ICOT Technical Report: TR-0824

TR-0824

Transforming Abhductive Logic Programs 1o

Disjunctive Programs

by
K. Inoue & C. Sakama (ASTEM)

Drecember, Y92

(=R R

Mt Kokusa Bldg, 2[F (03)3456-319] -5

IG DT 4228 Mita 1-Chioe Telex 1COT 132064

Minato-ku Tokyo 108 Japsn

Institute for New Generation Computer Technology

Transforming Abductive Logic Programs

" to Disjunctive Programs

Katsumi Inoue Chiaki Sakama
ICOT ASTEM
Mita Kokusai Bldg., 21F Research Institute of Kyoto
1-4-28 Mita, Minato-ku 17 Chudoji Minami-machi
Tokyo 108, Japan Shimogyo, Kyoto 600, Japan
phone: +81-3-3456-4365 phone: +81-75-315-8651
inouefficot.oxr.jp sakama@astem.oT.jp

November 30, 1492

Abstract

A new Rxpoint semantics for abductive logic programs is provided, in which the
generalized stable models of an abductive program are characterized as the fixpoint of
a disjunctive program obtained by a suitable program transformation. In the transfor-
mation, both negative hypatheses through negation as failure and positive hypotheses
from the abducibles are dealt with unifarmly. This characterization allows us to have a
parallel bottom-up model generation procedure for computing abductive explanations
from arbitrary (range-restricted and function-free} general, extended, and disjunctive
programs with integrily constraints.

1 Introduction

Abduetion, an inference to explanation, has recenily been recognized as a very important
form of reasoning for logic programming as well as various Al problems. In [EK89, KM90,
(Gel90, Ino91], abduction is expressed as an extension of logic programming. Eshghi and
Kowalski IEK89] give an abductive interpretation of negation as failure [Cla78] in the class
of general Ingic programs, and show a 1-1 correspondence between the siable models [GL8S]
of a general logic program and the extensions of its associated abductive framework. Their
approach is extended by several literatures such as [KM90, Dun91, KM91] (a comprehensive
survey is in [KKT92]). Kakas and Mancarella [KM90] propose a framework of abductive
logie programming which supplies abduction not only for negation as failure but in 2 general
way: Their abductive [ramework is defined as a triple { P,T', T}, where F is a general logic
program, ' is a set of abducible predicates, and I 15 a set of integrily construints, Then, a
generalized stable model of { P,T,T) is defined as a stable model of PU E which satisfies T,
where E is any set of ground atoms with predicates from I'. On the other hand, Gelfond

{Gel90] proposes an abductive [ramework within extended disjunctive programs [GL91] that
allow disjunctions in heads and classical negation along with negation as failure. Further,
Inoue {Ino91] proposes a more general framework for hypothetical reasoning, called a knowl-
edge system, by allowing any extended logic program as candidate hypotheses T', and shows
its applicability to default reasoning, closed world assumption, and inconsistency resolution
as well as abduction. Moreover, every knowledge system is shown to be transformed into a
semantically equivalent abductive logic programming framework.

However, difficulty arises in designing procedures for these abductive frameworks since
(generalized) stable models of a program were not originally defined in a constructive way.
Maoreover, we cannot have any elegant top-down proof procedure which is sound with respect
te the (generalized) stable model semantics. In fact, Eshghi and Kowalski [EX89] show an
abductive proof procedure for general logic programs by incorporatling consistency tests
into SLD resolution, but its soundness with respect to the stable model semantics is not
guaranteed in general, Also, Kakas and Mancarella [KM91] define a top-down procedure
for abductive logic programming as an extension of [EK89}'s proof procedure, but their
procedure inherits the unsoundness problem with respect to the stable model semantics.

In order to compute stable models of a general logic program or answer sets [GLO1] of
an extended disjunctive program, Inoue ct al [IKH92] have shown a consiructive definition
of stable models and answer sets, and provided a bottom-up procedure based on model
generation techniques [MHB88, FHY1]. Recently, we pointed out that this proposal can also
be regarded as a new fixpoint semantics for general and extended (disjunctive) logic pro-
grams [1592]. The basic idea of this technique is to trausform a program into a semantically
equivalent posilive disjunctive program that does not contain negation as failure.

In this paper, we generalize Inoue et al’s program transformation technigue for non-
abductive programs [IKH92, 1502 to deal with abductive frameworks. Namely, we trans-
form an abductive logic programming framework into a positive disjunctive program not
containing negation as failure. We then show that the generalized stable models of an
abductive framewark ¢an he characterized by the fixpoint closure of the transformed pro-
gram. 'I'his fixpoint characterization is further extended to an abductive framework with
extended disjunctive programs. For a procedural aspect of our fixpoint semantics, we also
show that a model generation method for positive disjunctive programs can be used as a
sound and complete procedure for computing generalized stable models for function-free,
range-restricted programs.

This paper is organized as follows. Section 2 defines a framework for abductive logic
programming. In Section 3, we successively present fixpuint theories for positive disjunctive
programs, general logic programs and abductive logic programming. In Section 4, we extend
the results to extended disjunctive programs with abducibles. Section 5 presents a procedure
for computing generalized stable models. Some comparisons between our fixpoint theory
and previously proposed approaches such as [CDT91, KM91, 5191] are discussed in Section 6.

2 Model Theory for Abductive Logic Programs

There are several definitions of abduction [PGA87, EK89, KM90, Bry80, Gel90, Ino9l,
CDT91, Ino92]. The semantics of abduction we use here is based on the generalized stable
models defined by Kakas and Mancarella [KM90]. As stated in the previous section, their
abductive framework js an extension of Eshghi and Kowalski’s {ramework [EK89], and is
given by a triple (F,1',Z), where P is a general logic program, [is a set of abducible
predicates, and T is a set of integrity constraints. Compared with abduction based on first-
order logic by [PGAST, Inod2], I(akas and Mancarella define a program P not as first-order
formulas but as a general logic program with negation as failure. This definition covers a
more general class of programs than Console et al’s object-level abduction [CDT91) that is
defined for hierarchical logic programs. Two different definitions by Gelfond [Gel90] and
Inoue [Inofl] are more general than that by [KM90] in the sense that they allow more
extended classes of programs for and I'. We will revisit such an cxtension in Section 4.

We define an abductive general logic program as a pair { P,T'}, in a way slightly different
from Kakas and Mancarella's framework. Instead of separating integrity constraints Z from
a program F, we include them in a program and do not distinguish them from other clauses.
The main reason for this treatment is that we would like to check the consistency not by
an extra mechanism for integrity checking but within closure computation defined in the
following sections. For this purpose, we first give the syntax and stable model semantics of
general logic programs.

Definition 2.1 A general logic program is a finite set of elauses, which are either of the

form:
He—Bin.. . AByAnotBy Ao, Anot B, | (1)

or of the form:
— By A A Dy Anot Byay AL, Anot I, (2)

where n 2 m 2 U, and # and 7' are atows. The left-hand (right-hand) side of — is called
the head [body) of the clause. Each clause of the form (2) is called an integrity constraint.
An integrily constraint is called a negative clause if m = n.

