_ICOT Technical Report: TR-0831

TR-0831
Programming in KL1 and AYA

by
K. Susaki & T. Chikayarma

February, 1993

o993, 1COT

Mita Kokusam Bidg. 21F (33456-319] -5

" :D ' 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Programming in KL1 and AYA

Kasurni Susaki Takashi Chikayama
Institute for New Generation Computer Technology
Mita Kokusai Bldg.21F
4-28, Mita l-chome, Minato-ku, Tokyo 108 JAPAN
Phone: +81-3-3456-3193, Fax: +81-3-3456-1618
susaki@icot.or.ip

1 Introduction

KL1[1] 15 a concurrent logic programming language
based on GHC[1] with extensions ta write practical
large scale systems. D'IMQOS[2], the operating sys-
tem of Parallel Inference Machine is {ully written
in WL1 and is being used to run many large scale
application programs wrillen in KL1.

To write programs in KL1, the process oriented
programming lechnique (3] is widely applicable and
usefnl. Using this technique, a program is con-
structed with processes exchanging messages each
other. Because a program is described as an ag
gregation of relatively independent processes, high
level modularily of programs can be kept and paral-
lelism1 can be controlled easily. PIMOS is designed
with this model to prevent the bottle neck of cen-
tral control; all the devices and other management
functions are distributed.

In spite of these merits, processes are no more
than & programming style and there is no support
by the langnage itself. [t causes many difficulties.
For example, arcuments of a KL1 goal that keep
the states of a process should be written each time
even in case of no modification. Adding a new state
variable to the process oflen requires a large number
of modifications to the program. It is alsa difficult
o introduce a new function to the debugger for this
style,

Az a solution to these problems, a new language
AYA has been designed upon KL1 that supports ex-
plicit deseriptions of processes and communication
hetween them.

In the following sections, the process oriented
programming technique and i1ts deficiencies are ex-
plained and one solution, AYA, is proposed.

AYA runs on PIMOS after translation to KLI.
The first version of its compiler has just started to
rur on PIMOS.

2 DProcess oriented programming
in KL1

The process oriented programming style is widely
applicable to concurrent logic programming lan-
guages inclnding K11,

Processes are realized as tail recursive goals and
comimunicate with each other using variables shared
among them. Binding a value to such variabies and
inspecting them is the method of communication
among them. Internal states of processes are kept
in their non-shared variables and both shared and
non-shared variables are kept as their arguments.

When a shared variable gets some value, the pro-
coss walting for it resumes 1ts execution. The syn-
chronization mechanism is realized by the guard of
KL1 language.

Hero is a short example of 2 KL1 program writien
in the process oriented way. This program describes
a ‘counter’ process,

counter{In}:- true |
counting(In,0).
counting([],State):- true | true.

counting([up|In]},5tate) - true |
New := State + 1,
counting(In,New).

counting([dewniIn],State):- true |

New = State - 1,
counting(In,New).

counting([show{Value) |In] , State):- true |
Value = State,
counting(In,State}.

This process has two arguments: one for com-
munication and another for internal memory. The
communication is done by a message stream imple-
mented as a list. The process accepts three kinds
of messages, up, down, show{Current) which in-
crements and decrements its internal memory and

obtains the current value, respectively. When the
stream is closed, the process terminates execution.

PIMOS is also written in this programming style
and has the following characteristics.

s 1/0 devices and their management mechanisms
are modeled as processes. They are working
each other exchanging messages via streams.

« Not only the streams for normal communica-
tion but alse simple shared variables are used
for asynchronous communication for interrupts.

s A device in one of several siates, initiation,
regular transaction, aborting and so on, and
changes its state among them. Sometimes dif
ferent states have a different set of state vari-
ables.

FEase in maintenance and extension is important.

Presently the program of PIMOS contains predi-
cates with many arguments and there are many sim-
ilar predicates with only slight differences in their
state variables. It causes difficuities in maintaining
and extending the programs, as follows:

« Errors in positions and names of arguments are
often made,

+ Adding or removing arguments has to he done
for all predicates with common slate variables.

s New variable names are required for each state

change.

o Bacause the tail recursive goal has no difference
from other body goals, the process structure is
not explicit, making it harder to understand.

