ICOT Technical Report: TR-0823

TR-N822

A Scalable Termination Detection Scheme by
Weighted Throw Counting with Delaved Weight

Returning (Extended Abstract)

by
N. Ichiyoshi (MR} & K. Rokusawa {Oki)

December, 1992

E 19, 00T

Mita Kokusal Bldg. 21F (0313456-3191 ~ 35

l C OT 4-78 Mita 1-Chome Telex 1COT 132964

Minate-ko Tokye 108 Japan

Institute for New Generation Computer Technology




A Scalable Termination Detection Scheme by
Weighted Throw Counting with
Delayed Weight Returning
(Extended Abstract)

1 Introduction

Termination detection is an basie issue in distributed computation both theoretically
and in practice. Unlike sequential computation. termination detection may not be
trivial for parallel computation becausc of the difficulty in obtaining a consistent
global state, especially when there can be interprocessor messages in transit.

A nimber of distributed termination deteclion algorithms have been proposed.
The Weighted "Throw Counting (WTC) scheme [3] is a simple and efficient algo-
rithm hased on the weighted reference conuting technique for incremental distributed
garbage collection [1, 4], T'he idea is assigning a known amount of “weight” to the
whole computation and letting it to be divided among all distributed components
of computation (processes and messages), and detecting termination when all of the
original weight has been returned.

In the original WI'C' scheine, as Lhe number of processes grows, the detecting
process can be averwhelmed by the incoming weight-retirn messages. Hence the
origmal scheme 15 not a scalable one. This paper presents a method for remov-
ing this hottleneck, thus making the termination detection scheme more scalable,
Le., effective even it the number of processes grows very large. In contrast to mes-
sage complexity commonly used as an efliciency criterion of termination detection
algorithms, the scheme is aimed at minimizing the time complexity of detection.

2 Computational Model

The activity of the base compntation on. a processing node will be referred to by a
process. We assumne the following about the base computation.

1. A process can be in either of the two states: active or idle.
2. An active process p can send messages to any process g.
3. An active process can spontaneonsly become idle at any time.

4. Au idle process can become active only when it receives a message. (For this
properly, a message in the base computation is sometimes ealled an activation
message. |

5. Initially, all pracesses are idle and there are no messages; at the start of com-
putation, one process is activated by the outside “environment”,



A distributed computation 15 terminated when all the processes are idle and
there are no messages in transit (sent but not yvet received ), Termination is a stable
state |2], that is, a terminated computation remains terminated for ever.

3 Weighted Throw Counting (WTC)

In the Weighted Throw Counting technique [3], the initially activated process is
assigned a certain positive weight W and the environment is given the same weight,
and the following invariant condition is maintained:

s Active processes and messages have positive weights.
¢ ldle processes have a zero weight.

e The sum of all weights of processes and messages are equal to the weight that
the environment has.

Under the above condilion, the condition that the environment has weight zero
is equivalent to there belng no active processes and no messages in transit, that is,
the base computation being terminated.

To msintain the nvariant, the handling of activation messages are changed as
follows. When o process sends an activation message, # splits the weight W in twe
positive values W and Wy such that W — W, 4+ W, assigns W) to the activation
message and retains Wy Lo itsell. When a process receives an activation message,
the weight carricd by the message is added to its weight.

To actually deteel Lermination, a detecting process is placed on some processing
node. When computation is initiated by the environment, the first process and the
detecting process are given Lhe same weight. On hecoming idle, a process in the
base computation sends a Yreturn WTC (W) message ! to the detecting process to
return the weight it has. When the detecting pracess receives a Breturn. WTC (W)
message, it subtracts W lrom ils weight {Fig 1).

T'he detecting process detects lermination when its weight becomes zero, The
invariant condition guarantees correctness of termination detection, and the eventual
delivery of Yoreturn.WTC messages to the detecting process guarantees the liveness
property.

