TR-—8 21

Kernel Language in the Fifth Generation
Computer Project

Kazunori Ueda
Computer Systems Research Laboratory
NEC C&C Systems Research Laboratories
I-1, Miyazaki 4-chome, Miyamae-ku, Kawasaki 213, Japan
Tel: +81-44-856-2178 FAX: +81-44 856-2231
ueda@®csl.cl.nec.co.jp

1 Introduction

Thus article reviews the desien process of KL1, 1COT s kerne! language for the Parallel
Inference Machine.

An oulstanding feature of the Fifth Generation Computer Project is its middle-out
approach. Logic programming was choscn as the central notion with which Lo link
highly parallel hardware and application software, and three versions of so-called kernel
languuye were planned, all of which were assumed to be baszed on logic programming.
The three versions corresponded to the three-stage structure of the projecl: initial,
mtermediate, and final stages,

The first kernel language, KLO, was based on Prolog and designed in 1982 as the
machine language of the Sequential Inference Machine. Initial study of the second kernel
language, NL1, for the Parallel Inference Machine started in 1982 as well. The main
purpose of KL1 was to support parallel computation. The third kernel langunage, KL2,
was planned to address high level knowledge information processing as well. Although
ICOT conducted research on languages for knowledge information pro cessing throughout
the project and finally proposed the language Quixote [1], it was not called a “kernel”
language which meant a language in which to write everything. Of these languages, this
arlicle will focus on the design and the evolution of KL1, in which T was involved for
years since 1953,

What are the implications of the middle-out approach ta language design? In a
bottem-up or top-down approach, language design conld be justified by exiernal criteria
such as amenability to efficient implementation on parallel hardware and CXPressive
power for knowledge information processing. In the middle-out approach, however,
language design must have strong justifications in its own right.

Lhe design of KLO could be based on Prolog which was quite stable when the FGCS
project starled. In contrast, design of KL1 had to start with hinding a counterpart
of Prolog, namely a stable parallel programming language hased on logic programming.

1

Such a language was supposed to provide a common platform for people working on par-
illel computer architecture, people working on paralie] programuming and applications.
people working on foundations, and so on.

It 1s well-known that 1COT chose logic programming as its central principle, but it
is less well-known that the shift to concurrent logic programming started very early in
the research and development of K1.1. Many discussions were made during the shift,
and many criticisms and frustrations arose even inside ICOT.

In these struggles, 1 proposed Guarded Horn Clauses (GHC) as the basis of KL1 in
December 1984. GHC was recognized as a stable platform with a number of justifica-
tions, and the basic design of KL1 started to converge. Thus it should be meaningful to
present how the research and development of KL1 was conducted and what happened
inside ICOT before KL1 became stable in 1987. The article also presents my personal
principles behind the language design and perspectives on the future of GHC and K11,

2 Joining the FGCS Project

When ICOU started in 1982, | was a graduate student of the University of Tokvoe. My
grneral interest al that time was in programiing languages and text processing, and
I was spending most of the time on the thorough examination of the Ada reference
manual as & member of the Tokyo Study Group of Ada (Takashi Chikayama was aleo
a member of the Tokyo Study Group). A colleague Hidevuki Nakashima, one of Lhe
earlivst proponents of Prolog in Japan, was designing Prolog/KR [13]. We and Satoru
Tomura started to write a joint paper on input and output (without side effects) and
string manipulation facilities in sequential Prolog, with a view to using Prolog as a text
processing language instead of languages like SNOBOL.

The work was partly motivated by our concern about declarative languages: We had
been very concerned about the gap between the clean, *pure” version of a language for
theoretical study and its “impure”™ version for practical use. T was wondering if we could
design a clean, practical and cfficient declarative language.

On concurrent programming, [had been disappointed with language constructs for
concurrency because of their complexity. However, Hoare's enlightening paper on CSP
{Comrounicating Sequential Processes) [11] convinced me that concurrent pProgramming
could be much simpler than I had thought.

I jomed NEC Corporation in April 1933 and soon started to work on the FQCS
project (ICOT had no position for a new researcher in 1983, but NEC had a commission
program to work with ICOT, as did other Japanese computer manufacturcrs). 1 was
very interested in joining the project becanse it was going to design new programming
languages, called kernel languages, for knowledge information processing (KIP). The
keruel languages were assumced to be based on logic programming.

It was not clear whether logic programoung could be a base of the kernel langnage
that could support the mapping of KIT' to parallel computer architecture, However,
it seemed worthwhile and challenging to explore the putential of logic programming in
that direciion.

3 KL1 Design Task Group

3.1 Prchistory

The study of KL1 had already been started when I joined the project.

ICOT research on early days was conducted according to the ‘scenario’ of the FGCS
project established before the commencement of ICOT. Dasic research on the Parallel
Inference Machine (PIM) and its kernel language, KL1, started in 1982 in parallel with
the development of the Sequential Inference Machine and its kernel language, KLO.
Koichi Furukawa'’s laboratory was respansible for the research inte KL1.

Although KL1 was supposed to be a machine language for PIM, the research into
KL1 was initially concerned with higher-level issues, namely expressive power for the
description of parallel knowledge information processing (e.g., knowledge representation,
knowledge-base management and cooperative problem solving). The key requirements to
KL included the description of a parallel operating systemn as well, but this again had to
be considered from higher-level features (such as concurrency) downwards, hecause ad-
hoc extension of OR-parallel Prolog with low-level primitives was clearly inappropriate.
The project was concerned also with how to reconcile logic programming and object
oriented programming which was rapidly gaining popularity in Japan.

Research into PIM, at this stage. focused on parallel execution of Prolog. Concurrent
logic programming was not vet a viable alternative Lo Prolog, though, as an initial study,
Akikazu Takeuchi was implementing Relational Language in Maclisp in 1982, It was
the first language which exclusively used guarded clauses, namely clauses with guards in
the sense of Dijkstra’s guarded commands. Ehud Shapiro proposed Concurrent Prolog
that year, which was a more flexible alternative to Relational Language that featured
read-only unification. He visited 1COT in October—Novemnber 1982 and worked on the
language and programming aspects of Concurrent Prolog mainly with Takeuchi. They
jointly wrote a paper on object-oriented programming in Concurrent Prolog [16]. The
visit clearly influenced Furukawa's commitment to Concurrent Prolog as the basis of
KLL.

3.2 The Task Group

After 1 joined the project in April 1983, 1 knew that the project was aiming at much
more general purpose computing than T had expected. Koichi Furukawa was always
saying that what we were going to build was a “truly” general-purpose computer for the
1390°s. He meant that the emphasis must be on symbolic {rather than numeric) compu-
tation, knowledge (rather than data) processing, and paraliel (rather than sequential}
architecture,

As an [COT activity, the KLI Design Task Group started in May 1983.0 Mem-
bers included Koichi Furukawa, Susumu Kunifuji, Akikazu Takeuchi and myself. The
deadline of the initial proposal was set to August 1933 and intensive discussions started.

