_ICOT Technical Report: TR-0826

TR-0526

Incorporating Top-Down Information into

Bottom-Up Hypothetical Reasoning

by
Y, Ohta & K. Inoue

[ecember, 1992

o 1992, 1COT

Mita Kokusai Bldg. 21F (0313456-319] — 5

" :.D I 4-28 Mita |-Chome Telex ICOT 132964

Minato-ku Tokyo TOE Japan

Institute for New Generation Computer Technology

Incorporating Top-Down Information into
Bottom-Up Hypothetical Reasoning

Yoshihiko Ohta* Katsumi Inoue
ICOT Research Center,
Institute for New Generation Computer Technology,
Mita Kokusai Bldg.. 21", 1-4-28 Mita, Minato-ku, Tokyo 108, Japan.

Abstract

A bottom-up hypothetical reasoner with the assumption-based truth maintenance
syvstem {ATMS) has some advantages such as avoiding repeated proofs. However, it
may prove subgoals unrelated to prools of a given goal. In order to simulate top-down
reazoning on bottom-up reasoners, we can apply the upside-down meta-interpretation
method, which is similar o Magic Set and Alexander methods, by transforming a
set of Ilorn clauses into a program incorporating goal information. Unfortunately,
it does not achieve speedups for bottom-up hypothetical reasoning becanse check-
ing consistencies of solutions by negative clauses should be globally evaluated. This
paper presents a new method to reduce the consistency checking caost for bottom-up
hypothetical reasoning based on the upside-down meta-interpretation. In the trans-
formation algorithin, logical dependencies between a goal and negative clanses are
analyzed to find irrelevant negative clauses, so that bottom-up hypothetical reason-
ing based on the upside down meta-interpretation can restrict consistency checking
of negative clauses to those relevant clauses. The transformed program has been
evaluated with a logie circuil design problem.

Keywords: Hvpothetical reasoning, Default reasoning, ATMS. Upside-down
meta-inlerprelation, Program transformation.

"Current Address: Department of Information Engineering, University of Industrial Technology, 4-1-1
Hashimotoda:, Sagamihara, Kanagawa 229, Japan.

1 Introduction

Hypothetical reasvning |91 s an inference technique for proving the given goal from axioms
together with a set ol hypotheses that do not contradict with the axioms. It is closely related to
abductive reasoning and default reasoning. Theorist |17, 18] is a typical hypothetical reasoner
hased on fop-down reasoning.

On the other hand, bottom-up hypothetical reasoners have heen proposed in [6, 12, 15). These
reasoners are constructed by combining a RETE-based inference engine [7] with the assumption-
based truth maintenance system (ATMS) [4]. Recently, we have implemented a bottom up
hypothetical reasoner, which consists of the ATMS and the model generation theorem prover
called MGTP [8]. In this paper, we see the MGTP as a bottom up inference engine.

Ags compared with top-down reasoning, bottom-up reasoning has the advantage of avoiding
duplicate proofs of repeated subgoals. Dottom-up reasoning, however, has the disadvantage of
proving unnecessary subgoals that are unrelated to proofs of @ given goal.

i order to avoid the disadvantage of bottom-up reasoning, Magic Set method [1] and Alexan
der method [20] have been proposed for deductive dalabase systems. Fach methad transforms
a given sel of definile clauses into a program that does not derive unnecessary unit clanses n
proving a goal. Recently, it 1s shown that Magic Set and Alexander methods are interpreted as
specializations of the upside down mela-interpretation 3],

T'he npside down meta-interpretation has been extended to ahduction hy Stickel [22], Ilow
ever, Lhis framework docs not require the consistency of abductive solutions. Since the consis-
tency requirenient is crucial for some applications, we would like to include negative clanses in
programs for hypothetical reasoning to reject inconsistent solutions. However, we will show that
the upside down meta interpretation method docs not achieve speedups in peneral if programs
melude negative clauses. This is because the consistency of solutions hy negative clauses should
be globally evaluated.

We thus present a new program transformation method for efficient bottom-up hypothetical
reasoning based on the upside-down meta-interpretation. In the transformation methad, logical
dependencies between a goal and negative clauses are analyzed at an abstracted level to find
irrelevant negative clauses. As a result of this analysis, called an abstracted dependency analysis,
bottom up hypothetical reasoning based on the upside-down meta-interpretation can restrict
consistency checking with negative clauses to those relevant clauses. The transformed program
has been evaluated with a logic circuit design problem.

In Section 2, our hypothetical reasoning is defined with Reiter’s default proofs [19]. In Sec-
tion 3, the outline of the ATMS is sketched. Section 4 shows a basic algorithm for bottom-up
hypothetical reasoning with the MGTP and the ATMS. Section 5 introduces the upside-down
meta-interpretation for bottom-up hypothetical reasoning, and illustrates that a simple program
transformation method does not achieve speedups. In Section 6, we propose a transformation
method with an abstracted dependency analysis, and illustrate that an example program trans-
forined by this method s officient. Section 7 shows a result of an experiment to evaluate the
transformed programs. Section 8 considers related work.

2 Problem Definition

In this section. we define our hypothetical reasoning based on a subsel of Reiter's normal default
theory [19]. A normal default theory (D, W) is given as follows:

W a=et of Horn clauses,

A Horn clause is represented in an implicational form,
Gy Moo Moy, = 7 (1)

Or
Cky Mo A Oy —* d. [2}

Here, oy (1 << ¢ < nyn = 0} and # are atomic formulas, and L designates falsity. All
variables in a clause arc assumned Lo be universally quantified at the front of the clause.
Each Horn clause has 1o be range-restricted, that is, all variables in the consequent 3 have
to appear in the anlecedent ey A- - Aag. A Horn clause of the form (2} 15 called a negative
clause.

o [asct of normal defaulis.
A normal defoult is an inlerence rule,
o 3
B

where , called the prerequisite of the normal default, is restricted Lo a eonjunction ey A
oMy of atomic formulas and 8, called its consequent, is restricted to an atomic formula.
All variables in the conscquent [have to appear in the prerequisite . A normal default
with free variables is identified with the set of its ground instances.