A general logic program not containing not is called a Horn program. A arn program
not containing negative clanses is called a definite program.

In the ahove definition, we allow in a program integrity constraints as clanses with
empty heads, which are not explicitly defined in [GLE8]. While [KMO0] defines integrity
constraints as first-order formulas separated from programs, every integrity constraint in
the form of a first-order formula F can be first characterized as a clanse without a head,

«— nol F, then translated inte clauses using the transformation of {LT84]. For instance,
an integrity constraint p 2 q can be expressed by — p A notq. This translation is also
employed by [SKST).

It the semantics of a general logic program, a clause containing variables stands for the
possibly infinite set of its ground instances obtained by instantiating every variable by the

elements of the Herbrand universe of the program in every possible way. An interpretation of
a program is defined as a subset of the Herbrand base HEB of the program. An interpretation
I satisfies a ground Horn clanse H — Byn . A B if{By,..., B} C I implies H € I.
Especially, [satisfies a ground negative clause — By A A By if {By,..., B} € 1. Fora
Horn program P, the smallest interpretation satisfving every ground clause from P is called
the least model of P.

Definition 2.2 Let P be a general logic program, and I an interpretation. The reduct P!
of P by I is defined as follows: A clavse H — Hy A ... A By, (resp. — By A ... A Bp)
is in P if there is a ground clavse H « By A ... A B Anot By Moo, A not B, (resp.
— By AL A By Amet By A oo Aonet By frem P osuch that {Boaq,.. ., Balnl = 0.
Then, I is a stable mode! [GL88] of P if I is the least model of P/,
We say that a general logic program P is consistent il it has a stable model; otherwise,
it 15 called inconsistent.

Now, we define abductive general logic programs and their semantics.

Definition 2.3 An ebductive general logic program is a pair (P,I'}, where P is a general
logic program, and I' is a set of predicate symbols from P called the alducible predicates.
The set of all ground atoms Ap {C WEB) having abducible predicates from T is called the
abducibles. When F is a Horn program, { P,1') is called an abductive Horm program.

Note that the above definition is an extension of that by Kakas aud Mancarella [KM90]
to allow any general logic program (with integrity constraints) in P, while [KM80] requires
that abducibles do not appear in heads of ground clauses.

Definition 2.4 Let { F,T'} be an abductive general logic program and £ a subset of Ap.
An inlerpretation f{E) is a generalized stable model of { P, T} if it is a stable model of the
general logic program PU E' and satisfies £ = I(E)n Ar.

Each peneralized stable model in the above definition reduces to a stable model of P
wher I' = 0. In Definition 2.4, the candition E = I{E)N Ar is necessary since an abducible
appearing in the head of a ground clause may become true when ather abducibles {rom
L are true (see Example 2.1 below). In this way, each generalized stable model f{E) can
be uniyuely associated with its “generating” abducibles E. A similar extension has been
proposed by Preist and Eshghi [PE92).

Definition 2.5 et (P,T') he an abductive general logic program and O an atom. A set
E C Aris an explanation of O (with respect to { P,17)) if there is a gencralized stable model
T{E}) which satisfies O,

"For each abducible A € Ar, we identily Lhe atom A with the clause 4 - in £,

In the following, we assume that an observation @ is a non-abducible ground atom. This
restriction is not essential for the following reasons. First, if O is an abducible, every its
explanation trivially contains 0. Second, if 0(x) contains a tuple of free variables x, then
we can introduce a new proposition O and add a clause O — O(x) to the program P
so that & iz treated as an observation. Third, we can ask the system why some atoms
1,--+,Om are observed and other atoms O 4q,...,0, are not observed, by introducing a
clause O — Oy A ... AOp A notOmyy A ... Anot Oy and computing explanations of 0.

We usually prefer those explanations which contain abducibles as few as possible,

Definition 2.6 Let { P, T') be an abductive general logic program and F a subset of Ap.
A pencralized stable model J{E) is minimal if no generalized stable model J(E’) satisfies
that £ C F.

An explanation E of an atom O is minimal if no E* € E is an explanation of O,

Example 2.1 Consider an ahductive Horn program { P, "} where
F =1 sore(leg) — broken(leg), broken{leg) — broken(tibia) }

and I' = {broken}. Let O = sore(leg) be an observation. Then, £ = {broken(leg)} is
a minimal explanation of (). While £’ = {broken{tibia}, broken{leg)} is a {non-minimal)
explanation of O, E" = {broken(tibia)} is not an explanation of O, since broken(tibia)
causes broken{leg) so that there is no generalized stahle model I{E") satisfving B =
I(E"yri Ar. Thus, the definition of {minimal) explanations is purely model theoretic. In
this case, the unique minimal explanation £ reflects the fact that the evidence of broken(leg)
is more fikely than that of broken(iibia).

Lemma 2.1 Let { P,I'} be an abductive general logic program, E a subset of Ap, and O an
atom. Then, £ is a minimal explanation of O with respect to { P, 1"} iff J{E} is a minimal
generalized stable model of { PU{ « not O}, '),

I'rooft Pirst, observe that the addition of — net 0 to P imposes the integrity constraint
that & should be derived. Then,
£ is a minimal explanation of 7 with respect ta { P,T"}
& no £’ ¢ E is an explanation of O with respect to (P, T')
4+ no generalized stable maodel [{E') of { F, T} in which O is true satisfies £ C E
« no generalized stable model J(E') of (P U{ — not O}, ') satisfies £/ C £
<« I} is a minimal generalized stable model of (PU | «— 20t Q), T). O

Example 2.2 Consider an abductive general logic program { P,T'} where
P={p—ribAnoty, g a, re, «—nolp }

and T' = {a,b}. The unique generalized stable model of { P,T'} is J{E) = {r,p,b}. If we
regard o+ - motp as an observation, £ = [{E)n Ar = {b} is the unique explanation of p.
MNote here that we cannot add a te & becavse if we would abduce Ef = {a,b}, g would
block to derive p and the integrity constraint could not be satisfied. Hence, abduction is
nonmonaetonic relative to the addition of abducibles.

3 Fixpoint Theory for Abductive Logic Programs

This section presents a fixpoint semantics for abductive general logic programs. First, we
introduce (a) a fixpoint semantics for positive disjunctive programs [[592], then (b} a fixpoint
semantics for general logic programs [1592] using a transformation to positive disjunctive
programs by [IKH92]. Next, (c) a fixpoint semantics for abductive Horn programs is given
using another program transformation, then finally it is extended to (d) a fixpoint semantics
for abductive general logic programs by combining the transformations of (b) and (¢).