"Wery fortunately, I found a number of old files of the Task Group in ICOT's celiar, which enabled
me Lo present the precise record of the design process here.

By the time the Task Group started, Furukawa and Takeuch were quite confident
of the following guidelines:

1. (Concurrent Prolog) The core part of KL1 should be hased on Concurrent Prolog,
but shonld support scarch problems and mela-programming as well.

2. (Set/stream interface} KL1 should have a set of language constructs that aliows
a Concurrent Prolog program to handle sets of solutions from a Prolog engine
andfor a database engine and to convert them to streams.

3. (Meta-programming) KL1 should have meta- programming features that support
the creation and the (controlicd) execution of program codes.

Apparently, set/stream interface was inspired by Clark et al.'s work on IC-PROLOG
2], and meta programming was inspired by Bowen’s and Kowalski’s work on meta-
programming [2]. The idea of sets as first-class objects may possibly have been inspired
by the functioual language KRC[18].

I knew little about Relational Language and Concurrent Prolog until | joined the
project. I was rather surprised by their hold decision Lo abandon Prolog's feature to
search solutions, but soon accepted the decision and liked the language design because
of the simplicity.

Various issues related to the above three guidelines were discussed in nine meetings
and a three-day workshop, until we finally agreed upon those guidelines and finished the
mitial propuosal.

We assumed that KL1 predicates (or relations} be divided into twe categories, naiely
AND relations for stream-AND-paralle] execution of concurrent processes based on
don’t-care nondeterminism, and OR relations for OR-parallel search based on don't-
know noundeterminism. The clear separation of AND and OR relations reflected Lhe fact
that the OR relations were assumed to be supported by a separate OR-paraliel Prolag
machine and/or a knowledge-base machine. Years later, however, we decided nol to
create machines other thar PIM bot to supporl search and database applications by
software, when we became confident that it could be dope with reasonable performance.
Set[streamn interface was to connect these Lwo worlds of computation. We discussed
various pussible operations on sets as first-cluss ohjects.

Meta-programming was being considered as a framework for

® the observation and control of stream- AND-parallel computation by stream-AND-
parallel computation, and

® the ohservation and control of OR-parallel computation by stream-AND-parallel
computation.

The former aspect was closely related (o operating svstems and the latter aspect was
closely related to the set/stream interface. Meta-programming was supposed to provide
a protection mechanism also. The mauagement of program codes and daiabases was
another hinportant concern, Starting with the *demo’ predicate of Bowen and Keowalski,
we were considering various exerntion stralegies and the representation of programs to
be provided to ‘demo’.

AND-relation Set/Stream Interface OHR-relation
described in = described in
| Concurrent Prolog (Pure) Prolog

E

Modularization and Meta Programming Support
(creation and call of program codes)

Figure I: Conceptual Configuration of K11 {1984) [7]

Other aspects of KL1 considered in the Task Group included data tvpes and ohject-
oriented programming. |t was argued that program codes and character strings must
be supported as built-in data types.

The initial report, “Conceptual Specification of the Fifth Generation Kernel Lan-
guage Version | (KL1)" was published as an ICOT Technical Memorandum in Septem-
ber 1983, which comprised six sections:

1. Introduction
2. Parallehsm

Set Abstraction

bl

Mela Tulerence

String Manipulation

oo

Module Structures

In retrospect, the report presented many good ideas and surprisingly well covered the
features that were realized in some form or other by the end of the project, though
of course, the considcrations were immature. The report did not yet consider how to
integrate those features in a coherent setting. The report did not vet clearly distinguish
between features requiring hardware support and those realizable by software,

ICOT invited Lhud Shapire, Keith Clark and Steve Gregory in October 1983 to
discuss and improve our proposal. Clark and Gregory had proposed the successor of the
Relational Language, PARLOG [5]. A lot of meetings were held {when ICOT researchers
had difficulties in discussing in English to a greater or lesser degree), and many 1COT
people outside the Task Group attended as well.

In the discussious, Shapiro criticized the report as having too many good ideas, and
insisted that the kernel language shonld be as simple as possible. He tried to show how
a small number of Concurrent Prolog primitives conld express a variety of useful notions
mcluding meta programming. While Shapiro was exploring a meta-interpreter approach
to meta-programming, Clark and Gregory were pursuing a more practical approach in
PARLOG, which used the buili-in ‘metacall’ primitive with various leatures,

From the implementation point of view, most of us thought that the guard mech-
anismi and the synchronization primitive of PARLOG were easier to implement than
those of Concurrent Prolog. However, the KI.1 Design Task Group stuck to Concurrent

=n

Prolog for the basis of KL1; PARLOG as of 1953 had a lot more features than Coucur-
rent Prolog and seemed less appropriate for the starting point. Some people were afraid
that PARLOG imposed too static dataflow concepts, making programming less flexible.

The discussions with the three invited researchers were enlightening. The most
important feedback, 1 think, was that they reminded us of the scope of KL1 as the
kernel language and lead us Lo establish the following principles:

» Amenability to efficient implementation,
o Minimal number of primitive constructs {cf. Occam’s razor),

* Logical interpretation or program execution,

Meanwhile, Furukawa started to design a user-level language on top of KL1. The
language was first called Popper (Paralle]l Object-oriented Prolog Programming Envi-
Ronment). and then Mandala. On the other han d, the implementation aspect of KI.1
was left behind for a long time, until Shapiro started discussions of sequential, but se-
rious, implementation of Concurrent Prolog. The ouly implementation of Concurrent
Prolog available was an interpreter on top of Prolog, which was not fast —a few hundred
RIS {reductions per second) on DECsvstem-20.

After the three invited researchers left, the 1ask Group had many discussions on the
language specification of KL1 and the sequential implementation of Concurrent Prolog.
Although we started to notice that the informal specification of Concurrent Prolag left
some aspects (including the semanties of read only unification) not fully specified, we
became convinced that Concurrent Prolag was basically the right choice, and started
to convince the 1COT members and the members of relevant Working Groups from
January 1984,

Lhree large meetings on Concurrent Pralog were held in February 1984, which many
peaple working on the I'GCS project attended. The Task Group argued for Concurrent
Prolog {or concurrent Jogic programrming in gencral) as the basis of KL on the following
grounds:

L. It is & general-purpose language in which concurrent algorithms can Le described.
2. It has added only two syntactic constructs to the logic programming framework.
3. It retains the soundness property of the logic programming fraimnework.
4,

Elegant approaches to programuning environments laken in logic PTOEramming
could be adapted to concurrent logic programs.