(3)

A goal (i is a conjunction of atomic formulas. All variables in ¢ are assumed Lo be existentially
quantified.

Let A be the sct of all ground instances of the normal defaults of D. A default proof [19] of
G with respect to (D, W) is a sequence Ay, -+, Ay of subsets of A if and only if

L. WU CONSEQUENTS{ A - G,
2. forl<i<k, WUCONSEQUENTS(A;) F PREREQUISITES(A;_,),

E
1. WUl CONSEQUENTS(A,) is consistent,
=0
where
PREREQUISITES(A,)= A«
(e B/ BIES -
aricl

CONSEQUENTS(A;) = {8 | (a1 B/8) € A,}.

A ground instance (6 of the goal G is an answer to (¢ predicted by (D, W) f

k
W U |J CONSEQUENTS(A,) - G,

=0

where the sequence Mg, .., Ay is a defanlt proof of ¢ with respect to (D, W). If G# is an
answer to G predicted hy (D, W), # is an answer substitufion for G predicted by (D, W), A
support for an answer GO predicted by (D, W) is UL, CONSEQUENTS(A,), where the sequence
Ay, o, 818 a default proot of G with respeet o (D, W) For an answer Gf predicted by
(L, W), the set of minimal elements in all supports for G# from (D, W) 1z called the minimal
supports {or GO from (D, W), and written as MS(G8). The solution to G from (£, W) is the
set of all pairs {G8, MS(GH)), where GB is an answer to (7 predicted by (D, W) and M 5(G0)
is the minimal supports for G8. The task of our hypothetical reasoning is defined as finding the
solution to a given goal from a given normal defanlt theory.

3 ATMS

The ATMS [4] is used as one component of our hypothetical reasener. The following is the
outhne of the ATMS.

In the ATMS, a ground atomic formula is called a datum. For some datum N, ['y designates
an assumption, which means that N is assumed to be true. The ATMS treats both L and Ty
as special data. The ATMS represents each datum N as an ATMS node (N, Ly, Jy), where N
18 the datum, Ly is the label of NV and Jy is the justifications of N. A justification corresponds
to a ground Horn clause and is incrementally input to the ATMS. Tach justification is denoted
by

N,

[| 'ﬁ'"rrt = 'ﬁvrl

-

where Ny (127 < nyn 2 0) and NV are data. Each datum N, is called an antecedent of the
justification, and the datum A is called the consequent of the justification. In Jy, the ATMS
records the set of antecedents of justifications whose consequents correspond to V.

Let IT be a set of assumptions. An assumption set £ C H is called an environment. When
we denote an environment by a set of assumptions, cach assumption Ty is written as N by
omitting the letter I'. An environment £ is called nogood if JU E derives |, where J is a set of
all the justifications input to the ATMS. In Ly, the ATMS records the label of the datum N.
The label of N is the sel of environments {Ey,- -, E,, .-+, E,} that satisfies the followiug four
properties [4]:

1. W holds in each E; (soundness),

2

- every environment in which N holds is a superset of some E; (completeness),
3. each F; s not nogood (consistency),

4. no £ is a subset of any other {minimality).

Il the label of & datum is not cmpty, the datum is belicved; otherwise it is not believed. A basic
algorithm to compute labels is as follows. When a justification is incrementally input to the
ATMS, the ATMS updates the labels relevant to the justification in the following procedure.

Step 1: Let L be the current label of the consequent N of the justification and L, be the
cusrent label of the -th antecedeat N, of the justification. Set

L'=L U {zla=1{JF, where F; € L;}.
=1

Step 2: Let [” be the set obtained by removing nogoods and subsumed environments from
L' Sel the new label of ¥ to L%

Step 3: Finsh this updating if L is equal to the new [abel.
Step 4: If N is L. then remove all new nogoods from labels of all data other than L.

Step 5: Update labels of the consequents of the recorded justifications which contain N as

their antecedents.

4 Hypothetical Reasoning with MGTP and ATMS

The MGTP [8] is a model gencration theorem prover, which generates minimal models of a set
of range-restricted function free clauses. In the following, a set of clanses input to the MGTP
1= called an MGTE program. Bach clause in an MGTP program is denoted by:

A Nty = BV G,

where ag(1 <1 < nin > 0) and F;(1 < j < m;m = 0) are alomic formulas. The MGTP is writ-
ten in KLi [23], and works as a bottom-up reasoner on the distributed-memory multiprocessor
Multi-PSIand the parallel inference machine PIM/m. Several kinds of bottom up hypothetical
reasoners have been constructed with the MGTP [10}. One implementation of them is illustrated
by Figure 1.

Inference Engine Justifications

L

- ATMS
MGTP Beliefs

Figure 1. Bottom-Up Hypothetical Reasoner with MGTP and ATMS

A normal default theory (D, W) is written as an MGTP program,
F={an - Na, — assume(S) | (ay A Ay, /8 e D YUW,

where assume is a metapredicate not appearing anywhere in [) and W. In the following, each
clement in a program P is called a rule.

procedure (G, 1) :

begin
By =1
Joi= { (== ecPu {{Ty=F)](— assume(f)) € P };
5 =0
while J, #0 do
begin
=5+ 1;

B, = UpdatelLabels(J,_, ATMS);
J, = Generatedust: freations(H,, P, B._,)
end;
Solution =
for each 6 such that GO c 0, do
hegin
Lap = GetLabel{GO, ATM 5,
Selution := Selution U {{G8, L))
end:
return Solution
end.