Example 1 Suppose that it takes 100 usec to service an tneomany FGrelurn. WTC
message. The processes alternatively becomes active and idle during compulalion.
Suppose that, in some distributed computation, the average cycle is 10 msee, which
means a process turns idle from actwe every 10 msec on the average. It follows that
if there are more than 100 processes then the detecting process cannot keep up with
the incomang Hreturn. WTC messages, thus becoming the bottleneck.

i this paper, message nanmes ate prefixed iy a percent sigu.



idle .« ®activate

active T (WTC=20)
process 2
process 1 (WTC=0) .
-
fH‘I‘C.-PDJ' L] HGH'J'E
rCEess n
freturn WIC {‘r:fT-C—I.EG}
(WTC=40) *activate —
h‘.’:(‘«’ (RTC=30)

detecting
process

(NTC=330)

Figure 1: Weighted Throw Counting

4 Bottleneck in the Original WTC and Its Re-
moval by Delayed Returning

The original WTC scheme has a potential bottleneck: As the number of processes
increases, the detecting process may be flooded with %return ' WTC messages simul-
taneously sent from a large number of processes and may become bottleneck.

We propose a delayed (weight) relurning rule to ensure that the detecting process
will not become bottleneck. Under this rule, processes are required Lo keep the
message sending rate below a certain level 2o that the detecting process is not
overwhelmed, Specifically, if

(1) there arc n processes (py,...,p.) to & parent process,

{2} the message service rate (inverse of message service time} at the detecting
process is A, and

i3) the message sending rate of process ¢ is Ay,

then 1t must be that
Z ‘}'s[.i] < A,
1€
or, simply,
Ayt < Apmar = Arfm for 1 <1< n.

The rate M., is the maximum allowed sending rate. lts inverse, i,,.,, 15 the
minimum allowed sending interval.

A delayed returning mechanism implements the delayed returning rule. Here
are two candidates, assuming that the message interval of (,,,;, is equivalent to the
message sending rate of A,

(1) Each non-root process keeps a local clock which schiedules the message sending
routine at an interval of £,,.,. The rouline sends a Yoreturn ' WTC message if
the process is idle when it is invoked.



(2} On becoming idie, each non-root process waits f,.., before sending a Yire-
turn WTC message. I it receives an activation message before 4., elapses,

it simply becomes active.

Two possible ways of how a process waits £,,,,, 15

(a) To sel an local alarm clock to wake it up after ¢,,,.,, wnit of time, and to
sleep. On receipt of an activation message during the sleep, the alarm is
canceled.

(b} To go into a busy waiting loop when it becomes idle. The process counts
down 1 the loop till the counter value reaches zero. The initial value
of the counter is determined so that the time ¢, elapses when the
countdown finishes, On receipt of an activation message during the sleep,
the busy loop is exited.

5 Message Combining

The delayed returning mechanism has removed the bottleneck in the original WTO
scheme. However, as casily seen, when all the processes terminale at once, it takes
time proportional to the number of processes to detect termination. As the number
of processes prows, the detecting time might become unnegligible relative to the base
computation time. This can be solved by introducing a logical combining tree. The
delayed returning rule applies between each internal process and its child processes.

6 Time Complexity

It can be guaraniced that, by properly configuring a combining tree as the number
of processes p grows, Lhe worst-case time for termination detection is of the same
asymptotic order as the broadeast time for any underlying network topology.

References

[1] 1), 1. Bevan. Distributed garbage collection using reference counting. In Proceed-
ings of Parallel Architectures and Languages Europe, pages 176 187, June 1987,
Also in Parallel Computing, Vol.9, No.2, pp.179-192, 1984

2] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1985,

[3] K. Rokusawa, N. Ichiyoshi, T. Chikayama, and H. Nakashima. An efficient
termination detection and abortion algorithm for distributed pracessing systems.
In Proceedings of the 1988 International Conference on Parallel Processing, Vol.
I Architecture, pages 18-22, 1985,

[4] P. Watson and . Watson. An efficient garbage collection scheme for parallel
computer architectures. In Proceedings of Parallel Architectures and Languages
Europe, pages 432-443, June 1987,