People gave implicit consent to the choice of the Task Group in the sensc {hat
nobody proposed an alternative basis of KL1 in response Lo our selicitation. However,
as a matter of [act. people were quite uneasy about adopting Coneurrent Prolog as
the basis of KL1. The arguments heing made by the Task Croup looked like belief
rather than evidence. Many people, particularly those warking on PIM, were rather
upset. (and possibly offended) that don't-know nondeterminism of Prolog was EOlng to
be excluded from the core part of KL and moved 1o a back-end Prolog engine. Unlike
in logic programming, the direction of computation was more or less fixed, which was

considered’ inflexible and unduly restrictive. However, Furukawa maintained that the
parallel symbolic processing was a maore important aspect of KL1 than exhaustive search.

Implementation people had another concern: whether reasonable performance could
be obtained. Some of them even expressed thai it could be too dangerous to have
paraliel processing as the main objective of the FGCS project.

Anyway, through the series of meetings, people agreed that a user language must
he higher-level than Concurrent Prolog and that various knowledge representation lan-
guages should be developed on top of the user language. We agreed also that program-
ming environments for Coucurrent Prolog (and a K11 prototype) must be developed
quickly in aorder to accumulate experiences with conenrrent logic programming. We de-
cided to develop a Concurrent Prolog implementation in a general-purpose language (C
was considered first; Maclisp was chosen finally) to study implementation technigues.

In March 1984, the Task Group finalized the report on the Conceptual Specification
of KL1 and published it as an ICOT Technical Report [7]. The report now concentrated
better on the primitive fealures to be supported directly in KL1 for flexible and efficient
IIP.

3.3 Implementing Concurrent Prolog

A good way to understand and examinc a language definition is to try to implement it; it
forces us to consider every detail of the language. From April 1984, the Task Group had
some new members, including Toshihiko Miyazaki, Nobuynki Ichiyoshi and Jiro Tanaka,
and started a project on the sequential implementation of Concurrent Prolog under the
coordination of Takeuchi. We decided to build three interpreters in Maclisp, which
differed in the multiple environment mechanisms necessary to evaluate the guard parts
of program clauses. The principal member, Miyazaki, was so gquich in designing and
Lisp programming. We also started to build a Mandala implementation in Concurrent
Prolog.

As an independent project, Chikayama started to improve on Shapiro’s Concurrent
Prolog interpreter on top of Prolog. By compiling program clauses to some extent,
he improved the performance to 4kRPS, a mnch better number for practical use. I
further improved the performance by compiling clanses ta a greater degree, and obtained
1IKRPS by November 1984, a number better than most interpretive Prolog systems in
those days.

We had a general question on the implementation of concurrent logic languages as
well, which had been mentioned repeatedly in onr discussions on systems programming.
The question was whether we could implement. hasic operations such as many-to-one in-
terprocess communication and array updates as efficiently as in procedural languages in
terms of time complexity. For systems programming without side effects to be practical,
il seemed essential to show that the complexity of these operations is not worse than that
of procedural languages. | devised an implementation technique of these operations with
Chikayama in the beginning of 1984, and presented it in the FGCS'84 conference. These
iwo pieces of work on implementation convineed myself of the viability of concurrent
logic programming languages as the basis of KL1.

Meanwhile, Clark visited us again in spring 1984, and introduced a revised version
of PARLOG [6]. The language had been greatly simplified. Although we were too
committed to Conecurrent Prolog at that time, the new version mfluenced the research
on KLL later in various ways.

The three Concurrent Prolog interpreters were almost complete by August 1984, and
an interim report comparing the three methods was written. Two successor projects
started in September, one on an abstract KLI machine architecture, and the other on
an KL1 compiler. [started to design an abstract machine instruction set with Miyazaki,
but was not very excited about it. One reason is that we had found several unclarified
points m the definition of Concurrent Prolog, most of which were related to read-only
unification and the execution of the guards of program clauses. I started to feel that we
should re-examine the language specification of Concurrent Prolog in depth hefare we
went any further. The other reason is that full implementation of the guard construct
seemed to be too complicated to be included in a KL1 implementation. The idea of Flat
Concurrent Prolog (FCT), which avoided the nesting of guards by allowing onlv simple
test predicates in guards, was conveved to us from Shapiro i June 1984, but few of us,
including mivself, were interested,

In retrospect, it is rather curious that we stuck to the full version of Concurrent
Prolog which was hard to impicment. However, we were not confident of maoving to
any subset. The guard construct, if successfully implemented, was supposed to be used
for OR-parallel problem solving and for the protected executiun of user programs in an
operating system,

People working on PIM, who were supposed to implement KL1 in the future, were
getting impatient in mid 1984. As architects, they needed a conerete specification
of KL1 as early as possible and wanted to know what kinds of operations should be
pasticularly optimized, but the design of KL! had net reached such a phase. On the
other hand, members of Lthe KL1 Design Task Gronp were unhappy that they received
lew constructive comments from outside, A kind of mutual disbelief was cxposed in
three meetings of the PIM Working Group held from June Lo August, in which the Task
Group disenssed with the PIM people.

4 Proposal of GHC, a New Basis of KL1

After the FGCS'84 conference in November 1954, 1 started to re-examine the language
specification of Concurrent Prolog in detail, the main concerns heing the atomicity
(or grauvlarity) of various operations, including read-only unificaiion and counmitment,
and the semantics of the multiple environment mechanism [19], Many subtle points and
difficulties were found and discussed. | had to conclude that although the language rules
conid be made rigorous and coherent, the resultant set of rules would he more complex
and require more sequentiality than we had expected.

The result of that work was not very eucouraging, but anyway, I souglhl for a coher
ent set of language rules. In mid December, I came up with an alternative to Concurrent
Prolog, which solved the problems with read-only unification and the problems with the
multiple environment mechanism simultancously, The idea was to suspend the computa

tion of the guard of a clause if it would require a multiple environment mechanism, that
16, if the computation would instantiate variables in the caller of the clanse. The seman-
tics of guard now served as the synchronization mechanism as well, making read-only

unification unneccessary.
On December 17, I proposed the new language to the KL1 Design Task Group as
KLO.7. The name KL0.7 meant the core part of K11 that left

¢ the decision on whether to include pure Prolog to support exhaustive search di-
rectly,

¢ machine-dependent constructs, and

o the set of predefined predicates.
The handout (in Japanese) included the following claims:

1. Read-only annotation is dispensed with because it does not fit well in fine grain
parallel computation models.

b

Muliiple environments are unnecessary. It is not vel clear whether multiple envi

ronments must be implemented, while it certainly adds to implementation cost.
Multiple environments make the visibility rule (of Lhe values of variables} and the
commitment rule less clear.

3. Mode declaration 1s dispensed with; it can be excluded from the kernel language
level.

i

One kind of unification is enough at the kernel language level, though a set of
specialized unification primitives could exist at a lower level.

Implementation will be as easy as PARLOG,

&=

Implementation will he as efficient as PARLOG.

A meta-interpreter of itself can be written.