Figure 2: Reasoning Algorithm with MGTP and ATMS

Given a goal 7, the reasoning procedure R{(G, P) with the MGTP and the ATMS is shown by
Figure 2. The reasoning procedure consists of the part for UpdateLabels-GenerateJustifications
rycles and the part for constructing the solution. The Update Labels-Generatedustifications cycles
are repeated while a set Jy of new justifications is not empty. The ATMS updates the labels
related to a justification set J,_y given by the MGTP. The ATMS returns the set B, of all the
data whose labels are not empty after the ATMS has updated labels with J,_,. The procedure
UipdateLabels{ J,_, AL'MS) returns a believed data set H,. The MGTP generales each set J,
of justifications by matching elements of B, with the antecedent of every rule related to new
belicved data. The procedure GenerateJustifications(H,, P, B,_,) returns a new justification
set J,. If any element in (B, \ B,) can match an element of the antecedent of any rule
(g Ao Ay — X in P and there exists a ground substitution o for all a; {1 < ¢ < n;n > 0)
such that a;o € H,, then J, is constructed as follows:

e (oo, on0,Tpe = fo) e J, if X = assume(f).
o (g, oga=Hoje XN =4,
¢ (o, a0 = L)e il X =L

The procedure (et Label((J6, AT M S) returns Lhe label of G&, where 0 is a ground substitution,
and 15 nsed in constructing the solution. Note that the label of G# corresponds to the minimal

supports for G, This hypothetical reasoner can avoid duplicate proofs among different contexts
and repeated proofs of subgoals.

5 Upside-Down Meta-Interpretation

Boliom-up reasoning has the disadvantage of proving unnecessarily subgoals that are not related
to proofs of the given goal. Here, we introduce a program transformation based on the upside-
down meta-interpretation [22] for obtaining speedups of bottom-up reasoning by incorporating
goal information.

Let o (1 £ ¢ < nyn > 1) be an atomic formulas and J be an atomic formula possibly having
the metapredicate assume. An MGTD program is a set of the fori:

g Mo Aoy, — (4)
ey Mo N gy (5)
or
— . (6)
In the following, we call the form (4] a rule, the form (5) a negative clawse and the form (6) a
fact

A bottom-up reasoner interprets a rle in such a way that a fact S0 is derived if facts
o, oo are present for some substitution oo On the other hand, a Lop-down reasoner
interprets it in such a way that goals a7, - - g0 are derived if a goal 3o is present, and a fact
So s denived if a goal fo and facts ayao, -+ a0 are present. Tu vrder to simulate top-down
reasoning on bottom up reasoncr, we transform a rule into

goal(3') — goal(ay)
for every o (1 <1 <nin > 1) and
goal{ 'V May Ao May, — B,

where goal is a metapredicate symbol which does nol appear in the original program. If § =
assume(.\), then 3 = X otherwise ' = 3. Fach fact in a program is transformed into itsclf,
Each negative clause in a program is transforimed into itself and

— goal{ ;)

for every a; (1 <+ < nin = 1). This is because every nogond has to be computed Lo guarantee
consistencies of solutions. Let § be a given goal, then — goal((3) is added into the transformed
program, and the program with — goal{(7) is evaluated in bottom-up manner. Minimal supports
for each generated fact relevant to the solution are maintained by the ATMS.

We can also gencrate a program which works with a left-to-light strategy. Il we have a rule
in a program, transform it to the following.

1. goadl #') — goallag).
gqoal{ #') — eomty (V).

2Jorl=5=n 1,
conty (VA a; = goal{ajq).
conty (V) A a; — contp (V).

3. conty (VI A o,

Here, we assume that the original rule is named b 'I'hese transformed rules work in the following
way.

1. 1f a goal for 4" is present, a goal for oy is derived, and for cont, (V). where V is a tuple

of all the variables appearing in the original rule, is also derived for gencrating the next

subgoal o,

2. The following process is repeated for 1T < 5 < n — |, The next subgoal ;4 and
conty 4V) are derived, if conty ;(V) is present and «; has heen solved. The tuple
Vs wsed for propagating substitutions for some solved variables of &) to the next subgoal
goul{ujpy).

3. The fact #1s derived if conty, (V) 1s present and o, has been solved.

Every fact ju the original program 1 also transformed inte itself, and every negative clause is
transformed as [ollows.

l. — goalio),
— eont (V)

for1 < 4<n-=1,
condy AV)N, = goalla; b
cotly AV} Ay = conty (V)

s

:j- f'l.—-‘ﬁfjr‘ﬂ_[l'\"r} A by, 4 L.

In this case, first subgoals of negative clauses are evaluated because the reasoner does not know
whether those subgoals are independent on consistency checks of solutions or not. When (7 is
given as the goal, — geal(7} is added into the transformed program, and the program with
— goal({7) is evaluated in bottom-up manner. A program gencrated by this transformation is
called a transformed program wnth the left-to-right strategy.