3.1 Fixpoint Semantics for Positive Disjunctive Programs

A positive disjunctive program is a finite set of (disjunctive) clauses of the form:
Hv. . vH+« B A.. . AB, (I,m=10) (3)

where H;'s and B;'s are atoms. An interpretation [satisfies a ground clause of the form (3)
it {By,...,Bn} € [implies H; € [for some 1 < 1 < [. Then, the semantics of a positive
disjunctive program £ is given by its mindmal models [Min82] cach of which is defined by
a minimal interpretation satisfying all ground clavses from P.

To characterize the nondeterministic behavior of a disjunctive program, Inoue and
Sakama [IS92] have introduced an ordering and a closure operator over a lattice of the

. . Hi .
sets of llerbrand interpretations 2?2 as follaws.

Definition 3.1 Let T and I be sets of interpretations. Then, ICT iff I=Jor¥J e I\ 1,
2f € I J such that I J.

; . . . HE .
Note that C is a partial order and each element in 22 makes a complete lattice under
the ardering C with the top element @ and the bottom element 275,

Definition 3.2 Let M h;:na positive disjinctive program and T be a set of interpretations,
- HE
Then a mapping Tp : 2¥ — 2877 is defined by

Tp(l) = | Tp(1),

rel
where the mapping Tp - 28 — 27" is defined as follows:

@, ifTEFByA... ~n DB, for some ground negative clause
— By acLLon By, from Py
Tp(fy={¢ {J | for each ground clause C; - Hiv ... v Hi — Byn...n B,
fram P such that {B},... B, }C Tand {II}, . H{}NnI=4,

J=TulJe {H)} (1€5<k)}, otherwise.

Especially, Tp(0) = .

Definition 3.2 says that, if an interpretation I does not satisfy a ground negative clause
then Tp(1) = 0, else Tp(I) contains every interpretation obtained from I by adding each
single disjunct from every ground clause that is not satisfied by [.

Definition 3.3 The ordinal powers of Tp are defined as follows.

Tp10 = {0}
Tplin+1l = Tp(Tpln)
Tp Tw = lub{Tpln|n<w}

where n is a successor ordinal and w is a limit ordinal.

Example 3.1 Let P = { pvge—r1, ser1 re=, «—ghs} Then, we get
Tetl1={{r}}, TpT12={{rspl{rsq}},and Tp 1 3= {{r,5p}} =TpTw

Theorem 3.1 [IS92] (a) Tp 7w is a fixpoint. We call it a disjunctive fizpoint of P.

(b) Each element in Tp | w is a model of F.

(¢) Let MM p be the set of all minimal models of P. Then, MMp = min{Tp | w), where
min{l) = {I € I|AJ € I such that J C I},

(d) A positive disjunctive program P is inconsistent iff Tp Tw =1

(e} If P is a definile program, Tpe | w contains a unique element / which is the least model
of £.

Theorem 3.1 (¢} characterizes the minimal medel semantics [Min82] of a positive dis-
junctive program. On the other hand, {d} can be used as a test for the consistency of
a positive disjunclive program. Furthermore, {(e) says that, for a definite program, our
fixpoint construction reduces to van Emden and Kowalski's fixpoint semantics [vEK76).

3.2 Pixpoint Semantics for General Logic Programs

To characterize the stable model semantics of a general logic program, [noue et al have
proposed a program transformation which transforms a general logic program into a se-
mantically equivalent noi-free disjunclive program [IKH92].

Definition 3.4 [[KH92] Let P be a general logic program and HE be its Herbrand base.
Then P~ is the program obtained as follows.

(i) For each clanse H «— By A ... A By Anot By Ao A not By in P, PT contains
[.H.l"'u_'l'{ﬂm.r| N ...ﬁ-\KE“jVHBm.|.'| W ..,VHER — .B]_ ﬁa.-f‘kﬂ.p.- |:4]
Especially, cach integrity constraint becomes KB, 4y V...V KB, — By A. .. A By,

(ii) For each atom B in HE, P* contains a clause — ~KI A Ji.

Here, KB (resp. ~KB) is a new atom which denotes B is believed (resp. disbelieved).
In the transformation (i}, each not B; is rewritten in =KB; and shifted to the head of the
clause. Moreover, since the head H becomes true when each ~KB; in the body is true, the
condition ~KB,41 A ... A KB, is added to H. The constraint (ii) says that each atom B
cannst be true and dishelieved at the same time.

An interpretation I* is now defined as a subset of the new Herbrand base: WE® =
HEU{KB| B ¢ HB}u{-KB | B € HE}. An atom in HB" is called objective if it is in
HB, and the set of objective atoms in an interpretation [* is denoted as obj(J*).

In (IKH92], it is shown that the stable models of a program can be produced construc-
tively from the transformed program. Here, we characterize the result using the disjunctive
fixpoint of the transformed program. For this purpose, we slightly madify a mapping pre-
sented in Definition 3.2 to allow a disjunclion of conjunctions of atoms in the head of a
tlause. For a conjunction of atoms & = [f{ & ... A Hy, we denote the set of ils conjuncts
as comj(F) = {Hl, .., Hi}. Let P* be a program, and J* an interpretation. A mapping
Tpe : 2H5% — 97 is now defined as:

@, ifI"E ByA... A B, for some pround negative clause
e Byaooon By, from Py
Toul %) { 1% | for each ground clause C; : F]' VEF e« Bia...ABL
pe(17) = from P~ such that {H],... H! } C I and
emtj{F;}lEII‘ for a.uyj: l PN
U= 10U g, conj(Fy) (<Jj<k)}, otherwise.

Using this definition, the mapping Tp~ and its disjunctive fixpoinl are also defined in the
same way as in Scction 3.1 and those properties presented there still hold.

Definition 3.5 An interpretation I® is called canonieal if it satisfies the condition: for
each ground atom A, if KA £ I* then A € [%. For a set I* of interpretations, we write:
0bjo(1%) = { obj(I*) | I* ¢ I* and I™ is canonical }.

The following theorem presents the fixpoint characterization of the stahle model seman-
ties for general logic programs.

‘Theorem 3.2 [1592] Let [* be a general logic program, P~ its transformed form, and $7 p
the set of all stable models of P. Then, ST p = 0bj(Tp« Tw).
Especially, F is inconsistent iff obj.(Tp T w) = 0.

Example 3.2 Let I’ = { p— notgq, g~ notp, v g, v+~ notr}. Then,

e = {(pA-Kg}vKye , (qh-Kp)VKp+—, r—gq, (ran-Kr)vKr—}
u {"__‘H'B‘I."B]EE{F1'-?1T}}'
Now, Tps T w = {{p,-~Kq,Kp,Kr}, {Kyg,q,~Kp,Kr,r}, {Kg, Kp,Kr} }, in which enly the

second element is canonical. Hence, obj{Tp- T w) = {{g,7}}, and {g,r} is the unique
stable model of /7.

3.3 Fixpoint Semantics for Abductive Horn Programs

The basic idea behind the transformation presented in the previous subsection is that we
hypothesize the epistemic statement about an atom B to evaluate the negation-as-failure
formula net B. Namely, we assume that H should not (or should) hold at the fixpoint.
The correctness of the negative hypothesis —KB is checked through the integrity constraint
— —K8 A B during the fixpoint construction, while for the positive hypothesis KH, the
integrity checking is carried out by the canonicel constraint that all the “assumed” literals
arc actually “derived” at the fixpoint.