=T

I_IT_J

Sequentiality butween primitive operations is minimized, which will lead to high
intrinsic parallelisin and clearer semantics.

luterestingly, the resultant language turned out to be semantically closer to PARLOG
than to Concurrent and FCT' in the sense that it was a single-environment language.
Unlike PARLOG, however, it did not assume static analysis or compilation; PARLOG
assumed compilation into Kernel PARLOG, a language wilh lower-level primitives. The
handout claimed also that pure Prolog need not be included in KL1 if we made sure
that cxhaustive search could be done efficiently iu KL1 without special support,

The only new aspect to he considered in the implementation of KLO.T was the
management of nested guards. T found that it could be done anyway and expected
that static analysis would help in many cases. It was not clear whether complex nested
guards were really necessary, but they were free of semantical problems and thus could
be retained for the time being. In addition, the new language was undoubtedly more
amenable to compilation than Concurrent Prolog.

I quickly finished two internal reports, “Concurrent Prolog Re Examined” and “A
Draft Proposal of CPII” and bronght them to the Task Group meeting on Decernber 20,
The name CPLI (Concurrent Prolog I1) was selected tentatively and was used for a while.
The Task Group seemed to welcome my proposal and appreciated the simplification.

In January 1985, the Task Group restarted to design KL1 with a new basis. Takeuch;
proposed that KLI be CPII with the metacall construct é la PARLOG and primitives for
the allocation and scheduling of goals. The proposal well reflected the final structure of
the core part of KI.1. Set/stream interface and modularization (as a user-level feature)
were still considered to be part of KL1. but were put aside for the moment.

Anyway, by January 1983, the Task Group reached an agreement to base KL1 on
CPIL The agreement was quick and without so many discussions, because we had apreed
to base KL1 on some concurrent logic language, and CPII seemed to have solved most
of the problems we had felt with Concurrent Prolog. CPII did exclude some of the
programming techniques allowed in Concurrent Prolog, as Shapira’s group at the Weiz-
mann Institute pointed out later. However, we preferred a language which was simpler
and easier to implement.

People outside the Task Group also welcomed the propesal of CPIL though most of
ihem were not vet convinced of the approach based on concurrent logic programming
in general. M was not very clear, even to us in the Task Group, how expressive this
conceptnal language was in a practical scnse, much less how Lo build large parallel
software in it. However, there seemed to be no alternative CPII as long as we were Lo go
with conenrrent logic programming, since the language seemed Lo address “something
essential™,

In early January, Masahiro Hirata at Tsukiha University, who was independently
working on the formal operational semantics of Concurrent Prolog, let me know that
the functional language Quie designed by Masahike Sato and Takafum Saliurai [15]
had incorporated essentially the same synchronization mechanism. The news made me
wonder if the essence of CPI was simply the rediscovery of a known idea. After learn-
ing that Qute introduced the mechanism to retain the Church-Roszer property in the
evaluation of expressions, however, I found it very intercsting that the same mechanism
was independently introduced in diffcrent languages from different motivalions. This
suggested that the mechanism introduced in these languages was more universal and
stable than we had thought at firsi. Apparently, Hirala was independently eonsider
ing an alternative to the synchronization mechanism of Concurrent Prolog, and later
proposed the language Oc [10], which was essentially CPII withont any guard goals.

By January 21, I modified my Concurrent Prolog compiler on top of Prolog and
obtained a CPII compiler. The mudification took less than two days, and demonstrated
the suitability of Prolog for rapid prototyping. Miyazaki also made a GHC compiler
with more features by modifving Chikayama's Concurrent Prolog compiler on top of
Prolog.

In the meantime. T considered the name of the language by putting dewn a number
of keywords on my notebook. The name was changed to Guarded Horn Clanses (GHC)
by February 1985.

In March 1985, the project on Multi-SIM (renamed to Multi -PSI later) started nnder

10

i KL1-U

(higher-ievel features)

KL1-C KL1-P
(basic features) (mapping to parallel hardware)

KL1-B
(abstract KL1 machine)

Figure 20 Structure of KL1 {1985)

the coordination of Kazuo Taki, the purpuse being to provide an environment for the
development of parallel software. Thus, by the end of the initial stage, we could barely
establish a starting point of research in the intermediate stage.

5 From GHC to KL1

In June 1985, the intermediate stage of the FOCS project started, and I jomed 1C0OT
on lean from NEC,

Shortly before that, the KLU Design Task Group (the memhers being Furulawa,
Takeuchi, Miyazaki, Ueda and Tanaka al that time) prepared a revised internal report
on KLI. The two main aspects of the revision were (i) the adoption of GHU in view of
paraliel execution and (ii) the reallocation of proposed features to three sublanguages,
KT1-C (core), KL1 P {pragina}, and KL1-U {user). K1.1-C, the core part of KL1, was
snpposed to be GHC augmented with some metacall constriet to support meta-inference
and modnlarization. KL1 P was supposcd to deal with the mapping between KL1-C
programs and physical resources of the underlying implementation. The proposed com-
ponent of KL1-F were an abstract machine model, a mechanism for allocating goals to
processors, and a mechamism {or scheduling goals allocated in the same processor. KLI1-
U was considered as a set of higher-level language constructs to be compiled inte KL1-C
and KI.1-P, which included the support of pure Prolog (with a set/stream interface) and
a modnle construct.

Another sublanguage, KLI-B, was added to KLI after a while. Although KL1-C
and KL1-I' were supposed to be the lowest-level sublanguages for programmers, they
were still too high-leve! to be executed directly by hardware. We decided to have a
layer corresponding to the Warren Abstract Machine for Prolog. Initial study of the
operating svstem for PIM, called PIMOS, started as well in June 1985.

We had assumed that KL1-C had all the features of GHC, including nested puards,
until Miyazaki and [visited Shapiro’s group at the Weizmann Institute for two weeks
in July-Augnst 1985. During the visil, we had intensive discussions on the diffcrences
between GILC and Concurrent Prolog/FCP. We had discussions also vn the subsetting
of GHC to I'lat GHC, an analogue of FCP obtained from GHC.

People at the Weizmann Institute {Stephen Taylor in particular, who co-designed

11

Strand and PCN later} were greatly interested in Flat GHC as an alternative to FCP.
However, they were concerned that the smaller atomie aperations of Flat GHC made the
language less robust for describing their Logix operating system. In Concurrent Prolog
and FCP, a goal publishes binding information to outside upon the reduction of a goal
to others, while in GIIC, the publication is done after reduction using an independent
unification goal in a clause body. The separation made implementation much casier,
but caused a problem in their meta-interpreter approach lo operating systems in which
the failure of a unification body goal might lead to the failure of the whole system.

Our visit provoked many discussions in the FCP group, but they finally decided
not to move to Flat GHC on the ground that Flat GHC was too fragile for the meta-
interpreter approach [17], On the other hand, we chose the metacall approach hecause
we thought that the meta-inierpreter approach would require very carcful initial design
in order to get everything work well, which could take too much timne for us. The
metacall approach was less systematic, but this meant that it would be casier to make
extensions if they became necessary in the development of the PIMOS operating system.