Note that all the transformed rules do not satisfy the range-restricted condition. In order
to make every transformed rule range-restricted, the method introducing magic predicates with
adornments [2] 15 propesed for Magic Set method. In short, an adornment indicates an input
or output mode of each variable in top-down evalnation of each subgoal. We can assume that
cach predicate appearing in an orginal program has a unique adornment because we can use a
renamed predicate for the predicate if there is a predicate with different adornments. Then, we
can apply a similar technique to the upside-down meta-interpretation method. For a consequent,

of a transformed rule, an output-mode variable which does not appear in the antecedent is
replaced with a new constant {skolem constant). Maoreover, for an antecedent of a transformed
rule, all output mode variables of cach predicate in goal and all output-mode variables in cont
are replaced with anonymous variables.

Example 1 This cxample is a design problem for simple logic cireuits. Assume that the given
program P is as follows.

l.

[l |

fi.

i

clal X)) At X,) Aowerd(W)+ assume(adder(c(X, W/ BY)).

[* IF X is a carry lookahead adder and an input is expressed in B bits and a word is
expressed in W bits, then we can assume that the combination of X's, whose number of
cells is W/E, is an adder for the word as long as it satisfies arca constraints. */

- anwerter(X) A bit (X, B) A word(W) -+ assume(empl(e(X, W/ B))).

/* 1F X is an inverter and an juput is expressed in & bits and a word js expressed in W
hits, then we can assumc thal the combination of X's, whose number of cells is W/HE, is
a circnit for one’s complements as long as it satisfies area constraints. =/

3. adder{ X} 4 ernpl(V) — subtracter{c(X,Y)).

/™ A combination of an adder X and a circuit Y for one's complements is a subtracter, */

- adder (e X, N)) A celll X, C) — area_for _Adder(N = (),

J* 1t a combination of X’s, whose number of cells is N, is an adder and the basic-cell
connt is NV, then the arca for the adder 158 N« (. */

coempl{e(X, M) A celll X, C) — area_for Cmpl(N + (.

/Il a combination of X's, whose number of cells is N, is a circuit for one's complements
and the basic-cell connt of X is €, then the arca for the one’s-complement circuit is N+,

"
subtracter(e{c{ A, Na), (T, Nc))} Aeell{ A, Ca) AcelllC, Ce) — area_for_Subtracter{Na«
Ca+ Nes(e),

JV I e(el A, Na),efC, Ne¢)) is a subtracter and Ca is A% basic-cell count and Ce is (Vs
basic cell count, then the area for the subtracter is Na= Ca + Nes Ce., */

area_for Adder(A) Aarea limit{N} n (A > N)— L.

/™ I an area for any adder is A and an arca limit for any eircnit is N, then A is less than
or equal to N, =/

-areafor Cinpl(A) A arealimut(N) A (A > N) - L.

/7 W an arca for any circuit for one’s complements is A and an area limit for any circuit
15V, then A ds less than or equal te V. */

- area_for Subtracter(A) A wreahimi(NYA (A = N} = L.

[* I an area for any subtracter is A and an area limit for any circuit is N, then A is less
Lhan or equal to N,/

110,
11.
12.
13.
11,
15,
16
7.
15,
19.

210

~ clala2h). /* The CMOS standard cell a2k is a carry-lookahead adder. */

v bet{a2h, 2). /7 An input to @2k is expressed in 2 bits. */
— cell{a2h, 16). /* The basic-cell count of a2h is 16. */
— claladh). /*® The CMOS standard cell a4h is a carry-lookahead adder. */
— hit{adh, 1). /™ Anmput to adh is expressed in 4 bits, */
. cell{adh,50). /* The basic-cell count of adh is 50. */

— muerter{vln). /% The CMOS standard cell vln s an inverter. */

— bit(eln, 1). /* Anonput to vin is expressed in 1 bit. ¥/
— cell{vln, 1). [* I'he basic cell count of vinis 1. */
— word(8). /" A word 1= expressed in 8 bits. ¥/

— areadimat(80). /% An arca limit for every circuit s 80, */

Here, *57 (% 35 greater than”} is a built-in predicate. Assume that the given goal is adder(X),
enpl{ X}, or subtracter(X). If the given goal is subtracter(X), there are no unnecessary work
on Lhe bottom-up hypothetical reasoner. When the given goal is adder(X) or empl(X), solving
sublracier(X) is unnecessary. Here, let make the simple transformed program P’ from the
original program P. The simple transformed program £ is:

1.

2,

goal{adder(}) — goal(cla(sk1}),

goalladder(.)} » goal{bl(sk], sk2}},

goal{adder{)} A goal{word(sk1)),

goaliadder(}) A cla{ X} A bit{ X, B) A word(W) — assume(adder(c{ X, W/F))),

goal{empl()} — goal(inverter(sk1}),
goal{empl(_)) — goal(bit(sk1, sk2)),
goal{empl(_}) A goal{word{skl)),

goal{empl(_}) A inverfer{ X} A lnt(X, I} A word(W) — assume{cmpl{c(X, W/ B))).

- goal{sublracier(l)) — goal{adder{sk1}),

-
goal{subtractar(.)] — goal{ampl{skl)),
goal{subtracter(.}) A adder(X) A cnpl(Y') — sublracter{c{ X, Y)).

goal{area_for_Adder(.)) — goal{adder(skl)),
goal{area_for _Adder(_}) — goal{eell{sk], sk2)),
goal{arca_for Adder(.) A adder{e{ X, N)) A eell(X,) — area_for_Adder{N » ().

goallarea_for Cmpl(_)} — goal{cmpl{sk1)),

goallarca. for Cmpl(_}) — goal{cell{sk], sk2)),
goaliarea_for Cmpl(_}) A empl{e X, N A eedll X, C) =+ area_for Cmpl(N +).