» Though programs are written in this style, the
debugger only shows execution of predicates
rather than processes because it has no infor-
mation about processes,

AYA, a language upon KL1, is one solution to
these problems.

3 AYA

To describe a process which has multiple communi-
cation paths and changes its state, AYA has several
dedicated features,

A process is a component of this langnage and a
class is a unit of describing a process. A class can

have several ‘scenes’ that correspond to states of a
process,

In addition to theze, sackets are introduced to re-
duce the verbosity required to maintain the gener-
ation of arguments and variables. Brief notation of
stream communication is also introduced. In this
section, these characteristics of AYA will be de-
scribed.

The following example is the previous “counter’
program rewritten in AYA.

clase counter{In]

with +in := In , +state := 0.
input in.
sup - @state = ~(@state + 1).

;down -> @state := “(@state -1).
sshow(Value) -» Value <- BGstate.
:/ =» continue \\

end class.

Irom ‘elass’ to ‘end class’ is a process defini-
tion. ‘counter(in)’ after the keyword ‘class’ gives
the name of this class and the parameter that is
passed when invokes this process.

“yith' is also a kevword that starts socket defini-
tions. This process defines two sockets; ‘i’ is for
communication and ‘state’ is used as internal mem-
ory. The parameter ‘In’ and the constant ‘0" are set
to cach socket as initial values. In this definition,
“‘In" is a shared variable and is used for communica-
tion between processes. In AYA, such a variable is
called a ‘line’.

:up, :down, :show(State) are stream type mes-
sages. The last message :/ is a ‘close message’ and
it tells the end of this stream. Fach message has a
corresponding procedure called a ‘method’.

A process repeats its execution when no assign
ment of next scene s given. To terminate the ex-
ecution of a process, it is necessary to assign the
language defined scene ‘ternunztion’ and it is writ-
ten ‘\\'. The ‘counter’ process will terminate when
the close message arrives.

3.1 Class and =scene

Every ‘class’ has a ‘scene’ called the ‘initial scene’.
The class definition is equivalent to the definition of
this scene and is accessed by its class name. Inside
this scene, arbitrary numbers of scenes are defined.
Scenes can be nested al arbitrary levels.

The refation between a class and its scenes are
showen in the Figure 1.

class

initial scene

l[sCENe
SCEmne

L____

scene

Figure 1: Class and scenes

The process ‘calculator’ is a short example that
has three scenes inside it.

class calculator{In)
with +in := In
W\ waiting.

scene walting.
input im.

AR IR

:sum => continue \\ adding.

iproduct - continue \\ multiplying.
end scene.

scene adding
with +sum := 0.
input in.
:result(Result) -»
Result <- @sum
W\ waiting.
‘N -» integer(N) |
@sum := “{@sum + N).
end scene.

scene multiplying
with +product := 1.
input in.
iresult(Result) -»
Hesult <- @product

‘\\ waiting.
N -> integer{N) |
@product := “{@product = N).
end scene.
end class.
The class ‘calculator’ contains three scenes:
‘waiting', ‘adding® and ‘multipling’. After ini-

tiation, it changes its state to ‘waiting’. In
this scene, the process waits for the message

rsum or :product and moves to the correspond-
ing scene. In adding, it sums up the integers
that arrive until :result(Result) is received, at
which point it returns the result to the argument
of :result(Result) message. Then the process
changes its scene to ‘waiting” and waits for the mes-
sage again. In multipyling, it multiplies the integers
that arrive.

A class is composed of scenes in this way. Each
scene corresponds to a state of the process. The
variations of acceptable messages are defined inde-
pendently by each scene.

3.2 Socket

3.2.1 Socket

Sockets are holders of processes, There are two
types of socket, input and output. A socket for
inpul is used for waiting arrival of messages. In-
stantiation is done to the socket for cutput. Input
and output are called the modes of sockets.

