,500 dmcs/fan
interval {an interval is 2 second). As this program is divided mutually independent subtasks,
communication message frequency is very low,

3.2.2 A When = Where View

A When ¥ Where view shows the behaviors of all "What” items on each processor. Each processor 1s
displayed with various color patierns thal indicate volume. The relationship between color pattemns and
volume are shown in the bottom right comer, The darker the patern, the busier the processor. Yolume
means the rate of processor utilization, the number of messages, and the number of reductions or
suspensions that correspond 1o the type of profiling information. If's alsa possible 1 display only selected
"What" items instead of all of them.

The bottom-laft window in Figure 2 15 2 When > Where view. The % axis is the cycle number, and the ¥
wxis is the processor number, This view displays the exccution behavior of all goals on a 32-processor
machine. The color patterns indicate te number of reductions, The relationship between the number of
reductions and color pattern is displayed on the bottom right corner.

From this, we know that the work load on cach processor was well balanced, and this program was
executed about 70,000 reductions/an interval on each processor al cach moment in tme.

3.2.3 A What = Where View

There are two kinds of views in werms of "What" and “Where” items, One is a What > Where view which
shows the load balance of each "What" item on each processor. A har chart is displayed of a "What" item in
order of total volume, The x axis represents the processor numbers, the y axis represents the rate of
processor utilization, the number of messages, and the number of reductions or suspensions Ut correspond
to the type of the profiling information. All bar charts are drawn with the same scale on the vertical axis,
s0 it 15 easy to compare with the volume of each "What" ilem.

The other is an overall What X Where view which shows the load balances of all "What" items on each
processor. Cach "What” item is stacked in the same bar chary and displayed by a certain color pattern. The y
axis represents the averape rate of processor utilization, the wtal number of messages, and the number of
total reductions or suspensions thal correspond 1o the type of profiling information, The relationship
between each category and color patern is displayed on the top-right comer,

“The wp-right window in Figure 2 shows the low-level behavior of the processor with an overall What X
Where view, In this window, cach categories of low-level behavior is displayed with several color pattern,

From this, the average of computation took more than 80% of total execution time, and the average of
communication on processor No. () was about 104, and the others were less than 5%. Since processor No.

&



O collected answer values [rom the others, it wok higher average. Thus, this view shows most of the
processors run fully, and this cxample program was cxccuted very cfficiently on cach processor.

4. Examples

This section discusses which views o use to view varions performance bottlenecks. For efficient
prograim execulion on multiprocessor systems, the following phases are usually repeated until a solution 15
reached: a) a program is partitioned into subtasks, b) the subtask is mapped w each processor dynamically,
and ¢ each processor runs subtasks while communicating with each other,

Warious problems are often encountered when execuling a program on multiprocessor systems. We will
show how graphic displays in both the higher program and lower implementation levels are helpful with
performance problems.

4.1 Uneven Partitioning

When the granularity betwesen subtasks is very different, it is useful 1 observe the low-level processor
behavior with a When = Where view and the higher-level processor behiavior with 2 What X Where view.
From the When > Where view, we will find which processors run fully and which are idle. From the What
* here view, we will determine which goals cavsed the load imhalances.
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Fig.3-The low-level processor behavior (left) and exceution behavior of goals {rght).

The left window in Figure 3 shows the low-level behaviors on each processor with a When % Where
view, while the right window in Figure 3 shows the higher-level behaviors of the same processors with a
What > Where view on 4 21-processor machine, An example program is a logic design expert system which
generales a circuit based on a behavior specification. The sratepy of parallel execution is that first, the
system divides a behavior specification into sub-specifications, next designs subcircuits based on the
sub-specifications on cach processor, and finally gathers partial results wgether and combines them,

The When » Where view suggesis that most of processors run almost equally, but processors No.3 and
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No. 6 run fully, and processors No (), No. 2.and No. § were idle. The What * Where indicaies the which
goals were executed on cach processor,

From this, we know that processors No. 3 and No. 6 were allocated very complicated tasks, and
processors Nodl, Mo, and No.5 were allocated very tiny tasks, that is, uneven partitioning of behavior
specification must canse a bottleneck in performance.
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Fig4-Low-level processar behavior (bottom-left), the load balances of all goals (top-left), and the load
of each goal (top-right).

4.2 Load Imbalance

If a mapping algorithm has problems such as allocating subtasks to the same processor, it is useful 1o
observe low-level behavior of the processor with a When X Where view and higher-level behavior with an
What > Where view. From the When X Where view, we see which processors run fully or which are idle,
and from the What X Where view, we see the load balance of each goal. Using both views, we can
determine how 10 distribute the goals that are imbalanced 1o each processor,
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The bouwom-left window of Figure 4 shows low-level behavior of the processor with 2 When > Where
view, the top-left window and the wp-right window show the higher-level behavior of the processor with
an overall What > Where view, a What X Where view respectively.