_lﬂ —

6. goal{area_for _Subtracter(_)) — goal{sublracter{skl)}),
goallarea. for _Subtracter(.)) — goal(cell(skl, sk2}),
goal{area_for Subtracter(_))Asublracter(e{c(A, Na),e(C, Nejj)neell{ A, Ca)reell(C,Ce) —
area_for_Subtracter(Na+ Ca+ Ne=+ Ce).

. — goal{area_for Adder{skl}},
— goal{area_limit(skl)),
area_for_Adder(A) A arealimit(N) A (A > N) — L.

=1

. — goal{erceu. for Clmpl{sk1)),
area_for Cmpli A) narea_imit(Ny A (A > N) = L.

L 4]

O — goal(area for Subtracter(skl)),
area_for_Subtracter(A) A arealimit(N)A{A > N) — L.

Moreover, the simple transformed program contains the same facts as the facts in the oniginal
program. Let adder(X) be the given goal, then the targel program to the bottom up hypo
thetical reasoner 15 the transformed prograom with - goalladder (k1)) {or the given goal. Be
canse of the presence of the negative clavse representing constraints on area for subtracters, the
fact goallarea_for_Sublracler(skl}) s presenl, and the facl goal{sublracter(sk1)) is derived.
Therefore, the subgoal subtracter{ X'} has to be evaluated for consistency chiecks oven if the given
moal is adder(X). Then, the computational cost to evaluate the given goal adder(X) with the
upside-down meta-interpretation is nearly equal 1o the cosl to evaluate the goal sublracter(X'}

6 Abstracted Dependency Analysis

In this section, we propose a static method to find irrelevant negative clauses to evaluation of
a given poal. I we can lind such irrelevant negative clauses, for every antecedent o of each
irrelevant clause, we do not need to add (- goal(n;)) into the transformed program. We try
tor find them by analyzing logical dependencies between the goal and each negative clause at
an abstracted level as follows. Here, we do not care about any argument in the abstracted
dependency analysis. Namely, we analyze dependencies between the predicate symbol of the
podal and predicate symbols appearing in negative clauses,

When v is an atomic formula, we denote by the proposition 5 the predicate syimbol of 4.
For cach negative clause ', Lthe proposition fulse~ 15 used as the identifier of . For every
(x — assume(F)), J is called an assumable-predicate symbel. For any environment L, its
abstracted cnvironment (denoted by E) is { [| g € £}, The abstracted justifications with
respect to P s defined as:

J= Hay, @, T = 8) | (ag Ao Aay, — assume(d)) € F}
U (@, @ = 0) [lan Ao Aan —) € P}
U Ay, 0y = fulses) | C={og A Na, — L), C € P}

Let A be the set of propositions appearing in J. Note that A consists of all predicate symbals
in # and all false, for C € F. For each proposition N in A, we compute the set of abstracted

environments on which N depends. Now, we show an algorithin to compute the set of abstracted
environments. This algorithin is obtained with modifications of the label-updating algorithm
shown 1n Section 3. The modified points are as tollows.
1. Hepiace Step 2 with

Step 20 Set the new label of WV to L7
2. Remwove Step 4.
Every proposition in A is labeled with the set of abstracted environments obtained by the
modified algorithm to the abstracted justifications J. This label is called the abstracted label of
the proposition. The system to compuie the set of ahstracted environments for each proposition
15 called an abstracted dependency anulyzer. The reasons why we have to modify the label-
updating algorithm are as follows, Firstly, in the abstracted justifications, every L is replaced
with the praposition false, for the negative clause (7, so thal cach abstracted label is always
consistent. Thus, we do not need Step 4. Secondly, each absiracted lahel may not be minimal
because we replace Step 2 with Step 2'. If any abstracted label is minimal. the theorem: that
we present below may not hold since we require all the dependent assu mable-predicate-symbols,

Example 2 An example program is:

Jr" = { e ‘t:l{u:]‘ k p“‘.l:i — fj'l:rllljj l,'l'liX:l —+ !E.Y)-
pIN) — assume{r(X)),
PN - assume(s{ X)),
riaj — g, r(X}As(X)— g,
H(X) A S(X)A LX) o L),

Consider the problem defined with the goal g and P. The abstracted label of ais {{r}, {r.s}}.
The abstracled label of the negalive clause is {{r,s}}. The abstracted environment {r,s] cannot
be omitted for ¢ although the set of minimal elements in the abstracted label of gis {{r}}.

Theorem: Let F be a normal default theory, (0 a goal, J the abstracted justifications with
respect to P, L{(J) the abstracted label of 7 . and I(falsen) the abstracted label of Julseq
where (' is a negative clause in P. If no element, in I{falsec) is a subset of any element in L(),
then the solulion to & from P is equivalent to the solution to (' from Py}

Proof: Let ' be a negative clause such that (o — 1) € P, where o is a conjunction of
atomic formulas. The negation of the sentence is:

L no element in L{false.) is a subset of any element in L{(7),
2. and the salution to & from P is not equivalent to the solution to (7 from P W{CH

From Sentence 2. an element £y in the minimal supports MS{aey) for an answer aey to o
predicted by P\ {C'} is a subset of some element Ey; in the minimal su pports M 5(08,,) for
some answer G, to @ predicted by P, {7}, From the definition of abstracted labels, the
abstracted environment L is in the abstracted label I fulsep) of false il any environment Eg
15 in the minimal supports MS{ae,) for any answer aop to a predicted by Y\ {C}, and the
abstracted environment L is in the abstracted lahel L{ f;']l of & if any environment Es is in

—_17 —

the minimal supports MS(GH,,) for any answer (70, to G predicted by P\ {C'}. Therefore, if
Ee C kg for any environments Ec and Eg, then F- € Eg for the abstracted environments Eg
and Eg. As a consequence, an abstracted environment L in the abstracted label L(false,) of
falseg is a subset of some absiracted environment. Eg; in the abstracted label L{C) of &. This
is contrary to Sentence 1. n

On the basis of the theorem, we can omit consistency checking for a negative clause € if
the condition of the theorem is satisfied. By using the theorem repeatedly, we obtain the fol-
lowing.

