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Abstract

The purpose of this paper is to present the design principles and features of a novel
communication scheme that has been used to support cooperative problem solving
within a network of knowledpe-based systems. In presenting this account, we attempt to
answer a set of critical yet unsettled questions of cooperative systems communication
such as when and how a knowledge-based system knows which message to send, what the
conditions of success are for a message, and how individual systems cooperate with each
other for different purposes. To achieve this, we first propose two key design principles:
(1) the loose coupling of communication issues and knowledge representation issues, and
(2) the notion of communicative acts. We then work these ideas into the communication
scheme COSMO, whose key features include: knowledge handlers, an operation maodel,

organizational roles, message lypes, communication strategies and protocals.

1 Introduction

With the steady progress of research in computer systems over the past decade, it is now
clear that there are many classes of complex problems which cannot be solved in isolation.
Technological advances in communication networks, however, have opened up many new
vistas for cooperative interaction across several computlational systems or processes for
solving such problems. Broadly speaking, a cooperative problem salving {(CPS) system refers
to several loosely connected and potentially heterogeneous agents that cooperate together to
solve problems that require their combined expertise and resources,

This paper is concerned with a particular class of CPS systems known as cooperative
knowledge-based systems (CKBS). In this context, a nodal knowledge-based system is
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an autonomous agent, i.e., it asserts control over its own (local) resources. CKBS is
rooted in distributed Artificial Intelligence, and recent surveys on the activities of this
proliferating field can be found in [18, 23, 17]. However, awing to its potentizl for wide-
ranging applications, CKBS also attracts researchers from many non-Al areas such as those
dealing with databases, computer supported coordinated work, and management information
systems [15, 12, 14, 30, 41, &].

Communication is a critical component of cooperative problem solving systems. It is a
process that involves two or more agents sending messages to one another over a network.
However, simply passing data or calling procedures among a group of agents does not make
that group cooperative. Cooperative computation requires schemes of communication that

are more sophisticated than conventional ones in order to address the following issues:

(11) Heterogeneous agents: Cooperating agents often differ in internal structure, infor-
mation content, and inference ability. Usually, they are preexisting systems for single
applications and are integrated to handle more complex applications. This causes
several problems. First, the specifications encoded in messages are often nat in a com-
patible form and thus are not mutually understandable. Second, consistent viewpoints
and knowledge among agents are difficult to achieve due to discrepancies in knowledge
and inference ability.

(12} Knowledge interchange: The world explored by a cooperating agent includes the
complex and changing phenomena of olher agents, such as their behavior, beliefs,
intents, and so forth. For example, an agent needs to negotiate with others to resolve
conflicts due to inconsistencies in their knowledge. Or, an agent may want to persuade
another party to put a high priority on the tasks requested of it. Thus, cooperating
agents must be able to communicate such relevant knowledge rather than just pure

datla.

{13) Localized control: A CKBS agent typically retains ils autonomy to serve its
existing users. That is, it asserts [ull control over local information and processing, and
may temporarily relinquish part of the control for cooperative purposes. The autonomy
means that the behavior of such agents stems from neither a centralized scheduling
scheme nor predefined interaction. The agents musl possess significant expertise in
developing their own strategies of communication dynamically, without the benefit of
a global perspective. In contrast, such strategies arc generally static in conventional

distributed systems.

(I4) Organizational strncture: ‘Lo refrain from overloading the computing resource for
communication, agents must avoid excessive commuitication and keep the interactions
between them wnder contral. Often, a group of agents achicves this with the aid of an

organizational structure which defines their roles, behavior expectation, and authority



relations [34, 24]. This kind of structure also enables us to incorporate many effective

human organization technigues into computer systems.

Furthermare, it is worth noting that computational speed-up mav be a favorable side-
effect, but is not the primary objective of cooperative problem solving systems. This sets
apart CPS projects from other projects that solely aim to increase the computation speed
through parallel or distributed processing of Al programs (6, 27, 60).

The purpose of this paper is to present the key design principles and features of COSMO

a communication scheme to support orderly and rational interaction among cooperating
agents. This scheme criginated from the development of Building Design Network (BDN) in
the ATLSS Engineering Research Center at Lehigh University [3, 54]. BDN is a distributed
knowledge-based system prototype in which several agents with different construction ex-
pertise and responsibilities (and possibly their users) cooperate tosether to obtain the
preliminary design of structural buildings. Agents of this application reside in separate
UNIX workstations and use TCP as the communication backbone. The knowledge bases
are written predominately in an extended Prolog language [53, 56]. Aside from practical
applications, we present this account in an attempt to offer new insight into the challenging
issues of communication, 11 to 4, as stated earlier in this section.