Back in 1COT, & meeting was held to discuss whether we should move from GHC
to Flat GHC. Since Flat GHC was clearly preferable from an implementation point of
view. the question was whether the OR-parallel execution of different nested guards
was really necessary, or it could be efticiently compiled into the AND-parallel execuiion
of different body goals. We did not have a definite answer, but decided to start with
Flat GHC since nobody claimed the uecessity of nested guards, A week later. Mivazaki
submitted the detailed design of & Flat GIHC implementation for Multi-SIM, and Taki
submitted the design of interconnection hardware for Multi-STM. Miyazaki also submit-
ted a draft specification of KL1 C as a starting point for discussions. The poiuts to he
discussed included the detailed execution rule of guards, distinction betwecn [(ailure and
suspension, the detail of metacall predicates, the treatment of extralogical predicates,
requirements for systems programming, and the handling of varions abnormal situations
(i.e., exception handling).

lowever, the detail of KL1-C was left unfinalized until summer 1987; we had a
number of things to do before that, From an implementation point of view, what we
had to do first was to develop basic technologies for the parallel implementation of Flat
GILC, such as memory management and distributed unification. I'rom a programming
point of view, we had to accumulate experiences with Flat GHC programuming. Although
the focus of the R&D of parallel implementation was converged on (Flat] GHC by the
end of 1985, it was still very important to accumulate evidences, pariicularly from the
programuung point of view, that the concurrent logic programmung approach was really
feasible. One of the tallest hurdles to be cleared in Lhat respect was o establish how to
program search problems iy Flat GHC.

I staried to work on compilation from pure Prolog to Flat GHC in spring 1985.
dince Hideki Hirakawa had developed a pure Prolog interpreter in Concurrent Prolog[4],
the initial idea was to build jis compiler version. However, the interpreter used an
extralogical feature—the copying of non-ground terms—whick turned out not to make
any sense in the semantics of CHO. After some trial and error, in September 1985,
I came up with a new method of compiling a subset of pure Prolog into Flat GH(

12

programs Lhat enumerated the solutions of the original programs. The technique was
not as general as people wanted to be in that it required the mode analysis of the original
programs, bul the avoidance of the extralogical feature lead to higher performance as
well as clearer semantics.

Although the techmique itself was not widely used later, people siarted to agree
that an appropriate compilation technique could generate efficient concurrent logic pro-
grams for search problems. An important outcome along this line was MCTP (Model
Generation Theorem Prover} for a class of non-Horn clause sets [8].

My main work in 1935 and 1986 was to cxamine and justifv the language design
from various respects and thus to make the language more robust. [had a number
of opportumities to give presentations and have discussions on GHC, which were very
useful to improve the way in which the language was explained. The paper on GHC was
first presented at the Japancse Logic Program Conference in June 1985 [20]. A two-day
tutorial on GHC programming, wilh a textbook and programming assignments, was
held in May 1986 and 110 people attended. All these activities were quite important,
because people had not been well exposed to actual GHC programs and had little ideas
about how to programn things in GHC.

At first, | was introducing GHC to people by comparing it with the framework of
logic programming. However, | started to feel that it was better to introduce GHC as a
model of concurrent computation. GHC looked like an concurrent assembly language as
well, which fratured process spawning, message sending/receiving, and dynamic memory
management. The description of the syntax and the semantics of GHC for presentation
was finally arranged in one transparency, where | referred to the syntactic constructs of
first-order logic or Prolog vnly for conciseness.

KLI-related R&D activities in the intermediate stage started as collaboration be-
tween the first research laboratary for basic research {to which the KL1 Design Task
Group belonged) and the fourth research lahoratory for implementation. As the Multi-
SIM project proceeded, however, the interaction hetween the two laboralories became
smaller. The fourth research laboratory had to design the details of the implementa-
tion, while the the first research laboratory was concerned with various topics related
to concurrent and parallel programming. In November 198G, all the development ef-
forts related to KL1, including the design of KL1, were gathered in the fourth research
laboratory.

The detail of KL1 had to be determined with many praciical considerations in im-
plementation. The role of GHC was like pure Prolog in (vrdinary) logic programming,
and there was still a gap down to the kernel language for real parallel hardware. [was of
course interested in the design of KLI1, ot thought that there would be no other choice
than to leave it to the implementation team. Around 1986, I had o spend much of Iy
time in giving tutorials on GHC and writing tuterial articles. 1 did have another im-
plementation project with Masao Morita, but it was rather a research project with the
purpose of studying the relationship hetween language specification and sophisticated
optimization techniques.

It was summer 1987 that Chikayama and his team finally fixed the design of KL1-C
and KLL P. The design of KLI-C reflected many discussions we had since Mivazaki's

13

draft specification, and took Chikavama’s MRB scheme (memory management scheme
based on 1-bit reference counting) [4] into account. KLI1-C turned out not to be a
genuine extension of I'lat GHC but had several ad hoc restrictions which were mainly
for implementation reasons. | did not like the discrepancy beiween pure and practical
versions of a language, but I felt that if some discrepancy was unavoidable, the best
way was for separate persons to design them. In our project, both GHC and KL1 were
important in their own rights and had different, rather orthogonal design rationales
which were not to be confused. Fortunately, the discrepancy was far smaller than the
discrepancy between pure Prolog and Prolog, and could be negligible when discussing
the fundamental differences between GHC and KL1 (see Section 7.1).

6 Research in the Final Stage

Stnce 1987, the activities related to the kernel language in the first research laboratory
were focused on basic research on Flat GHC and GHC programming. The additional
features of KL1 (by KLI we mean K1 C and KL1-P henceforth, ignoring the upper
and lower layers) were Loo practical for theoretical study, and Flat GHC itsell stil]l had
many aspects to be explored, the most important of which were formal semanlics and
program analysis.

[hiad long thought that a kernel language must reconcile theory and practice {and
people working on theory and those on practice) for its own “healthiness", in addition to
recanciling parallel architecture and knowledge information processing. A programming
language, particularly a declarative language, can easily split into a version for theoret-
ical study and another version for practice, between which no substantial relationship
remains. I wanted to avoid such a situation. Unfortunately, the interests of most ICOT
theorelicians were not in concurrent logic programming, with a few exceptions including
Masaki Murakami who worked on the semantics of Flat GHC and Kenji Horuchi who
worked on abstract interpretation. Since January 1988, 1 also started to think how the
sel ol unfold/fold transformation rules for Flat GHC, initially proposed by Furukawa,
should be justified. 1 finally came up with something like an asynchronous version of
theoretical CSP, in which each evenl was a unit transaction between an observee process
and 1ts observer, and presented it at the FGCS'88 conference.

In the FGCS'88 conference, [was invited to the final panel discussion on “theory
aud practice of concurrent systems” chaired by Shapiro, and presented my position on
the role and the future direction of kernel languages [21]. The panel was exceptionally
well organized and received favorable responses (as was unusual with panei discussions).