Now, we move on to abduction. Each abducible can also be treated as an epistemic
hypothesis as in the previous transformation. Thus, we can assume that each abducible is
either true or false at the fixpoint. The only difference is that for the positive hypothesis
KA for each abducible A, we do not need the canonical constraint, We first present a
transformation of an abductive Horn program.

Definition 3.6 Let (P,T"} be an abductive Hlorn program. Then, Ff is the program ob-
tained as follows.

(i) For each Horn clause from #: [T — By A ... A By A Ay A ... A An (m,n = 0), where
H’s are non-abducibles and A;% are abducibles, Ff contains the clause:

(KA A AKALV=KA V.. . v-KAd, — By A...AB,, . (5}
Bepecially, each negative clause hecomes =KA, V... v -KA, — Hy A ... A B,
(i) For each abducible 4 in Ap, PE conlains the following two clauses:

- ~KANA, (6)
A — KA. (7)

We can see that the clause (3) transformed from an abductive Horn program and the
clause (1} transformed from a general logic program are dual in the sense that an abduced
atom A is dealt with as a positive hypothesis K4, while a negation-as-failure formula nat 17
15 dealt with as a negative hypothesis -K 7. llere, however, we have the additional clause (7)
for each abducible A. Since this clause derives A whenever an interprelation contains the
positive hypothesis KA, it makes every interpretation in Tee T w satisfy the canonical
condition defined in Definition 3.5. Henee, for each Ilorn clause from F, we can replace the
transformed clause (5) in I with the clause

{fI.l"'nJ’]n[.ﬁ ...ﬁA,.}V"K.‘ii i"..."v"—'b{!iﬂ = BL M --“'“'.Em (BJ

and omit each clause (7) for each abducible A in 4. We dennte as Ff the program obtained
from F by this alternative transformation. Since this change does not affect the result of

the fixpoint of P as far as objective atoms are concerned, we can identify P with Pg. 2
In this way, each abduced atom can be added to an interpretation without imposing the

condition that it should be derived.

Lemma 3.3 Let { P,T'} be an abductive Horn program.

(2) For any J* € Tps T w, obj{I") is a generalized stable model of { P, T'}.

(b} For any generalized stable model J{E) of { P,T'}, there is a generalized stable model
IE"Y of {P,T) such that B/ € E, I{FO\E' = HEV\ E, and I{E") = obj(I*) for some
I" € Tps Tw.

(c) H E C Ar is an explanation of an atom (7, then there is an explanation E* of O such
that E' C E and I(E') = obj(I*) for some I* € Tpz Tw.

Proof: (a) Let £ = oby(I™) N Apr, and P’ be the definite program obtained from P hy
removing every negative clause, By Theorem 3.1 (e}, Tpug [w contains the unique element
[. Then, for cach pround clavse of the form « Byan A B ndya . 4, {A;’s are
abducibles) from P il {Hy,..., B} C I then either {Ay,..., 4, H} CJTor3j(1<j<n)
such that A; ¢ I, and for the corresponding clause of the form (8), if {Hy,..., 0} € I then
either {A;,..., A, H} C [%or 47 (1 < 7 < n) such that =KA; € [*. Hence, I = obj{I*}.
Since I is the least model of PU E and PU E is a consistent Horn program, [is also the
stable model of /U E. Hy definition, [is & generalized stable model of { P,T),
(L) For any atom H* € I{E)\ E, there is a ground r]auqﬂ C' Y — By A .o A B

A} A on AL (AYs are abducibles) from P osuch that {Bi,..., Bi J i E} VW E a.nd
{AL, ...,A:-h} CE Let B' = Upicrmpr tAL ... AL} Since fc:r the clause ', there is
the cnrruspuﬂdiub clause (KA Ai Ao A A,'..,g} VKA VL LV ""{AL; —Bia. A ‘Bjn, s
in PE,if [Hi . B 1S J for some J £ Tpa | a and some ordinal a, then there exists

J'€ Tpr 1 ot 1 such that JU {H: AL ... ,..il:'h_} CJ'. Since {H;, AL, ... ,A:h} C I £} and
I{E} is a stable model of FU F, J' satisfies each negative clause in FF and is not pruned
away. llence, there exists " € Tpa | w such that £’ C I, By (a), m.:;{f"] is a generalized
stable model of (P,T'). It follows immediately that £/ C E, I{E')\ E' = I(E)\ E, and
I(E") = obj(I7).
(c} If E is an explanation of O, then there is a generalized stable model I(£} of (P,T')
atisfving 0. By (b), there is a generalized stable model /(E') of { P,T'} such that £' C E,
HENNE = I(EY\ F, and I{E') = obj(I*) for some I* € Tpg Tw. Since O is in [(£)\ E,
it is also in J(E')\ E'. Hence, E' is an explanation of 0. O

3.4 Fixpoint Semantics for Abductive General Logic Programs

Now, we show a transformation of abductive general logic programs by combining the two
transformations shown in Sections 1.2 and 1.3, Fach negation-as-failure formula not B for
a nop-abduecible B is translated in the same way as Definition 3.4: it is split into =K B and

*In the transiormation (&), each hypothesis Ay can be considered to be stipped instead of heing resalved.
Thus, this operation is & bottom-up connterpart of the Skip rule in SOL resolution [Ina%2] that is defined
for wop-down abduction.

— 10—

KEH. On the other hand, when a negation-as-failure formula nof A mentions an abducible
A, it should be split into =KA and A. This is because for each abducible A, we can deal
with it as if the axiom (7) A — KA is present.

Definition 3.7 Let { F,T'} be an abductive general program. Then, PF is the program
abtained as follows.

(i) For each clause from F:
HeBnrn . ABa A A A ANAshnot Bopr AL Anot By Anot Ap A ... A not A,

where s > m > 0,t > n > 0, li;’s are non-abducibles, and A.'s are abducibles,

n [l t n L] t
(H A A& AN -KB; v A KA) v =KAo v\ KB v\ 4,
i=1 Jj=m+l k=nil =1 j=m+] k=n+1

— Brn ... A B (9)
is in PF. Especially, each integrity constraint is transformed to:

—\K,‘i]V...'lu"'il“:}lu"'.-"I‘{Em.f_l'\l"...VK.H,VA,;*-[".’...VA:"‘Hlﬁ.-.ﬂﬂm.

{ii) For each atom I in HB, PF contains the clause — -KH A H.

Notice that a transformed program Ff in Definition 3.7 reduces to the program P* in
Section 3.2 when I is empty, and reduces to the program PP in Section 3.3 when P is a
Horn program.

Lemma 3.4 Let (P,T') be an abductive general logic program, and E a subset of Ap.
Then, I{£}is a generalized stable model of { P, T} il I{E) is a generalized stable model of
{P.ﬁEJ: I‘:..