This paper is organized as follows. Section 2 introduces two important principles of
designing communication schemes: the loose coupling of communication and knowledge
representation issues and the notion of communicative acts, The subsequent sections work
these principles into a working scheme, COSMO. Specifically, Section 3 discusses four key
components of the scheme: the operational model, organizational roles, message types, and
communication and computation steps. Section 4 presents a set of strategies which are built
on these components for general control in communication. Section 5 describes some of the
communication protocols devised Lo convene intentions that are more complex than single
communicative acts. Furthermore, Section 6 discusses related work by others in inter- agent

commuuication. The final section concludes this phase of research and suggests possible

future work,

2 Guiding principles

This section discusses two basic principles of designing communication schemes in coop-
erative problem solving sysiems. The first principle is to loosely couple the study of
communication issucs with the study of the representation issues of individual agents. The
second principle is to bring in Lhe notion of communicative acts for coordinating actions

and exchanging knowledge among agents.
Knowledge representation and inter-agent communication are hard problems. It is hetter

to deal with them individually rather than together in the early stage of system develap-



ment. The first principle proposes the use of a global language of communication between
heterogeneous agents. The nse of a global language makes fewer assumptions (thus it enables
loose conpling) about how knowledge is represented in individual agents (issue 11). In other
words, at the communication level, all agents should view knowledge residing in one another
as being represented in a single, uniform scheme. Another advantage is that it enables the
integration of preexisting, autonomous knowledge-based systems for broader applications (is-
sue [3). This also protects an organization’s investment in local knowledge base management
software, application programs, and user training.

The notion of a global language is a major approach in designing heterogeneous informa-
tion systems. The ability to translate existing code into a desired format is a critical key to
making it shareable. The global schema approach, for example, was the first to be used in
multidatabase design and continues to be a popular choice in that field. The global schema
is another layer, above the local schemas, that provides global data independence. The
chaice of a global schema wenld depend on the multidatabase designer [30]. Recently, the
Interlingua Working Group of the Knowledge Sharing Initiative, headed by Richard Fikes
and Mike Genesereth, took up an ambitious project te develop a commen language, the
Knowledge Interchange Format (KIF), along with a set of translators to map into and out
of the language from existing knowledge representation languages [36]. KIF is supposed to a

superset of all agent languages.
The practicality of using a global language or schema is mainly a matter of the tradeoff

between writing translation code and limiting participation. If the developers are willing
to write cnough translation code into the tramslators (considering development costs and
execution efficiency), the cooperative system can accept a wide variety ol heterogeneous
knowled ge bases. Another consideration is the difference in expressive power between the
glohal language and local languages. If the effort of writing code to get around the
discrepancy between a local language and the global language becomes a burden, that
knowledge base is unlikely to be integrated into the cooperative system. (On the other hand,
if the Interlingua group succeeds, this discrepancy problem would then vanish.} Note, the
coding of a translator must also take care of the impedance mismatch of encoded knowledge,
e.g., differences in terms, names, and data format [:i.[}IH 52).

To support a global communication Janguage, an agent, thus, should contain a knowl-
edge handler for coding and decoding messages, in addition to a reasoning program (i.e.,
knowledge base and inference engine). In COSMO, such a knowledge handler is an indepen-
dent computation process and normally runs as a background process, unless the lecal user
explicitly invokes it to see its content. A handler also performs other crucial functions, such
as checking against possible errors and keeping track of messages that are pending for reply.
We will return to this point in Section 4.

This coding model of communication, that is, the use of knowledge handlers to facilitate

the interface among heterogeneous agents, is still not flexible enough for the interchange of



knowledge (issue I2). Cooperating agents must be able to communicate in a more verbalized
and regulated way, and to convene various intentions during cooperation. In this respect,
the speech acts theory [44, 45], a thrving branch in the philosophy of language and
linguistics, offers some new insight. We describe the part of the theory that influences the
design of our communication scheme below.

Speech acts theory states that the primitive units of human communication are speech
acts of a certain type called illocutionary acts. Some examples of these are statements,
questions, commands, promises, and apologies. Whenever a speaker utters a sentence in an
appropriate context with certain intentions, he or she performs one or more illocutionary
acts. In general, an illocutionary act consists of an illocutionary force F and a prapositional
content P. For example, the two utterances “You will leave the party” and “Leave the
party!” have the same propositional content, namely that you will leave the party; but the
first of these has the illocutionary force of a prediction and the second has the illocutionary
force of an order. Ou the other hand, the two utterances “Are vou going to the beach?” and
“When will you sec Sandic again?" both have the illocutionary force of questions but have
different propositional contents.