When an input socket and an output socket share
a variable, binding a value to the output socket and
getting the value from the input socket realize com-
munication. In AYA, a variable is called a line’ and
the data communicated is called & ‘message’. Any
data can be used as a message. Lines in sockets are
accessed by their socket names.

Sockets should be declared at the top of scene
definitions after the keyword ‘with’. The socket is
declaved with its name, mode and optional initial
vaiue. Without the initial value, *[|' is set to in-
put sockets and ‘', an anonymous variable, is set to
output sockets.

A socket can be accessed [rom inside the declared
scene. When the scene has internal scenes, sockets
can also be accessed from them and scenes can share
them.

In the caleulatar example, a sacket 'in' is declared
with its initial value at class definition and is ac-
cessed from its internal scenes.

‘sum’ is declared at the scene ‘adding’ and ‘prod-
uct' is declared at the scene ‘'multiplying’. They also
liave initial values. They are accessed anly from the
declared scenes.

Sockets can be updated using the operator “:=".
In the previous ‘calculator’ example, the arrived in-
teger ‘N is added to the value of socket ‘sum’.

fsum := @sum + 1

Updating and reading operations are repetitively
used for a socket to realize internal memory.

The value of output socket is bound to [] au-
tomatically when it is abandoned. This is done to

avoid unexpected deadlock.

3.2.2 Term

Instantiated terms are also regarded as lines that
already have values. Terms also have modes. Terms
that can be kept in input sockets are input terms
and so on.

Lines that have the same name within a method
are identical lines.

3.2.3 Unification

The operation of connecting two lines is called "uni-
fication® and is written as follows.
Out <- In
The left hand side of <= should be an culpul termn
and the right hand side should be an input term.
Message sending via a line kept in a socket iz also
done hy unification. Sending = message via sockets
and referring to the value of sockets are also written
as unifications,

fout <- end
Amount <- Gamount

3.3 Method definition

(Operations to be taken on message arrival to a
sucket are defined by a combination of the sockel
name and the message. This is called 2 ‘method
definition’.

A method is defined in four parts, eveni, con-
dition, action and next scene assignment. When a
sockel is declared as 2 ‘base socket’, message arrivals
at this socket is waited as an event.

Here is an example from the previous ‘calculator’
program.

input in.

:result(Result) ->»
Heselt <= &sum
\\ waiting.

N => integer(K) |
@sum ;= @sum + N.

The first line iz a declaration of the basic socket,
which iz the default socket for message arrival.
‘result(Result) and :N represent the arrival of
these messages at the basic socket that is called an
event. In case of :N, N should be an integer and

should be examined in the condition part. When
both an event and conditions are satisfied, the pro-
cedure written in the action part is executed. In this
example, ‘Result <- @sum 'and ‘¢sum := Q@sum +
N' are actions. A process can change its scene after
its execution, in case of :result{Result), the process
changes its scene to ‘waiting’.

An event and conditions can be omitted. In case
of omitting an event, conditions are examined di-
rectly, When both are omitted, the action part is
executed directly. Put only the keyword ‘continue’
when there is nothing to execute in the action part.
If there is no declaration of next scene, the current
scene is repeated. To terminate the process, the lan
giiape defined scene “terminate’ should be assigned
as the next scene.

A socket can be accessed arbitrarily many times
in a method and is updated in the order of appear-
AllCes.

3.4 Stream notation

To scnd a sequence of messages, siream communi-
cation implemented by a list structure is frequently
used. In this way, a list cell is 2 unit of sending or
receiving; @ message is put in the car part and the
variable that is used lor the next communication is
put in the cdr part. To terminate the communica-
tion. L 1 s used as the close message.

To support this technigue, AYA provides special
notation.

The following is a rewrite of a method that ap-
peared in the previous example ‘counter’ using a list
cell notation.

[uplIni -» @state := ~(@state +1),

@in = In.

In the stream notation, ° 15 prelixed to a mes-
sage to indicate it and :/ indicates the termina-
tion of stream called the ‘close message’. The albove
method can be written in the following way using
this notation.