Proof: [(L)is a generalized stable model of { P,T')

¢ I(E) is a stable model of PU F and E = I[{E)n Ar

& I{E) is the least (and stable) model of PIE) y BIE} and E = HEYN Ap
& I(E)is a generalized stable model of { P/(E) ') (because E/E) = Y, 0

Lemma 3.5 Let { /,1') be an abductive general logic program.

(a) For any I € oby(Tpz Tw), { is a generalized stable madel of { P,T).

(b} For any generalized stable model J{(E) of (P,T'}, a generalized stable model I F') of
(P.T') is in obje(Tpg T w) such that £’ C E and J(E}\ &' = I(E)\ E.

(e) If I/ C Ap is an explanation of au atom O, then there is an explanation £’ of (J such
that £’ C E and I(E') € obj(Tps Tw).

Proof: (a) Let I £ TPF T w such that /* is canonical, and [(E) = obj(I*). For
each ground clause of the form (9) from P7, if {B1,...,Bm)} C I{E)\ E, then either (i)
H e I(E), {Ar,....,An} € E and {~KBpi1,..., KBy, ~Kdpir,...,~Kd} € I=, (i)
3i (1 £ 1 £ n) such that =KA; € I*, (iii} 3j (m 4+ 1 £ j £ s) such that KB, € I*, or
(iv) dk (rn + 1 < k < 1] such that Ay € E. Now, consider the abductive Horn program
(PUE) T, and let J* € Tipueye 1 w. For each ground clause of the form (9) from Py,
if (iii') KB; ¢ I* (then ~KB; € I and B; ¢ I{E)\ E since I" € Tps | w) for any
= m4+1,..., sand (iv') Ag & E for any £ = n 4+ 1,....,1, then there is a ground clause
of the form (8) from (PFh)g, and it holds that, if {By,...,Bm} C J* then either (i)
1H,4y,...,An} CJ%or (ii') 34 (1 < ¢ < n) such that =K4; € J*. On the other hand, if
(in") KB; € I (then B; € I(E)\ E since [* is canonical) for some 3 (m+1 £ 7 < s} or (iv")
Ai € FEfor some k (n+1 < k £ ¢}, then no corresponding clause exists in {P”E]]P. Hence,
there exists a J* satisfying obj(J*) = I(E). Then, I(£) is a generalized stable model of
{ PIE) TY by Lemma 3.3 (a), and is a generalized stable model of { P,T') by Lemma 3.4.
Part {b) and (¢) can be proved in a similar way to Lemma 3.3 (b) and (¢). &

The next theorem characterizes the generalized stable model semantics of an abduc-
tive general logic program and the minimal explanations of an observation in terins of the
disjunctive fixpoint of the transformed program. In the following, when I is a set of inter-

pretations, we write: minp(I) = {[{E) € 1 |AI(E'} € Tsuch that E' C E'}. Note that
minp(I} = {[{E})e 1| Ee mn{{E' | [[E') € 1})].

Theorem 3.6 Let { /,1'} be an abductive general logie proagram.

(a) Let min-G3T; pry be the set of all minimal generalized stable models of { P, I'). T'hen,
mfﬂaQSTt F.l"} = rniﬂr{t;kfljclprrf T u.,:l} .

(L) Let E be a subset of Ap, and O an atom. Then, E is a minimal explanation of O with
respect ta (I, I} iff J(E) € ming(obje(T (puimnatopsz 1)

Proof: (a) By lemma 3.5 (b), it follows immediately that min-GST;pry C obj(Tps 1
w}, and hence mmn-GSTyppy © m:'nrfubj:{T,F I w)) holds. On the other hand, by
Lemma 3.3 (a), every I(E) € obje(Tps 1 w) is a generalized stable model of { P, 1I'}. If
I{E} € minp(obj(Tpe T w}) is not in muin-GST pr), then 3/(E') € min-GST pry such
that E' C K. However, by the abave discussion, I{E') € 'ruinr{u{.ljc{TpF 1 &)}, a contra-
diction. Therefore, the result follows,

{b) By Lemma 3.5 (¢}, for every minimal explanation £ of O, there is a generalized
stable model I{E) of {P, '} in ub;.r',;{TpF T w) such that J(F) satisfies 0. Then, by
Lemma 2.1, I{E) € min-GST| pu{noro}ry- By (a), min-GSTy pufenaro},ry 15 given by
mine(obi(Lipug, not0})s @)}, Henee, the result follows. O

Example 3.3 (cont. from Example 2.2) The abductive general logic program { £,['),
where P = { p—rhAbAnotyg, ge=a, =, = notp }and I' = {a,b}, is
transformed to FF that contains:

(paba-Kglv-KbvKg—r, (ghajv-Kae | 7o, Kp=—,

and — —-KH & H for every IT € HE. Then, {r,p,b,~Kg,~Ka,Kp} is the unique canonical
set in Tpz Tw, and hence min-GST pry = {{r,p,0}}.

4 Abductive Extended Disjunctive Programs

Gelfond [Gel90] and Inoue [Ino91] proposed more general frameworks for abduction than
that in [KM90] by allowing classical negation and disjunctions in a program. Now, we
consider a fixpoint theory for such extended classes of abductive programs.

An eztended disjunciive program is a disjunctive program which contains classical nega-
tion (=) as well as negation as failure (not) in the program [GL91), and is defined as a finite
set of clauses of the form:

fa Vo N Lp= Lpag Ao ALy Aol Lmgr Ao fmotLy (n2>m2120) (10

where sach [.; i3 a positive or negative [iteral,

The semantics of extended disjunctive programs is given by the notion of answer sefs.
We denote the set of all ground literals from & program as £ = HBU {=F | B € HE}.
Let P be an extended disjunctive program and § € £. Then, the reduct P¥ of P by § is
defined as follows: A clanse LV ...V Ly +— Loy AL A Ly is in P2 if there is a ground
clause of the form (10) from P such that {Lpns..... Lo} 1S = @, Then, 5 is a consistent
answer set of P, il 5 is a minimal set satisfying the conditions:

1. Foreach clanse Ly v ...V Ly — Ligq A A L (12 1) in PY i {Liyq,..., Lm} € 5,
then L; € § for some 1 <4 <[,

2. For each integrity constraint & Ly A... A Ly, in PS5 {Ly,..., L.} € 5.
3. 5 does not contain both IF and =B for any atom A,

Since the answer set semantics of extended disjunciive programs is a direct extension of
both the minimal model semantics of positive disjunctive programs and the stable model
sernantics of general logic programs, the results presented in Sections 3.1 and 3.2 can be
naturally extended. The only extra requirement we consider is the constraint that an
atom F and its negation =8 cannot be in a consistent answer set. Now, for an extended
disjunctive program P, the transformed program P~ is defined as follows [TKH92]: For each
clavse of the form (10) from F, P contains

(Ly A KLy A oo A KL)V oV (L A =KLy A ... A =KL,)
VHL;,;+1V---"-"‘HL" L Lr+;|.|'"|.-.-..l"'..|[.'m, {llj

for each literal L in £, a clause — —KL AL isin P*, and lor each atom B in ' HE, a clause
—=BaBisin P

Theorem 4.1 [1592] Let P be an extended disjunctive program, and ASp the collection
of all consistent answer sels of P. Then, ASp = objimin(Te~ T w}).

