ICOT Technical Report: TR-0839

TR-0839
Programming Environment of PIMOS

by
5. Ishida & 'I'. Chikayama

April, 1993

@ 1993, ICOT

Mita Kokusw Blde. 21F {03)3456-3 1491 ~ 5

I D DT 4.28% Mita 1-Chome

Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology

Programming Environment of PIMOS

Shigeru Ishida l'akashi Chikayama
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

[ishida, chikayama}@icot.or jp

Abstract

it the Japanese fifth generation computer systems project. the parallel inference
twachines, MIMs. have been developed (o provide the compuntational power required
for high performance knowlege information systems. They are designed to run a
concnrrent logie programming language, KL1. which is hased on o al version of
GHC. The operating system for PIMs, PIMOS. is designed to control highly parallel
programs efficiently and to provide a comfortable soltware developnent euvirotmment
for the KT language. This paper describes the programming environment of PIMOS.
focusing oun its debugging facilities.

1 Introduction

In the Japanese fifth generation computer systems project, the parallel inference machines,
PIMs[1]{2], have been developed to provide the computational power required for high
performance knowlege information systems. PIMOS([3]{4] is the operating system which is
designed to control highly parallel KL1 programs efficiently to draw maximum potencial
from PIMs.

This paper introduces several facilities for debugging known to be effective throngh
our experiences of developing KL1 programs. Section 2 describes the outline of the KL1
language and debugging of KL1 programs. Section 3 introduces the debugging facilities.
Section 4 introduces the performace analysis facilities. Section 5 gives conclusion and
future plans.

2 KIL1

2.1 Outline of KL1
KL1[5] is a concurrent logic programming language based on a flat version of GHC[6].

2.1.1 Execution Model of KL1
A KL1 program consists of clauses of the following form:
H: Glr"-1GTr1|BI1-~~1Hu- {m,nél}

where If, (7;, and H; are respectively called a clause head, a guard goal, and a body goal.
The *|" operator is called the commit operator. The part of a clause before !|" is called a
guard, and the part after *|" is called a body. A KL1 clause is executed as follows:

» In contrast to Prolog, all clauses for the same predicate can be tried in parallel.

producer (Stream) = trus |

Stream = [mag|HextStream], % Sender
producer (NextStream) .

consumer { [Mag|Stream]} :- true | % Receiver
consumer (Stream}.

t- producer(S), consumer(S), % Invorkaing Goals

Figure 1: Example of Stream Communication

The head and the guard of & clause specify the conditions for the clause to be selected.
The gnard goals are tested sequentially left to right. I a guard goal cannot succeed
without instantiating the variables in the caller goal, then the guard goal suspends
until they are instantiated.

s The commat operator selects one of the clanses whose zuard has succeeded.
¢ The body goals of the selected clause are then executed in parallel.

Using this mechanism, communication between processes and their synchronization can
he effected through shared variables, as deseribed in the next section.

2.1.2 Stream Communication

The stream communication is a basic programming method of KL pragramming. In KL1
programs, communication is realized by using shared variables, such as instantiating a
shared variable to a data structure consisting of a message and a new shared variable.
This new shared vanable can be used in the succeeding communication, realizing con-
tinuous communication between processes. This communication style is called “Stream
Communication”. Figure | shows an example of stream communication. Normally, execu-
tion of KLI programs progresses exchanging messages among processes throngh streams.

2.2 Debugging of KL1 Programs
2.2.1 Frequently Found Bugs in KL1 Programs

Hugs frequently found in KI.1 programs can he categorized as follows,

Reduction Failure: When a geal invocation does not mateh the head of any clauses,
or the guard conditions of all the clanses are found to fail, its reduction fails,

Unification Failure: When two variables with inconsistent values are unified in the
hody, the nnification fails.

Unintended Commitment to a Clause: By mistakes in clause selection conditions,
a clanse may be selected nnintentiomally. This often is the origin of other problem

in this list.

Infinite Loop: It is hard to find a process that fell into an infinite loop without muking
any output. Such a process may consume all the computational resource, such as
memory, Tracing the whole execution may do for a small program, but for a large
program, tracing everything is unrealistic.