Corollary: Let P, G, L(G) be the same as in the theorem. And let

C=1{C| (s anegative clause in P

and no element in L{false.) is a subset of any clement in L(G)}.

Then, the solution to G [rom P is equivalent to the solution te ' [rom P\ C. =

Based on the corollary, the transformation algorithm 1, P} with the abstracted dependency
analysis is shown by Figure 3 for the program I’ and the goal (7. I this algorithm, there are
fwo procedure calls to the abstracted dependency analyzer. The meanings of are procedures are
as {ollows:

o Update Abstracted Lalbels{J, ADA):;
This procedure computes abstracted labels from abstracted justifications J and returns
the set ADA of propositions with their abstracted jabels,

o GetAbstracted Label((3, AT A):
This provedure returns the abstracted label of & from the set ADA of prapositions with
their abstracied labels.

Lhe procedure TG, P} transforms an original program P into the program in which the lop-
down information is incorporated and consisteney checking is restricted to those negative clauscs
relevant to the given goal (7.

Example 3 Consider again the program F shown in Example 1. Assume that each negative
clanse 1 F is naned with a number as follows:

¢ v area for Adder(A) A arealimit(N) A (A= N} = L.

o 8 arca_for Cmpl{A) A area imid(N) A (A > N)— L,

» O area_for _Subtracter(A) A areadimit(N)A{A > N) = |
The abstracted justifications J with respect to the program P oare:

L. (cla, bit, word, I g4, = adder).

2. (mverfer, bit, word, Tepp = empl).

procedure T(G, P):
begin
Po=
J =1,
k=10
for each (a; A Nea, = X)c P do
begin
if X =L, then
begin
ki=k+1
P=PuUu{oy - fa, — L)
Ji=Ju{len, ., = false,)};
end
clse 1f X = assume(7) then
begin
P=Pu {yuu!’{ﬁj foary Ao Aoy assume(3)};
J o= J U {(G,- u”rﬁ_,. A));
for j:=1 until n do F =P U {goal(5) »+goul(c;))
end
else if X =4 then
begm
P= FLJ {goal(ﬁ]hm Ao Moy — 8);
J = Ji{a Ay ""r'}}
for j:=1 untll n do P:= PU{goal(d 4) — goal(a;)}
end
end;
[V pdateAbsiracied Labels(J, AR A);
L = Get Absiracied Label(G, AD A);
for i:=1 until k deo
begin
L, := Get Abstracted Label(false., ADAY;
for each Fqn e Lo do
for cach F; e L; de
if E, C Ey; then for (&, - .&, = false;) € J do

for j:=1 until n do P:= Pu{— goal{o;)}
end;

P —f’U{—erf({r]}
return [

end,

Figure 3: Transformation Algorithm with Abstracted Dependeney Analysis

3. {adder, empl = subtracter).

4. (adder, cell = area_for_Adder).

B Aempl, cell = area_for Cmpl).

6. (subtracter,cell, cell = area_for _Subtracter).

7. larea-for_ Adder, arcadimit = false;).

8. (erea_for Cmpl,area limit > falsey).

9. {area_for_Subtracter, arealimit = falsey).

0. (= cla), (= Wt}, (= ccll), (= inverter), (=> word), (= area_limat).

These ahstracted justifications are given to the abstracted dependency analvzer. As the result
of Lhe abstracted dependency analysis, we have the abstracted labels of those negative clanses
as follows:

o Lifalse.): {{adder}).
o [L{falsey): {{ompl}].
e [ffalsey) : {{adder,empl}}.

Suppose that the given goal & = adder(X), then the abstracted label L({adder) of the proposition
adder is {{adder}}. Here, the condition of the theorem is checked for each negative clause as
follows:

¢ Lhe element {adder} in L{false;) is a subset of the element {adder} in L{adder).
o No element in L{falsey} is a subset of the element {adder} in L(adder).
e No clement in L{falsey) is a subset of the element {adder} in L{adder).

Therefore, both the negative clause (8) and the negative clause {9) are irrelevant to the goal,
however, the negative clause (7) has to be evaluated for consistency checking of the solution.
As a consequence, the transformed program P is

P\ {— goal(nrea for Cmpl(skl)), — goal(area_for_Sublracter{sk1))},

where P'is shown in Example 1. Neither the subgoal area_for Cmpl(X) nor the subgoal
area-for Sublracler{ X') has to be evaluated according to the abstracted dependency analysis,
so that the bottom-up hypothetical reasoner derives neither the subgoal subtracter(X) nor the
subgoal crnpl(X). Then, the computational cost to evaluate on adder(X) decreases.

Another example, which is very simple, is shown in [16].

7 Experimental Result

As an example of hy pethetical reasoning, we have taken up the design of logic circuits to caleulate
the greatest commmon divisor (GCD; of two integers expressed in & bits by using the Euclidean
algorithim. The solutions are circuits calculating GCD and satisfying piven constraints on area
and time [13]. The program F conlains several kinds of knowledge: datapath design, component
design, technology mapping, CMOS standard cells and constraints on area and time [13]. In P,
there are [0 normal defaults and 50 Horn clavses. The design prablem of calculators for GCD
includes design of components such as subtracters and adders.