Now, we define abduction within extended disjunctive programs.

Definition 4.1 An abductive extended disjunctive program is a pair (P,T'}, where P is an
extended disjunctive program and I is a set of positive/negative predicate symbols from P.
The abducibles AF (C L) is the set of all ground literals with the predicates from T.

Let E be a subset of AT. A set of literals 5(E) is a belief set of (P,T) if it is a
consistent answer set of the extended disjunctive program P U E and satisfies £ = S(E)N
A%, A minimal belief set and a [minimal} ezplanation are defined in the same way as in
Definitions 2.5 and 2.6.

The transformation for an abductive extended disjunctive program P is defined in the
same way as Definition 1.7: For each clause in P of the form:

HiVo NVH — BiA ABa NAL A AARAROE By AL Amot ByAnot Aggq AL Anot Ay

where [20,5 2m 2 0,¢ > n 2 0, H's are literals, B;'s are non-abducible literals, and
Ag's are abducible literals, PF contains the clanse:

(H, A PRE}V ...V(HiA PRE)V=KA V...V =KA,
VEKBmp V... VEB, VA V.. VA = Hi A A DBy, {12)
where PRE = Ay A A Ag A-KBnp A A -KB A =Kdapr n LA KA,

lor each literal L in £, a clause « KL A L isin Pf, and for each atom H in HE, a clause
— =M AHisin [E.

The next theorem characterizes the belief set semantics of an abductive extended dis-
junctive program and the minimal explanations of an observation.

Theorem 1.2 Let { P,T'} be an abductive extended disjunctive program.

{2) Let min-BS; gy be the set of all minimal belief sets of { P,I'). Then,

min-B8 ppy = minp(obj.(min(Tpe Tw))).

(b) Let E be a subset of A%, and O a literal. Then, F is a minimal explanation of O with
respect to { F,T") iff S{E) € minr(obja(min{Tipy{naoy Tw))).

Proof: The proof can be given in a similar way to the proof of Thearem 3.6 except
that, according to the existence of disjunctions in P, each /* is taken from min[TFF Tw)
(as in Theorem 3.1 {c] and Theorem 4.1) instead of Tps | w when proving the result
corresponding to Lemma 3.5 (a). O

5 DBottom-Up Evaluation of Abductive Programs

In this section, we investigate the procedural aspect of the fixpoint theory for abductive
programs in the context of a particular inference system called the model generation theorem
prover (MGTP) [FH91, IKH92]. MGTP iz a parallel and refined version of SATCHMO

-1 —

[MB&8], which is 2 bottom-up forward-reasoning system that uses Ayperresolution and case-

splitfing on non-unit hyperresolvents.
Let P be a positive disjunctive program consisting of clauses of the form:

[H]J .'“-....:""-Hlph}'\l"-.."v"lfﬂyr] h...ﬂHglkr] — By n By {l3:|

where B's (1< i< m;m>0) and Hie's (k; 2 1,1 <7 < 1) are atoms, and all variables
are assumed to be universally quantified at the front of the clause. Given an interpretation
1, MGTP applies the following two operations to [and either expands [or rejects I:

1. (Interpretation Extension) If there is a non-negative clause of the form (13) in P
and a substitntion o such that I'l= (B A .. A By)e and T = (Hip A ... A His o
forany i = 1,....1, then [is expanded in [ways by adding H;,e,...,H,;.c to { for
eachi=1,...,L

2. (Interpretation Rejection) If there is a negative clause — By,..., B, in Pand a
substitution ¢ such that I |= (B A ... A By e, then [is discarded.

Here, the process of obtaining a substitution ¢ does not need full unification if every clause
is range-restricted [MB88), that is, if every variable in the elausc has at least one occurrence
in its body. Since every set [of atoms constructed by MGTP in such a case contains only
ground atoms, it is suflicient to consider matching instead of fell unification. Thus, we
assume that a program P input to MGTP is a finite, function-free program and satisfies
the range-restrictedness for each clanse in P. MGTP has Leen implemented in KL1 [UC30]
on the PIM/m distributed-memory multiprocessor machine developed at ICOT, and split
interpretations caused by the interpretation extension operation for a rule with { > 2 are
automatically allocated to distributed memories so that they are taken as the source for
exploiting OR-parallelism of MGTT.

The connection between closure computation by MGTF and the fixpoint scmantics with
the mapping Tp given in Section 3 is obvious, which can be regarded as an extension of
the relation between hyperresolution and van Emden and Kowalski's fixpoint semantics for
definite programs [vEKTG, Section 8] In fact, for cach split interpretation constructed by
MGTP, hyperresolution is applied in the same way as in the case of definite Programs.

We have prepared rules to reject inconsistent interpretations that contain both —KJ7
and [f {or bath =J and H) for any atom H. To implement these rules, we can simply use
an axiom schema like: — KX A X (or + =X A X)in which X can be matched with
any atom by regarding =K and - as functors in KL1. Furthermore, we can add additional
schemas like — -KX A KX and « K~X A KX to improve the efficiency (see [TIK1192]).

For abductive Horn, general and extended (disjunctive) programs, our program trans-
lations are especially suitable for OR-parallelism of MGTP because, for each negation-as-
failure formula as well as an abducible, we make guesses to belicve or disbelieve it. Inoue
et al [IONNG2] have shown that model generation for abductive Horn programs using the
transfation in Section 3.3 successfuily extracts a great amount of parallelism of MGTP in
solving a logic cirenit desizn problem,

6 Comparison with Other Approaches

This section compares the proposed theory to related work. Our fixpoint theory can give
a new uniform frumework for a lot of previous work on characterizing stable models or
answer sets of general or extended (disjunctive) programs as well as proposals on computing
explanations from these programs together with abducibles. Since there have been no
algorithin which can compute the belief sets of arbitrary forms of abductive programs,
our procedural semantics also provides the most general abductive procedure in the class of
Junction-frec and range-restricted programs.

6.1 Fixpoint Characterization for Disjunctive and General Programs

Here, we summarize the differences between other approaches and our fixpoint construc-
tion for positive disjunctive programs and general logic programs. For a more detailed
comparison, see [1S92].

A fixpoint semantics for positive disjunctive programs has been studied by several re-
searchers [MR90, FM91, Dec92]. Minker and Rajasekar [MR90] consider a mapping over
the set of positive disjunctions (called states), while our fixpoint construction is based on
the manipulation of standard Herbrand interpretations and directly computes models, Fer-
nandez and Minker [FM91] present a fixpoint semantics for stratified disjunctive programs
using a fixpoint operator over the sets of mintmal interpretations. Decker [Decd2] also
develops a fixpoint semantics for positive disjunctive programs based on another mapping
over the sets of interpretations.