I suggested two research directions of KL1 in the panel. The first was the reconstruc-
tion of meta-level features in KL1, where by meta-level features T meant the opcrations
that relerred to and/or modified the “current” status of comnputation. Jiro Tanaka was
wterested in reflection since 1986 and was designing the reflective features for Flat GHC
with his colleagues. 1 liked the approach, but felt thal a lot of work was necessary until
we could build a full-fledged concurrent svstem with reflective operations.

The second was the simplification of K11 and the development of sophisticated
aptimization Lechniques, the motivation being to promote KL1 programming with many

14

small concurrent processes. The ultimate goal was to make (a vertain class of | processes
and streams as efficicul as records and pointers in procedural languages. 1 became
interested in optimization lechniques for processes that are almost always suspending,
and started a study with Masao Morita since September 1988, The work was intended
to complement the R&D of Multi-PSI and PIM and to explore the future specification
of KL1 bevond the FGCS project.

We soon came up with the basic idea of what we later called the message-oriented
implementation technique [23], though it took a long time to generalize it. We found
it interesting that Flat GHC programs allowed an implementation technique totally
different from the one adopted by all the other implementations.

Sophisticated optimization clearly involved sophisticated compile-time analysis of
programs, particularly the analysis of information flow (mode analysis). Concurrent
logic languages emploved unification as the basic means of communication. Althou gh
mathematically elegant, its bi-directionality made the distributed implemnentation rather
complicated. From the language point of view, the bi-directionality might cause unifi-
cation failure, the failure of unification body goals. Unification failure was considered
an exceptional phenomenon analogous to division-by-zero in procedural langnages (not
Just an analogy, as explained in [24]), and hence it was much more desirable to have a
s¥ntactic means to avoid it than 1o have it processed by an exception handler.

On the other hand, people working on development were skeptical about program
analysis, suspecting tlial it was not practical for very large programs. The skepticisin,
however, lead me to develop an efficient mode analysis technique that was efficient and
amenable to separate analysis of (very) large programs 23]. The technique was based
on a maode system which turned Flat GHC into a strongly moded subset called Moded
Fiat GUC. | presented the technique in ICOT"s 1990 new-vear plenary meeting. Very
mterestingly. two other talks at the meeting argued general unification in KL1 as well.
The group implementing distributed unification complained of its complexity. I'he the
group working on natural languages and knowledge representation pointed cut that
unification in KL1 did not help in implementing unification over richer structures like
feature graphs. These arguments made me convinced that reneral unification was not
necessary or usclul at the kernel language level, though the KT.1 implementations on
P'IM had made too much progress to stop implementing general distributed unification,
KL1 implementations on PIM would have been considerably simpler if the mode analysis
technique had been proposed earlier.

7 Reflections and I'uture Pfuspects

7.1 GHC and KL1

How close is the current stalus of KL1 to my vision”

In many senses, KL1 was designed from very practical considerations, while the main
concern of GIIC was the basic framework of concurrent computation. As a positive
aspect of KL1's design policy, its performance is no worse than procedural languages in
terms of computational complexity. and the absolute performance is also pretty good

for 2 novel symbolic processing language.

On the other hand, the constructs for meta- programming have stayed rather conser-
vative. | expected that practical meta programming constructs with some theoretical
background could be designed finally, but it turned out to be very difficult. Also. the
precise semantics of guards seems to have somewhat ad hoc aspects. For instance, the
otherwise construct for specifying ‘default’ clauses could have been introduced in a much
more controlled way that allowed better formal interpretation.

From a methodological point of view, the separation of the two languages, GIIC and
KLI, resulted in success [23]. In designing these two languages, it turned out that we
were trying to separate two different, though closely related notions: concurrency and
parallelism. Concurrency has lo do with correctness, while parallelism has to do with
efficiency. GHC is a concurrent language, but its semantics is completely independent
[rom the underlying model of implementation. Before CHC was designed, Shunichi
Uchida, who lead the implementation team, maintained that the basic computational
model of KL1 should not assume any particular granularity of underlying parallel hard-
ware.

To make effective use of parallel computers, we should he able to specify how a
program should most desirably be executed on them—at least when we wish, However,
the specification tends to be implementation dependent and is best given separately.
Thisis an important role of KL1(-F). 'L'he clear separation of concurrcncy and parallelism
made it easier to tune programs without affccting their meaning.

On GUC, the main point of snccess is thal it simplified the semantics of gnards
by unifying two previously distinct notions: synchronization and the management of
hinding environments When Gérard Huel visited 1COT in 1988, he wrote a CAML
inplementation of Flat GIIC in a few days. I was impressed with the quick, constructive
way of understanding a programming language he took, but this was possible becayse
GHC was so small.

Another point of suecess is that GHC turned out be very slable—now for eight
years. | always emphasized the design principles and basic concepts of GHC whenever |
introduced it, and stubbornly kept the language unchanged. - This may have caused f{rus-
tration to GHC/KLI programmers. Iudeed, the design of GHC has not been considered
deeply from a software engineering point of view. However, the essence of GHC is in its
semantics; the syntax could be re-designed as long as a program in the new syniax can
be translated to a program in the current syntax in a well-defined manner. | found the
design of user languages much harder Lo Justify, though they should be useful for the
development of large software. Many candidates for KL1-U were considered it 1COT,
but the current one turned out to be a rather conservative set of additional syntactic
CONVEIIEeILCes,

Although 1 have kept GUC unchanged, 1 have continued research on it. [t added
much to the stability of the language and improved the way the language was explained.
Many ideas which were tmplicit when GHC was designed were materialized later by the
rescarch inside and outside 1COT, and contributed to Lhe Justification of the language
design. Important theoretical results from outside 1COT uclude the logical account of
the communication mechanism by Michael Maher [12] and Vijay Saraswat’s work on

16

concurrent constraint programming (14} that subsumes concurrent logic programming
and Flat GHC n particular. On a personal side, [have always been interested in
clarifying the relationship between concurrent logic programming and other formalisms
of computation, including (erdinary) logic programming and maodels of concurrency. |
have been interested also in subsetling and finally came up with a strongly moded subset
called Moded Fiat GHC.

A lot of people in the project worked on the implementation of KL1 and KL1 pro-
gramming, and produced innovative outcomes {1|. They were all important in demon-
straling the viability of the concurrent logic programming approach and in getting
feedback (o implementation and future language design. 1 believe our R&D of a new
paradigm of parallel symbolic programming hased on a new programming language went
quite well in a promising direction, thongh of course. many things remain to be done.

Did logic programming have anything to de with the design of KL17 The objective of
concurrent logic programming is quite different from the objective of logic programming
[22], but still, logic programming played an important role iu the design of GHC by giving
it strong guidelines. Withonut such strong guidelines, we may have relied too much on
existing concurrency constructs out there and have designed a clumsier language. Tt is
not easy to incorporate many good ideas coherently in & single language.