Deadlock: Deadlock is a state in which two or more processes are awailing for com-
pletion of operation one another. We here use this word in a broader sense for the
state of a process awaiting for some event that will never happen. It is difficult to
find such a process as it makes no actions to be observed. In addition, when one
process suspends its execution this way, many other processes depending on its out-
put may alzo suspend forever. This dependency chain may include o large number
of processes. Thus, reporting all such processes may convey too much information,
making it harder 1o find the origin of the problem.

2.2.2 Improving the Performance of Programs

There are several approaches to improve program performance, T'he following are most
frequently useful ones,

Finding Frequently Called Predicates: By finding predicates that are most fre-
guenlly called, performance improvement efforts can be more sharply focused.

Priority Control: The order of execution of processes can be arbitrarily chosen for ob-
taining the correct result thanks to the data-flow synchronization of KL1. However,
some scheduling may result in much better performance than others. The priority
control mechanism of KL1 allows the programs to roughly specify the execution
order for better performance.

Load Distribution: For efficient execution on mlutiprocessar systems, distribution of
computational load is important. On the other hand, too much distribution may
require loo much communication, resulting in lower performance, Thus, the trade-
off between load balancing and communication locality is a key to obtain higher
performance, especially on large scale lonsely coupled systems. KL1 provides a
simple load distribution mechanism that specifies where to execute goals. Finding
a good load distribution algorithm wsing this simple mechanism is one of the most
important research topics,

3 Debugging Facilities

3.1 Listener

The Listener is a top level interfuce of the KL1 program exeention, similar to the top level
of interactive Prolog systems. I'he lListener has the following functions.

Goal Execution: The user can interactively execute goals in the Listener top level.

Tracing: Users can sce the detailed reduction process of specified goals. Besides the
normal single stepping, spy function allows speeifying only some predicates to be
traced. Execulion order can be altered by suspending the execution of certain goals
temporarily. Multiwindow trace function displays trace information in multiple win-
dows deviding the traced goals into several groups.

Inspecting and Monitoring Functions: The inspector and the variable monitor can
be used to inspect data stroctures, possibly during their creation. Their details will
be described in the following sections.

Execution Profiler: The Listener can collect profiling information, The measured
data can be analized and graphically displayed by a performance analysis tool, Para-
'::Tﬂ.!’}l{ﬁf}ﬂ lﬁ[“]uw}.

Detection of Deadlock: The listener reports the deadlock{suspensions that will never
be resolved) detected during the garbage collection. The detected goal is the goal
that is the “origin” of the cansality relationship of deadlock goals|8].

3.2 Inspector

The inspector is o tool to anadyze and display data strnctures interactively. (Figure 2)

BOBR40EE 29 layered: filter{[& , & IE1],1.1.W)

q1 « (1) Liltez{[& , & [E1],1,1,W}7 inspect 1 ¥ inspecting subgoal 1
falterCid3s [& '] ,4% ¥ |T1],1,1,6)> me % list elements

0 : filter

1o: (3w [t & "] de WL ITL]

2:1

3:1

4 : M

falter([3='0* & *]°, 4= V1 |T1],1,1,Wi> 1 % go dewn elements 1
03[& In1]

1 @ 4= Y1

tail : T1

Figure 2: Example of Inspector

3.3 Variable Monitor

For inspecting the future value ol a currently uninstantiated variahle, a data-driven moni-
toring process can be initiated from the inspector or the tracer, The value of the monitored
variable is reported on its instantiation. It is also possible to incrementally monitor the in-
stantiation of a list structure, which is uselul for tracing communication streams. (Figure
3)

Q04098 1 layerad: area{ok,begin,B}
7 + (1} colors(G)

) = (2} areal(ok,begin,d,B)? n G % menitering the variable
A084086 1 layered: arealck,begin,B)
T = (1] colers{G)
L # (2} areal{ck,begin,G,E}7
ag:l G == [red,yallow,blue,white] ¥ ¥ reporting the inetantiation of the variable

Figure 3: Example of Variable Monitor

4 Performance Analysis Facilities

4.1 Runtime Monitor

The Runtime Monitor shows the rate of processor utilization during programn exccution.
The utilization rate is displayed with color patterns or a monochrome density chart peri-
odically. Figure 4 shows an example display of the BEuntime Monitor. The y axis is the
processar numhbers, the x axis s the cycle numbers which corresponds to the time axis.

wntime Momitor (C+R+5)

-4

T

I

Figure 4: Fxample Display of Runtime Monitor

A triangle appears when garbage collection took place. Other information can also be
displayed such as what kind of low level messages are transmitted and received on which
processor and when. The overhead of running the Runtime Monitor is less than 5%

4.2 ParaGraph

ParaGraph[7) is a tool for more detailed exceution profile of KL1 programs. ‘I'he profiling
data has three axes, “What™(the predicate), “When™ (time period } and “Where” { processor
number). The available imformation is the number of reductions and suspensions.