For general and extended disjunctive programs, the stable model semantics [GLSS] and
the answer set semantics [GLY1] were originally defined by means of reducts of programs
sn that their fixpoints are not constructively given. On the other hands, our fixpoint
is constructively defined, and for the propositional case its computational complexity is
the same as that of computing the minimal models of a positive disjunctive program. In
contrast to another constructive approach by [SZ290], our fixpoint construction is performed
in paralle] based on case-splitting on derived disjunctions and does not need any selection
strategies nor future backtracking during the computation of stable madels.

In [FLMS91], Fernandez et al develop a method of computing stable models by using
a similar but different program transformation from ours. In our transformation (4), each
liead H is associated with its prerequisite condition —KB41 A .. A=KB, in an explicit way,
while this is not the case in their transformation. Furthermore, we effectively use negative
clauses Lo prune away improper extensions, while their transformation does not use any
such negative clauses. Although we could extend [FLMS91]'s transformation to deal with
abductive general logic programs, our translation appears to be more suitable for handling
abducibles. Since the prerequisite condition in this case contains abduced aloms, we can
eastly identifly abducibles from other atoms in each obtained model, and negative clauses
can be used to test the consistency of abdueibles in each interpretation.

1 —

6.2 Computing Abduction

Console et al [CDT91] characterize abduction by deduction (called the object-level abduc-
tion) through Clark’s completion semantics of a program [Cla78]. According to their frame-
work, abduction is characterized as follows: For an abductive logic program (P, T'), let
comp~T(P) be the completion of non-abducible predicates in £. For an observed atom O,
il £is a formula from T satislying the conditions:

1. comp T(PYU{0} E E, and
2. no other E' from T satisfving the above condition subsumes E|

then a minimal set of literals 5 C A? such that 5 [F is called an explanation of 0.

In [CDTO1], they show that the object-level abduction coincides with the meta-level
characterization of abduction in terms of SLDNE proof procedure for huerarchical logic
programs. © Nole here that the restriction of hierarchical programs is necessary not only
for assuring the completeness of SLDNE resolution, but also for characterizing abduction
in terms of completion (see also {Kon92]).

Example 6.1 Consider a program conlaining cyclic clauses: P={p+—gq, ¢+—p, g+~
a } where a is an ahducible atom. Then, mmp'r[P} ={p=q, g=pval, and for an
observation O = p, PU {a} k= p, while comp=T(P}U {0} ¥ a.

On the other hand, PE={p+~—gq, g—p, (gnalv-Ka—, — -Kana}isobtained
by vur transformation in Section 3.3, and {g,a,p} isin Tps Tw.

Denecker and De Schreye [DD592] recently proposed a model generation procedure for
Console et al’s object-level abduction. In conirast to us, they compute the models of the
only-if part of a completed program that is not range-restricted in general, even if the
original definite clauses are range-restricted. To this end, they have to extend the model
generation method by incorporating term rewriting techniques, while we can use the original
MGTP without any change. Furthermore, the application of their procedure is limited to
definite programs. Bry [Bry90] firstly considered abduction by model generation, but his
abduction is defined in terms of a meta-theory.

Eshghi and Kowalski [EK89] give an abductive interpretation of negation as failure in
general logic programs. For each negation-as-failure formula net B(x), the formula A*{x)
is associated where B® is a new predicale symbol nol appearing anywhere in the program.
A program [is therehy transiormed into the definite program 7 together with the set '™
of abducible predicates B%'s. Then, an atom O is true in a stable model of P iff there is a
get B7 of abducibles rom I'* such that

I PPUE"E O, and
2. I U E® satisfies the following integrity constraints:

S B{x)a B7(x)) and B{x)v B7(x) for every abducible predicate B” .

YGeneral logic programs which contain no predicates defined via posilive/negalive cycles.

— 17 —

However, difficulty arises in dealing with the disjunctive constraints that cannot be checked
without actually computing models in general. Thus, we cannot have any elegant top-
down proof procedure which is sound with respect to the stable model semantics. For
Example 3.2, the top-down abductive procedure of [EK89] gives a proof for O = p, but
no stable model satisfies p. * For an abductive general logic program { P, T}, Kakas and
Mancarella [KM91] aiso transform the negation-as-failure formulas in P, and show a top-
down abductive procedure for the transformed program {P",I'UT"), where P* and I
are obtained by the transformation of [FK88]. However, this transformation inherits the
difficulty of computation from Eshghi and Kowalski's abductive interpretation of negation
as failure, and suffers from the soundness problem with respect to the generalized stable
model semantics. Gelfond [Gel20] defines abductive extended disjunctive programs, bul no
proof pracedure is given.

Alternatively, [lno91] and [S191) show that an abductive general logic program (F, '}
can he transformed into a single general logic program. For each atom A{x) from I', they
introduce the negative literal —~A(x) and a pair of new clauses: *

Alx) «— mot-Alx),
-A(x) — mnot Alx). (14)

Then, there is a 1-1 correspondence between the generalized stable models of { P,T') and
the stable models of the transformed program. Using this transformation, again, we can-
not have a top-down proof procedure which is sound with respect Lo the generalized stable
model semantics because we remain in the stable model semantics. Therefore, Satoh and
lwayama [5191] propose a bottom-up, TMS-style procedure for computing stable models of
a general logic program, which is similar to [SZ290]'s procedure and performs an exhans-
tive search with backtracking. At this point, we can use any procedure to compute stabie
models. Comparing each procedure, the MGTP-based procedure by [IKHO2| has the fal-
lowing advantages over procedures of {SZ80, SI91). First, MGTP can deal with disjunctive
programs, while TMS-like algorithms cannot. Second, MGTP gives high inference rates for
range-restricted clauses by avoiding compntation relative to their useless ground instances,
while a TMS generally deals only with the propoesitional case. Third, MGTP performs a
hackerack-frea search and more easily parallelized than others.

Although the simulation {14) of abducibles is theoretically correct, this technique has the
drawback that it may generate 211! interpretations even for an abhductive Horn program,
and is, therefore, often explosive for a number of praclical applications. The program
transformation methods proposed in this paper avoid this problem in two aspects. First, for
each apistemic hypothesis which is either a positive hypothesis [rom abducibles or a negative
hypothesis through negation as failure, case-splitting is delayed as lang as possible since an
interpretation is expanded with a ground clause only when the body of the transformed

*However, Eslighi and Kowalski's abdoctive proal procedure is sound with respect to Lhe preferred ex-

fensean semantics by Dung [Duen®l].
*Satoh and Iwayama de nol use the negative literal =4 bul use the wew predicate syinbol A for each

predicate symbol A appearing in ' because they do not allow classical negation in a progran.

=]ﬂ__

clanse becomes true. Second, by using MGTP, a ground instance of hypothesis is introduced
only when there is a ground substitution for each clause with variables such that the body
of the clause is satisfied. Hence, hypotheses are introduced when they are necessary, and
the number of generated interpretations is reduced as much as possible.