An example program is a part of the theorem prover which evaluates whether an input formula is a
tautology. The strategy consists of 2 sieps: 1) convert an input formula o clause form (Le, conjunctive
normal form), 2) evaluate its clause form and dewermine whether it is 2 tauntology.

The step 1 is executed in parallel as follows. First, main task partitions an input formula into
subformulas. Second, it generates sublasks (o convert subclause fonns, and finally, distributes subtasks o
many processors dynamically. These sieps arc repeated recursively until subformulas are convertad 1o
subclause forms. The step 2 is executed in sequential on processor Mo,

The When X Where view of the botiom-lell window suggesis that only certain proCcessors (processor
No.6-15 and No.23-31) run fully and that the others were mostly idle. The overall When X Where view of
the op-left window also supgests most of the goals were executed on the same processors, especially the
rumber of reductions of wp five goals were higher than the other goals.

We can check the load of each goal on each processor from the What X Where view of the top-right
window. These goals were execuied on certain processors and were the cause of the load imbalances, From
this, we have o change its mapping algorithm to be flatien the shape, to use all processors efficiently,

4.3 Large Communication Overhead

When sublasks are not mutually independent and must communicate with cach other closcly, the
program is less efficient because of communication overhead, In this case, the low-level behavior of the
processor with an overall What X Where view and frequencies of sending and receiving messages with a
What X Where view are helpful. From the overall What % Where view, we will lzarn how much lime has
been consumed on message handling for cach processor, while the What * Where view shows us what kind
nf messapes cach processor has sent or received,

Figure 5 displays an execution behavior of an improved version of the program described in section 4.2,
The left window shows the load balances of all goals on a 32-processor machine with an overall What
When view. This view shows that the work load on cach processor was balanced in overall execution, but
was not efficient because of large communication overhead. [t will be proved from low-level behavior of
the processer with an overall What X Where view shown in the right window.

Figure 6 shows the same program execution as Figure 5, The left window shows the receiving and
sending message handling time rate with What X Where view, the right window shows the frequencies of
fuur recetved inter-processor messages with a What X When view.

The right window of figure 5 suggests the load average on cach processor was about $0 - 85%, but the
average of computation on cach processor was about 20%. Most of the processing power was consumed
sending and receiving message handling time more than 60% of total crecution time.
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Fig.5-The load balances of poals (Jleft) and low-level processor behavior (right).

The left window of figure 6 shows the message handling time on each processor at each moment in time
was almost equally, right window in figure 6 shows that the read messape was received about 180,000
times, answer_value message was about 170,000 times, unily message was 100,000 times, and throw goal
message was aboul 66,000 umes per interval on all processors. The tasks generated in this program
communicated with each other closely among processors as compared with the result of N queen’s message
frequencies (see the op-left window of figure 2,
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Fig.6-Low-level processor behavior about message handling (left) and message frequencies (right).

From this, we know that as work loads are distributed more and more, it becomes easier (0 balance work
loads on each processor, bul communication overhead also increases and performance is thus lowered. As a
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result, we have wo redesign or improve how to divide into subtasks, Because the gencrated subtasks that
were not mutually independent caused such a problem we mentioned above.

5. Conclusion

W developed the ParaGraph system on parallel inference machines w provide graphic displays of
processor ulilizaton, inlemprocessor communication, and execution behavior of paralle]l programs.
Experiments with various programs have indicated that graphic displays are helpful in dividing work loads
evenly and determining where the bottlenecks are on mulliprocessor systems.

W releascd a version last yvear as a wning wol of PIMOS, but have experienced some problems. In the
future, we will improve the system considering the following poinis.

First, real-ume pecformance visualization tools are needed. Although displaying execution behavior in
real-time perturbs the program being monitored, it is useful nol only in early wning bul also in debugging
such as detecting deadlock status and infinite loops. To develop such a tool, low overhead instrumentation
technigues and new displays that are casy w understand for programmers appearing in real-time must be
devised.

Second, tools which can visualize the portion of the performance bodtlenseks directly are needed,
Massively parallel machines that have thousands of processors and programs for long runs produce a large
amount of profiling information, but it is difficult w process or display for simple expunsion of our
system because of a vast quantity of information. To solve such problems, analvsis techniques indicating
boitlenecks directly will be needed. We will swdy automatic analysis technigues and graphical displays of
its result (we call this borlemeck visugiiration). One such approach is critical path analysis13), which
wdenufies the path through the program that consumed the most time.
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