Table T shows the expermental result, on a Pseudo-Multi PSI system, for the evaluation of
the transformed programs. The run time of the original program P lor a goal G is denoted by
Thie: py. The predicate symbaol G of each goal (15 adder (desipgn of adders), sublracter (design
of subtracters) or oGC 1) (design of calenlators for GCDY}. The run time Tris py of each goal (7 is
equal to the others on the original program # because boltom-up hypothetical reasoner is not
goal-directed.

Let F' be the simple transformed program of F. The experiment on the transformation
time shows that it takes 6.35 |s] for transforming P inte P, However, the run time Tric.rm
for each goal (7 is nearly equal to the others becausce constraints on area and time of the GCD
caiculators are represented by negative clauses. Even if we want to design adders or subtracters,
the bottom up hypothetical reasoner cannot avoid designing GUD calenlators for cousistency
checking. This 15 the same renson as Example 1.

Let [*" be the transformed program with the abstracted dependency analysis. The experi-
ment on the transformation time with the abstracted dependency analysis shows that it takes
6.63 [s] for translorming P inte P". The transformation lime with the abstracted dependency
analysis is a little bit longer {0.28 [s]} than the previous transformation time. When & is adder
or subtracter, the run time T poy 15 much shorter than the run time for the design of GCD
calculators. This is because the program can aveid consistency checks for negative clauses rep-
resenting constraints on area and time of the GOD) calenlators when the design of adders or
the design of subtracters is given as a goal. The result show that each total of the transforma:
tion time with abstracted dependency analysis and the run time of the transformed program is
shorter than the run time of the original program when the problem does not need the whole of
the program.

Table 1: Run Time of Program

) Gual G THHF,!'] [S] TH:{,".Pr]. [H] TH(G.P”] {S]
| adder HLT 17.5 {.4
sublracter 1.7 17.3 0.6
el 1.7 | 17.3 16.8

— 16 —

& Related Work

In [14], the algorithm for first-order Horn-clause abduction with the ATMS is presented. The
system is basically a consumer architecture [3] introducing backward chaining consumers. The
algorithm avouds both redundant proofs by introducing goal-directed backward-chaining con-
sumers and duplicate proots among different contexts by using the ATMS, Their problem def-
inition is the same as [21], whose inputs arc a goal and a set of Horn clauses. They consider
a limited form of negative clauses whose antecedents are restricted to assumptions. These
negative clauses are used 1o check the consistency of each set of assumptions and treated as
forward-chaining conswmers. On the othier hand, since we only simulate backward-chaining by
the bottem-up reasoner, we de not require both types of chaining rules. Moreaver, we see that
when the program includes negative clauses of free forms, it is difficult to represent the clauses
as a set of consumers in general, For example, suppose that the axioms are

fa e, b vd end vyg,e—se,d—=fenf— 1)
and the goal 15 g. Aszsume that the set of consumers is

{les=u), (de=b), (g« ed), (e=c), (f=d), (e,f= 1)},

n

where ®=" means a backward-chaining consumer and “=" means a forward-chaining consumer.
Then, we get the solution {{g, [{g}, {a, b}, {a,d}. {, b}, {e.d}})}. However, the correct solution
ig {19, {{g}}}} because {a. b}, {a,d}, {c, b) and {c,d} are nogood. To gnarantee the consistency
when the program includes negative clauses, for every Horn clause, we have to add the corre-
sponding forward chaining consumer. Such added consumers wonld cause the same problem as
the program that appeared in using the simple transformation algorithm in Section 5.

In [22], deduction and abduction with the upside-down meta-interpretation are proposed.
This abduction does not require the consistency of solutions. Furthermore, rules may do dupli-
cate firing in different contexts since it does not use the ATMS. This often causes a problem
when we apply it to practical programs where heavy procedures are attached to rules.

In contrast to our implementation, an implementation incorporating bottom-up information
into top-down hypothetical reasoning has been presented in [11] for propoesitional programs.

Another difference between the framewarks of [14, 22, 11] and ours is that their frameworks
treatl only hypotheses in the form of normal defaults withont prerequisites, whereas we allow {or
normal defaults with prerequisites.

9 Conclusion

We have presented a new transformation algorithim of programs for efficient bottom-np hypothet-
ical reasoning based on the upside-down meta-interpretation. In the transformation algorithm,
logical dependencies between a goal and negative clauses are analyzed at the abstracted level
to find irrelevant negative clauses, so that consistency checking of negative clauses can be re-
stricted to those relevant clauses. It has been evaluated with a logic eireuit design problem on
a Psendo-Multi-PS1 system.

— 17—

It should be noted that we can apply the abstracied dependency analysis to programs trans-
formed by Magic Set and Alexander methods, and to programs which work other bottom-up
hypothetical reasoners which never do duplicate proofs. Actually, we have evaluated programs
transformed by this method on several kinds of bottom-up hypothetical reasoning svstems. The
experimental results are shown in [10] which incindes hvpothetical reasoners without using the
ATMS.

This method analyzes logical dependencies between assumable-predicate symbols and pred-
icate symbols of the geal and negative clanses. Then, it maybe happens that bottom-up hy-
pothetical reasoners perform consistency checking for somue instantiated negative clauses that
arc irrelevant to the goal. In such a case, we could analyze dependencies on predicate symbols
with their some arguments, However, this pre-analysis cost would increase much more, We
conjecture that the dependency analysis at the predicate svmbol level offers a reasonable way
to reduce the overall effort.