7 Conclusion

We have presented a uniform {ramework for fixpoint characterization of abductive Horn,
general, and extended (disjunctive) programs. Based on a fixpoint operator over a com-
plete lattice consisting of the sets of Herbrand interpretations, the generalized stable model
semantics of an abductive general logic program can be characterized by the fixpoint of a
suitably transformed disjunctive program. In the proposed transformations, both negative
hvpotheses through negation as failure and positive hypotheses from the abducibles are
dealt with uniformly.

The result has also heen directly applied to the belief set semantics of abductive extended
disjunctive programs. Compared with other approaches, onr fixpoint theary is different
from any other characterization of abductive programs, and provides a constructive way
to give explanations for observations. We also showed that a bottom-up model generation
procedure can be used for computing geoeralized stable models or belief sets and has a
computational advantage from the viewpoint of parallelism.

References

[Bry80] F. Bry. Intensional updates: ahduction via deduction. In: Proc. 7th Int. Conf. Logic
Programming, pages 561-575, 1990,

[CiaT8] K.L. Clark. Negation as failure. In: H. Gallaire and J. Minker, editors, Logic and
Duatu Bases, pages 203 322, Plenum, 1978,

[T L. Consele, DI Dupre and P. Tarasso. On the relationship between abduction
and deduction. J. Logic and Computation, LiGE1-GY0, 1941,

[Decd2] H. Decker. Foundations of first-order databases. Research Report, Siemens, Munich,
1992,

[DDSY2] M. Denecker and). De Schreye. On the duality of abduction and model gen-
eration. In: Proe. Int. Conf. Fifth Generation Computer Systems 1992, pages 650-657,
1992,

[Dun91] P.M. Dung. Negations as hypotheses: an abductive foundation for logic program-
ming. In: Proc. Sth Int. Conf. Logic Programming, pages 3-17, 1991

[EK53] K. Eshghi and R.A. Kowalski. Abduction compared with negation by failure. In:
Proc. &th Int. Conf. Logic Programming, pages 234-254, 1959,

[FMO1] JA. Fernandez and J. Minker. Computing perfect models of disjunctive stratified
databases. In: Proc. 1LP5°01 Warkshop on Disjunctive Logic Programs, 1991,

— 19 —

[FLMS91] J.A. Fernandez, J. Lobo, J. Minker, and V.S. Subrahmanian. Disjunctive LP +
integrity constraints = stable model semantics. In: Proc. ILPS"91 Workshop on Deductive
Databases, 1991,

[FHO1] H. Fujita and R. Hasegawa. 4 madel generation theorem prover in KL1 using a
ramified-stack algorithm. In: Proe. 8th Int. Conf Logic Programming, pages 434-500,
14991,

[Gelg0] M. Gelfond. Epistemic approach to formalization of commonsense reasoning. Re-
search Report, Computer Science Department, University of Texas at El Paso, El Paso,
19490.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In: Proc. 5th Ini. Conf Symp. Logic Programming, pages 1070- 1080, 1985

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991,

[Ine01] K. Inoue. Extended logic pregrams with default assumptions. In: FProe. S§th
Int. Conf. Logic Programming, pages 490-504, 1081.

[Ino02) K. Inone. Linear resclution for consequence finding. Artificial Intelligence, 56:301-
J53, 14992,

[IKH92] K. Inove, M. Koshimura and R. Hasegawa. Embedding negation as failure into

a model generation theorem prover. In: Proe, [{th Int. Conf Automated Deduction,
Lacture Notes in Artificial Intelligence, 607, pages 400-415, Springer-Verlag, 1992,

[TOHND2] K. Iuvue, Y. Ohta, R. Hasegawa and M. Nakashima. Bottom-up abduction by
model generation. Technical Report TR-816, ICOT, Tokyo, October 1992.

[1892] K. Inoue and C. Sakama. A uniform approach to fixpoint characterization of dis-
junctive and general logic programs. Technical Report TR-817, 1COT, Tokye, October
1992.

[KM90] A.C. Kakas and I Mancarella. Generalized stable models: a semantics for abduc
tion. In: Proc. Sth Furopean Conf. Artificial Inlelligence, pages 385-391, 1930.

[KM91] A.C. Kakas and P. Mancarella. Knowledge assimilation and abdnction. In: Froc.
ECAI-90 Workshop on Truth Maintenance Systems, Lecture Notes in Artificial Intelli-
gence, 515, pages 54-T0, Springer-Verlag, 1991

[KET92) A.C. Kakas, R.A. Kowalski and ¥, Toni. Abductive logic programming. A survey
paper, Imperial College of Science, Technology und Medicine, London, 1992,

[Kon92] K. Konolige. Abduction versus closure in causal theories. Artificial Intelligence,
HA:255-272, 10582,

[LT&4] J.W. Lloyd and R.W. Topor. Making Prolog more expressive. J. Lagic Programmung,
3225240, 1984,

[MB8S] R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog.
In: Proc. 9th Int. Conf. Aulemated Deduction, Lecture Notes in Computer Science, 310,
pages 415-434, Springer Verlag, 1988,

[Min82] J. Minker. On indefinite data bases and the closed world assumption. In: Proc.
fth Int. Conf. Aufomated Deduction, Lecture Notes in Computer Science, 138, pages
202-308, Springer-Verlag, 1952,

[MRA0] J. Minker and A. Rajasekar. A fixpoint semantics for disjunctive logic programs.
J. Logic Programming, 9:45-74, 1990.

IPGARBT] D. Poole, . Goebel and H. Aleliunas. Theorist: a logical reasoning system for
defaults and diagnosis. In: N. Cercone and G. McCalla, editors, The Knowledge Frontier:
Essays in the Representation of Knowledge, pages 331-352, Springer-Verlag, 1987,

(PE92] C. Preist and K. Eshghi. Consistency-based and abductive diagnoses as generalized
stable models. In: Proc, Int. Conf. Fifth Generation Computer Systems 1992, pages 514-
521, 1892,

[S290] D. Sacca and C. Zaniolo. Stable models and non-determinism in logic programs with
negation. In: Proc, 9th ACM SIGACT-S5IGMGD-5IGART Symp. Principles of Database
Systems, pages 205-229, 1090,

[SKET] F. Sadri and K. Kowalski. A theorem proving approach to database integrity. In:
J. Minker, editor, Foundations of Deductive Dafabases and Logic Programming, pages
313-362, Morgan Kaufmann, 1987,

[S191] K. Satoh and N. Iwavama. Computing abduction by using the TMS. In: Proe. Sth
int. Conf, Logic Frogramming, pages 505-518, 1991,

[UCa0] K. Ueda and T. Chikayama. Design of the kernel language for the parallel inference
machine. Computer [, 33:404-500, 1990.

[VEK76] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic as a pro-
gramming language. J. ACM, 23:733-742, 1976,