As a result, GHC programs still allow non vacuous lopical reading. Instead of fea-
turing don’t-know nondeterminizm, GIC and other coneurrent logic languages tried to
give better alternatives to operations that had Lo be done using side effects in Prolog.
Logic programming provided a nice framework for reasoning and search and, at the
same time, a nice framework for computing with partial information. Concurrent logic
programming exploited and extended the latter aspects of logic programming to build
a versatile framework of concurrent computation.

Of course, the current status of concurrent logic programming is not without prob-
lems. First of all, the term “concurrent logic programming” itself and the fact that it was
born from logic programming were—ironically enough —a source of confusion. Many of
us considered GHC as an unduly restrictive logic programming language rather than a
flexible coneurrent language. | had to try Lo avoid unfruitful controversy on whether con-
current logic programming languages are ‘logic’ programming languages. Also, largely
due to the confusion, the interaction of the concurrent logic programming community
with the community of concurrency theory and the community of object-oriented con-
current programming has been surprisingly small. We shonld have paid more attention
to conenrrency theory much carlier, and should have talked much more wilth people
working on object-oriented concurrent programming. The only basic difference between
object-oriented concurrent programming and concurrent logic programming seems to be
whether the notion of a sequence of messages is hidden or exposed as a first-class object.

7.2 1COT as a Research Environment

ICOT provided an excellent research environment. [could conlinue to work on language
issues for years and could discuss with many people inside and outside Japan, which
would have been much more difficult elsewhere. 14 mail conmmmunication te and from

overseas was not available until 1985. Of the three stages of the project, the initial stage
(fiscal 1982-1984) was rather different in the sense that it gave us working on KL.1 much
freedom as well as much responsibility for the R&D of su bsequent stages.

I have never felt that ICOT's adherence to logic programming acted as an ohstacle
to kernel language design; the details were largely up to us researchers, and it was really
interesting to try to build a system of new concepts based on logic programming.

Lhe project’s commitment to logic programming was liable to be considered ex.
tremely political and may have come as an obstacle to some of the researchers who
had their own fields of interest outside (concurrent) logic programming. However, in
retrospect, I0OT’s basic research activities, particularly those not directly related Lo
concurrency and parallelism, could focus even more on logic programming and its con-
nection to other research fields.

Parallelism, too, was not a primary concern for most people working on applica-
tions. Parallel programming in KL1 was probably not an easy and pleasant task for
them. However, clearly, somebody had to do that pioneering work and contribute to
the accumulation of good programming methodologics.

7.3 Position and Beliefs

Tortunately enough, T could keep my position on my rescarch subject very consistent—
at least since 1984 when | became acquainted with the project. T was consistently
mterested in clarifving the relationship and interplay between different concepis rather
than amalgamating them. The position, for instance, reflected in the research on search
problems in coucurrent logic languages. Although the Andorra principle improved much
on the previous approaches to amalgamatin g logic programming and concurrent logic
programnung, our research on scarch problems, including the MGTP project, stuck
to the compilation approach throughout. A interesting finding obtained independently
from my work on exhaustive search and the MGTP work is that a class of logic programs,
which the specialists call range-restricted, is fundamentally easier to handle than others.
Thus our approach lead us to recognize the impartance of this concept.

The separation of a concurrent language GIIC and a parallel language KL1 is another
example. IL is often claimed thal GHC is a language suitable for systems programming,
but the fact is that GIIC itscl{ lacks some important features for systeins programming,
which arc included in KL1. The panel discussion of the FGCS88 couference had a
heated debate on whether to expose parallelism to programmers or to hide them. My
position was to expaose parallelism, but in a tractable form. This was exactly what KL1
tried Lo address.

In language design, there has been a long conlroversy within the concurrent logic
language comnmunity on whether reduction (of a goal} and unification (for the publication
of information) should be done alemically or separalely. Here again, we stuck to the
separation approach,

Oue reason why I stuck Lo the separation of concepts is that the gap between par-
allel hardware and applications software seemed to be widening and was unlikely to he
bridged by a universal single paradigm. The initial approximation to the paradigm was

18

logic programming, but it turned out that we had to devise a system of good concepts
and notations. These systems and concepts were supposed o form 2 new ‘methodol-
ogy.” which the FGCS project was going to establish as ils principal objective. GIIC
and KL1 were to form the substratumn of the system. (This is why the performance
of KL1 implementations is very important, by the way.) As higher-level concepts and
notations, languages like GDCC [1] and Quixote came up later. First-order logic itself
can be regarded as one of such higher-level constructs, in the sense that MGTP compiles
it to KLl programs. These languages will play the role of Mandala and KL2 we once
planned.

I tried to put myself in between theorv and practice; 1 was interested in their inter-
action. Now | am quite confident that a language designer should try to pav atiention
to various aspects including its definition, implementation, programming and founda-
tions simultancously. Language design is the reconciliation of consiraints from all these
aspects. (In this scuse, our approach to the project was basically, but not strictly,
middle-out.} Mode analysis and the message-oriented implementation technique were
the recent example where the simultaneity worked well. It would have been very difficult
to come up with these ideas if we had pursued theory and praclice separately. In the
combination of high-level languages and recent computer archileciures, sophisticated
program analysis plays an important role. Tt is highly desirable that such analysis can
be done sysiematically rather than in an ad-hoc manner, and further that a theory be-
hind the systematic approach 15 expressed naturally in the form of a language construct.
By stipulating the theory as a language construct, it becomes a concept sharable amang
a wider range of people.

Language designers need feedbacks from specialists in relaled fields. In semantics
rescarch, for instance, one position would be to give precise meanings to given PIogra-
ming languages. but 1t would be much more productive if the mathematical farmulation
vields constructive feedback back to lanpuage design.

7.4 The Future

What will the future of GHC/KL1 and concurrent logic programming in general be?
Let us look back to the past to predict the future.

The history of the kernel language design was the history of simplification. We
moved from Concurrent Prolog to GHC, and from GHC to Flat GHC. Most people
seemed to believe we should implement distributed unification for Flat GHC at first,
but I am now very inclined not to do so. The simplification needed a lot of discussions
and experiences, but the performance requirement has always been a strong thrust to
this direction. It 1s not yet clear whether we can completely move to Moded Flat GHC
in the next system, but if successful in moving, | expect the performance can be around
half of the performance of comparable programs written in procedural languages. The
chalienge 1s to achieve the performance not in an ad-hoc manuer:

[20, Section 5.3] For applications in which cfficiency is the primary issue

but fittle Hexibility is needed, we could design a restricted version of GHC
which allows only a subclass of GHC and/or introduces declarations which

LS

help optimization. Such a variant should have the properties that additional
constructs such as declarations are used only for efficien ¢y purposes and that
a prograim in that variant is readable as a GHC program once the additional
constructs are removed from the source text.