:up -» @state = ~(@state+l}.

The cdr is set to the socket antomatically in this
sy ntax.

Message sending is written as follows and the cdr
is automatically set to the socket in this case also.

@out <<= :up

Sending a sequence of messages can be written in
the {ollowing way.

@out <<= ;up:down:show(Current)

In this case, three messages are seant and the cdr
i5 set to the socket ‘out’. Messages can also be sent
to an input socket to be received it later. This has
the effect of specilying a continuation method.

Rin <<= up

The message :up is received next and is executed.
Ta close a stream, a nnification with a close message
should be done.

Gout <- :f

4 Implementation

AYA runs on PIMOS after compilation to KL1. The
compiled program is similar to the programs written
in process criented programming technigne.

Sockets become argnments and lines become vari-
whles in KL1 predicates. The synchronization mech-
anism of KL1 is used for waiting messages. Process
invocations and scene changes become body gouls.

Unification failures and deadlocks are bugs harnd
to debug in KL1 programs. In AYA, sockets and
variables are examined during compilation using
mode information making it pessible to find many
of such hugs.

Moreover, the consistency between the argument
modes of next scene declarations and process invo-
cations can also be examined.

5 Future work

5.1 Syntax revision

As repetition of the samne scene is the default when
uo assignment of the next scene is made, a carcless
omission of it may easily cause infinite loops.

The siream netation, especially the difference be-
tween unification and stream type message sending,
is hard to understand. In addition getting and using
cdr explicitly is not possible with this syntax.

Thouvgh the mode system has been introduced to
find bugs, the usage of sockets as internal memories
are difficult to understand.

Furthermore, after experiencing programming,
modification of svatax for better readability should
b roquired.

o

5.2 Inheritance

The inheritance mechanism is necessary to share
program codes. Though it is desirable to share the
method definitions of multiple classes, it is difficult
to specifly such sharing because classes can have sev-
eral scenes and scenes also have several input sock-
ets. Translation of KL1 might also become difficult.

One solution under consideration is defining a ta-
ble of methods for each socket and sharing it. A
table can be inherited from other tables. The basic
scheme has already been designed but the syntax is
vet to he designed.

5.3 Debugging environment

The debugging environment specifically designed for
AYA has not been prepared vet and programs have
to be debugged as the compiled K11 program. For
ease of programming in AYA, it is necessarv to pro-
vide a debugging environment that utilizes the con.
cepis of processes and sockets directly.

6 Conclusion

For ease of programming in KL1, 2 new higher level
language AYA has been designed and implemented.
The cnmpiler to KL1 has just started to run on PL-
MOS.

Vulcan(4], FLENC+4[5], Polka[6] are research
with similar objectives. AYA differs {rom these in
the following characteristics.

s The concept of ‘scena’.

o Communication based on variables, not con-
fined to streams.

* No syntactical differences between sockets for
communication and sockets for internal mem-
ory.

References

[I] K. Ueda and T. Chikayama. Design of the Ker-
nel Language for the Parailel Inference Mackine,
The Computer Journal, 1990,

[2] 'T. Chikayama, H. Sato and T. Miyazaki.
Overview of the Parallel Inference Machine Op-
erating System (PIMOS). In Proc. of the Inter-
nafional Conference on Fifth Cencretion Com-
puting Systems 1938, Takyo, Japan, 1958,

[3]

(4]

(5]

[6]

E.Y. Shapiro and A. Takeuchi. Object oriented
programming in Concurrent Prolog. New Gener-
ation Computing, OFMSHA Ltd. and Springer-
Verlag, 1(1):25-48, 1983.

K. Kahn et al. Vulcan: Logical Concurrent Ob-
jects, In Research Directions in Object-Oriented
Programming, Cambridge, Massachusetts, 1987,
MIT Press.

H. Nakamura et al. Object oriented language
FLENG++ on concurrent logic programming
language FLENG. In WOOC"89 (in Japanese},
1984,

A. Davison. Polka @ A Parlog Object Oriented
Language. Ph.d thesis, Imperial College, 1989.