In sequential program exccution, “Where” is fixed and *When” axis is nul important,
because the execution order is determined. In parallel program execntion, all these three
dimensions are essential,

Detecting infinite loops

ParaGraph is not originally intended to be a tool for program debugging. However it is
also useful in detecting infinite loops.

Figure 5 shows an example of detecting an infinite loop using ParaGraph. The pred-
icate that fell into an infinite loop can be detected at a first glance by the transition of

reduction numbers.

5 Conclusion

This paper described the programming environment of PIMOS. The system, although
in an experimental stage, has been used since 1988 for development of many application
software and PIMOS itself,

R L ™ Tw "
o T ——
: CT T e = £
B e

a T am amms sap mwad me 8 il 1]

¥ U pirt mabai b T L L
e
R
.

Fleme S b g el 21T R

W 'ﬂ"l e — .
¥ T mimm miine P U b "
LI e
= [- T
§ o
1" — i I C

Figure 5: Exawmnple of detecting an infinite loop by wsing ParaGraph

To further improve the environment, development of the following features 15 planned.

Static Analysis Toaols: Currently only a quite simple static program analysis tool is
provided. More sophisticated tools, such as one analyzing input-output relations
among clanses are planned|9).

Higher-Level Language: A higher-level language upon KLL, AYA[LD], is under de-
velopment. AYA supports object-oriented programming function as its lannguage
feature. This makes the description much more concise preventing bugs such as mis-
spelling of variables or mistake the order of arguments. Programs written in AYA
are compiled into KL1 and executed.

Portable Implementation of KL1: A language processor that compiles KL1 pro-
grams into C is planned for portability of KL1 programs|11].

References

[1] A. Goto, et al. Overview of the Parallel Inference Machine Architecture {PIM). In
Proceedings of the International Conference on Fifth Generation Computer Systems,
pp.208-224%, ICOT, 1988,

(2] K. Taki. Parallel Inference Machine PIM. In Proceedings of the International Con-
ference on Fifth Generation Computer Systems 1992, pp.50-72, [COT, 1992,

[3] T. Chikayama, et al. Owverview of the Parallel Inference Machine Operating Sys-
tem (PIMOS). I[n Proceedings of the Internalional Conference on Fifth Generalion
Computer Syslems, pp.230-251, ICOT, 1988,

[4] T. Chikayama. Operating System PIMOS and Kernel Language KL1. In Proceedings
of the International Conference on Fifth Generation Computer Systems 1892, pp. 73
AR, 1OCOT, 1992,

5] K. Ueda and T. Chikayama. Design of the Kernel Language for the Parallel Inference
Machine, In Computer Jowrnal, Dec. 1990,

[6] K. Ueda. Guarded Horn Clanses: A Parallel Logic Programming Langonage with the
Concept of a Guard, Technical Report TR-208, ICOT, 1986,

(7] 5. Aikawa, et al. ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems. In
Proceedings of the fnternational Conference on Fifth (feneration Compuler Systems
1992 pp 286-293, 1C0T, 1992,

(8 Y. Inamura and 5. Onishi. A Detection Algorithm of Perpetual Suspension in KL1.
In Proceedings of Tth International Conference on Logic Progromming, TS99,

9] K. Ueda and M. Morita. A New Implenentation Technique for Flat CHC. In Pro-
ceedings of 7th Inlernational Conference on Logie Programmaing, 1990.

(0] K. Susaki and T. Chikayama. A Process-Oriented Language AYA upon KL1. Tech-
mical Heport TH-652, ICOL, 1991, (In Japanese)

(11] T. Chikayama. A Portable und Reasonably Efficient Implementation of KL1. Tech-
nical Report TR-747, TOOT, 1992,