[20, Section 9] We hope the simplicity of GHC will make it suitable
for a parallef computation mode! as well as a programming language. The
flexibility of GHC makes its efficient implementation difficult compared with
CSP-like languages. However, a flexible language could be appropriately
restricted in order to make simple programs run efficiently. On the other
hand, it would be very difficult lo extend a fast but inflexible language
naturail W

Review of the design of KL1 is now very important. The design of different models
of PIMs may not be optimal as KL1 machines, because they had to be designed when
we did not have enongh knowledge about KL1 implementation and KL1 pProgramming.
Also, as experimental machines, they included various ideas we wanled to try. Now
the machines were built and alinost a million lines of KL1 programs have been written.
Based on the experience, we should trv to simplify the language and the implementation
with minimum loss of compatibility and expressive power.

Another problem KL has to face is the huge cconomical and social “igertia’ on the
choice of programming languages. Fortunately, the fact that KL1 and oiher concurrent
logic languages address Lhe field of paraliel computing makes things more advanta
geous. Tor example, PCN [3], an descendant of concurrent logic languages, addresses
an important issuc: parallelization of procedural programs. 1 am glad to see that a
new application area of concurrent logic programming is developed this way, but at the
same time, 1 feel that we should study whether paraltel applications in concurrent logic
languages can be made to run very efficiently withont interfacing to procedural codes.

Formal techniques, such as verification, are the area where the progress of our re-
search has been very slow so far. Lowever, we believe that GHC/KLI is quite amenable
to formal techniques compared with other concurrent languages. The acenmulation of
lechnologies and experiences should be done sleadily, as the history of Petri nets shows.

In his invited lecture of the final day of the FQCS92 conlerence, C. A. R. Hoare
conclnded his talk, titled “Programs Arc Predicates” [1] with comments on the similar-
ities between his and our approaches to programming languages and formalisms, listing
a number of keywords—simplicity, efficiency, abstraction, predicates, algebra, coucur-
rency, and non-delerminism.

Acknowledgments

The author is indebted to Akikazn Takeuchi for his comments o the early design ac-
tivities of K11 (Section 3.1).

References

1]

10}
(1]

ICOT (ed.), Proc. Fifth Generation Computer Systems 1992, Ohm-sha, Tokyo,
1952,

Clark, K. and Tarnlund, 8. -A. (eds.), Logic Programming, Academic Press, Lon-
don, 1982, pp. 153-172.

M. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and
Bartlett Pub., Inc., Boston, 1992,

Chikayama, 1. and Kimura, Y., Multiple Reference Management in Flat GHC. In
Proc. 4th Int. Conl. on Logic Programming, MIT Press, 1987, pp. 276-293.

Clark, K. L. and Gregory, 5., PARLOG: A Parallel Logic Programming Langnage.
Hesearch Heport DOC 83/3, Dept. of Computing, Imperial College of Science and
Technology, London, 1983,

Clark, k. L. and Gregory, S., PARLOG: Parallel Programming in Logic. Research
Report DOC 8474, Dept. of Computing, Impcerial College of Science and Technol-
ogy, London, 1881. Also in ACM. Trans. Preg. Lang. Syst., Vol. § No. 1 (1986),
pp. I-44,

Furukawa, K., kunifuji, 5., Takeuchi, A. and Ueda, K., The Conceptual Specifica-
tion of The Kernel Language Version 1. ICOT Technical Report TR-054, ICOT,
Tolyo, 1984,

| Fujita. H. and Hasegawa, ., A Model Generation Theorem Prover in KI,1 Using a

Ramified-Stack Algorithm. In Proc. Eighth Int. Conf. ou Legic Programming, MIT
Press, 1987, pp. 535-548,

irakawa, H., Chikayama, T. and Furnkawa, K., Lager and Lazy Enumnerations in
Concurrent Prolog, In Proc. Second Int. Logic Frogramming Conl., Uppsala Univ.,
Sweden, 1984, pp. 89-100.

Hirata, M., Letter to the editor. Sigplan Notices, Vol. 21, No. 5 (1986), pp. 16 17.

Hoare, C. A. IL., Communicating Scquential Processes. Comm. ACM, Vol. 21, No. §
(1978}, pp. 666-6GTT.

Mazher, M. J., Togic Semantics for a Class of Committed-Choice Programs. In
Proc. Fourth Tnt. Conf. on Logic Programuming, MIT Press, Cambridge, MA, 1987,
pp. 858876,

Nakashima, H., Knowledge Representation in Prolog/KR. In Proc. 1984 Symp. on
Logic Programming, IEEE Computer Society, 1984, pp. 126-130.

V. AL Baraswat and M. Rinard, Concurrent Constraint Frogramming (Extended
Abstract). In Conf. Record of the Seventeenth Annual ACM Symp. on Principles
of Programining Languages, ACM, 19490, pp. 232-245.

Sato, M. and Sakurai, T., Qute: A Funectional Language Based on Unification. In
Proc. Int. Conf. on Vifth Generation Computer Svstems 1984, ICOT, Tokyo, 1984,
pp. 157-165.

21

16]
17

18]

[19]

20]

[24]

25]

Shapiro, E. and Takeuchi, A., Object Oriented Programming in Concurrent Prolog.
New Generation Computing, Vol. 1, No. 1 (1983}, pp. 25-48.

Shapiro, E. Y., Concurrent Prolog: A Progress Report. Computer, Vol. 19, No. §
(1986), pp. 44-58.
Turner, D. A, The Semantic Flegance of Applicative Languages, In Proc. 1981

Counl. ou Functional Programming Languages and Computer Architecture, ACM,
1981, pp. 85-92.

Ueda, K. Concurrent Prolog Re-Fxamined. 1C0T Tech. Report TR-102, 1COT,
Takyo, 19835,
Ueda, K., Guarded Horn Clauses. ICOT Tech. Report I'R-103, ICOT, Tokvo, 1985,

Also in Logic Programming ‘85, Wada, E. (ed.), Lecture Notes in Computer Science
221, Springer-Verlag, Berlin Heidelberg, 1986, pp. 168-179.

j Ueda, K. and Furukawa, K., Transformation Rules for GIIC Programs. In Proc. Int.

Conf. en Fifth Generation Computer Systems 1988, 1COT, Tokyo, 1988, pp. 5582
9L,

Ueda, K., Parallelism in Lugic Programming. In Information FProcessing 89,
G. X, Ritter {ed.), North-Holland, 1989, pp. 957-964.

Ueda, K. and Morita, M., A New Implementation Technique for Flat GHC. In Proe.
Seventh Int. Conf. on Logic Programming, MIT Press, 1000, pp. 3-17. A revised,
extended version submitted to New Gencration Compnting,

Ueda, K., Designing a Concurrent Programming Language. In Proc. InfoJapan’90,
Information T'rocessing Society of Japan, Tokyo, 1990, pp. 87-04.

K. Ueda and T. Chikayama, Design of the Kernel Language for the Parallel Infer-
ence Machine. The Computer Journal, Vol. 33, No. 6 (Dec. 1990), pp. 404-500).