Acknowledginents

Thanks are due to Mr. Makoto Nakashima of JIPDEC fur implementing the ATMS and com-
bining it with the MGTP. We are grateful to Prof. Mitsurn Ishizuka of the University of Tokve
for the helplul discussion. We wonld also like to thank Dr. Rynzo Hasegawa and Mr. Mivuki
Rashimura for providing us the MGTP, and Prol. Koichi Furukawa for bis advise. Finally, we
wonld like to express our appreciation to Dr. Kazuhiro Fuchi, Director of [COT Research Center,
who provided us with the opportunity to conduct this research.

References

[1] Bancithon, F., Maier, D., Sagiv. Y. and Ullman, J.1)., “Magic Sets and Other Strange
Ways to Implement Logic Programs™, Proc. ACM SIGACT-SIGMOD Symp. on Principles
of Database Systerms, pp.1-15. 1986,

(2] Beeri, C. and Ramakrishnan, R., “On the power of Magic”, Proc. ACM SICACT-SIGMOD
Symp. on Principles of Database Systems, pp.268-283, 1947,

B Bry. F., “Query Evaluation in Recursive Databases: Bottom- Up and Tup-Down Recon-
ciled”, Duta & Knowledge Engineering, 5, pp.280-312, 1990,

[] de Kleer,)., “An Asswinplion-based TMS”, 4rtificial Intelligenee, 28, pp.127-162, 1986.

5] de Kleer, 1., “I'roblem Solving with the ATMS", Artificial Iutelligence, 28, pp.197-224,
1956,

[6] Flaun, N.S., Dictterich, T.Gi. and Corpron, D.R.. “Forward Chaining Logic Programming
with the ATMS”, Proc. AAAT87, pp.24 29, 1987,

[7} Forgy, C.L., “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match
Problem”, drtificial Intelligence, 19, pp.17T-37, 1982,

8] Fujita, H. and Hasegawa, R., “A Model Generation Theorem Prover in KL1 Using a
Rawmilied-Stack Algorithm™, Proc. 8th Int. Conf. Logic Programming, pp.494-500, 1991,

— 18 —

o]

[10]
1]

12

13

[14]

15]
16]
17)
1)
[19]
[20]

[21]

Inoue, K.. “Problem Solving with Hypothetical Reasoning™, Proc. Int. Conf. on Fifth Gen-
eration Computer Systems 1988, Tokyo, Japan, pp.1275-1281, 1985.

Inoue, Ik, Ohta, Y., Hasegawa, R. and Nakashima. M., “Hypothetical Reasoning Svstems
on the MGTP", ICOT Technical Report TR-T63, Institute for New Generation Computer
Technology, Tokvo, Japan, 1992,

Ishizuka, M. and Ito, F., “Fast Hypothetical Reasoning Svstem using Inference-Path Net-
work™, Proc. 3nd [EEE Inl. Conf. on Tools for Artificial Intelligence, San Jose, CA,
pp.127H 1231, 1991,

Junker, U, “Reasoning in Muitiple Contexts”, Working Paper 334, CMD, Cermany, 1988.
Maruvama, V., Kaknda, T., Masunaga, Y., Mineda, Y. Sawada, 5. and Kawato, N, "co-
LODEX: A Cooperative FExpert System for Logic Design™, Froc. Int. Conf. on Fifth Gen-
erafron Computer Systems 1858, Tokyo, Japan, pp.1299-1306, 1985.

Ng, H'T. and Mooney, R.J., “An Efficient First-Order Horn Clause Abduction System
Based on the ATMS", Proc. AAALS]L, pp.491-199, 199].

Ohta, Y. and Inoue, K., “A Forward-Chaining Muoitiple-Context Reasoner and [ts Appli-
cation to Logic Design”, Proc. Znd [EEE Int. Conf. on loeols for Artificial Intelligence,
Heldon, VA-Nov., pp.386-392, 1990.

Ohta, Y. and Inoue, K., “A Forward-Chaining Hypothetical Reasoner Based on Upside-
Down Meta-Interpretation”, Proc. Int. Conf. on Fifth Generation Computer Systems 1992,
Tokyo, Japan, pp 522 520 1902

Poole,)., Goebel, R. and Aleliunas, R. , “l'heorist: A Logical Reasoning Svastem for
Defaults and Thagnosis™, N. Cercone and G. McCalla (Eds.), The Anowledge Frontier:
Lssays in the Representation of Knowledge, Springer Verlag, pp.331-352, 1987.

Poole, D)., *Cormpiling a Default Reasoning System into I'rolog”, New Generation Com-
pufing, B, ppod 38, 1991,

Reiter, K. . "A Logic for Default Reasoning”, Artificial Intelligence. 13, pp.81-132, 1980,
Rohmer, J., Lescoeur, R, and Kerisit, JM., “The Alexander Method A Tlechnique for
The Processing of Recursive Axioms in Deductive Databases”, New Generation Computing,
4, pp dTE-285, 1986,

Stickel, MLE., “Rationale and Methods for Abductive Reasoning in Natural-Language In-
terpretation”, Studer, R. (Ed.}, Proe. Int. Scientific Symp. Natural Language and Logic,
Hamburg, Germany, 1989, Lecture Notes in Artificial Intelligence, 459, Springer-Verlag,
pp.233 252, 1990,

Stickel, M.E., “Upside-Down Meta-Interpretation of the Medel Elimination Theorem-
l'roving Procedure for Deduction and Abduction™, ICOT Technical Report TR-664, In-
stitute for New Generation Computer Technology, Tokyo, Japan, 1991,

Ufeda, k. and Chikayama, 1", *Design of the Kernel Language for the Parallel Inference
Machine”, The Computer Journal, 33, 6, pp. 494-500. 1990.