A special class of sentences which express elementary illocutionary acts of form F(P) are
the performative sentences. These sentences consist of a performative verb used in the first
person present lense of the indicative mood with an appropriate complement clause, i.e.,
a propositional vontent. In uttering a performative sentence one performs the illocutionary
act with the illocutionary force named by the performative verb by way of representing
oneself as performing that act. Sume examples (with the performative verbs italicized) are:
“I promize that [ will do it tomoriow™, “I order you to report the schedule to the project
ma.naﬁ;er", “l effer that x is a hetter choice than y."

Not all illocutionary acts are of the simple F(P'} form. More complex cases are called
complex illocutionary acts which are composed of simple acts using connectives such as
“and” and “but™. Thus, in a certain context, by uttering “T will go to her house, but will
she be there? a speasker both makes an assertion and asks a question, ie. the form is
Fy(Py) A Fa{Py), and the successful performance of this complex act is a function of the
successful performance of its constituents, -

Now, for distributed systems computation, a basic unit of communication ameng agents
is the transfer of a message from one agent (the sender) to another (the recejver), The
purpose of communication is to provide the receiver with some information or to have the
receiver take certain sclions. Inspired by the speech acts theory, such 2 unit is called a
communicative act.

The second design principle that we put forward is: a communication act is analogous to
an elementary performative act in human communication; its message lype T expresses an
illocutionary force F, named by a performative verb; and its message contenl p expresses a

complement clause P, which is a specification of the sender intended to be computed by the



receiver. Such a specification, as stated earlier, is represented in a format understandable by
all agents. Note that we have not considered the notion of complex performative acls here.
Meanwhile, a message type r has two basic functions. In the first place, it is an index
for a receiver to select a procedure to compute the message content and to determine the
type of the response act. Thus, the meaning of the performative verb that a type denotes is
defined by the operation of the procedure associated with it. To maintain the consistency of
its performative meaning, each of the message types deflined in a cooperative system must

indicate the same procedure across all agents.
Secondly, a message type has a name similar to the performative verb that it denotes.

For instance, a communication act of type order would tell a receiver to do something
without the option of refusal. This art assumes that the sender has a higher authaority
or priarity than the receiver. An act of type ask would request the receiver to answer a
question in the form which has already been determined by the propesitional content of
that question, e.g., a receiver either affirms or denies a yes-no question. We believe that the
use of such a logical naming convention to represent the concepts and structures inherent
in a communication scheme impacts on the very thinking that goes into constructing that
scheme. This is similar to the historical fact that high-level languages, such as Pascal and C,
have a profound influence on a programmer’s ability to conceive efficient algorithms.

The simple illustration in Figure 1 may help us to better understand the operation of
a communication scheme based on the aforementioned ideas, Let us suppose that there are
two agents with a sequential processing ability, and their language of communication has two
message types: ask and answer. Let us suppose further that there is an entity x in the real
world which is denoted as p in one reasoning program, as p' in the other, and as p” in the
common language. We show the thread of control in a query process between the two agents
in Figure 1. {Italics are used to denote message types in this paper.) The operational steps

shown in Figure 1 are described in the following:

1. The local reasoning program invokes a query about x (represented as p? in the figure).

2. The local handler encodes the query into an outgoing message, ask(p”), where ask is

called a message type.

3. The remote handler decodes the message, identifies its type, transforms its content p”

into p', and passes such information to the remote program.
4. The remote program identifies an internal operation t, and executes t to compute p.
5. The result of computation r’ is sent to the remote handler.

6. The remote handler composes a response message answer{r”), where 1" denotes the

same thing in the real world as r', and answer is a respanse type of query.

7. The local handler converts r" into r, and sends it together with the message type,

answer, 1o update the local program.
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Figure 1: The thread of control between two agenls in a simply query

These two principles, though promising, liave yel to be worked out in detail for practical

applications. A closer look at the above example reveals many unsettled questions such as

the following:

(Q1} When and how should a cooperaling agent know which act to perform (issue 13)7
{Q2) What are the conditions of snccess of a communicative act (issue 12)?

(Q3) What is the relation hetween organizational roles and communicative acts (issue 14)7
(Q4) How does an act relate tn other acts (issues 12 and 13)?

(Q5) Can more complex intentions be convened by a few primitive acts, and il so, how
(issues 11 and 12)?

In the subsequent sections, we incrementally presenl the key features of COSMO. This

scheme formalizes and extends the principles discussed, and, thus, provides some answers to

these challenging questions.

3 Basic Components of COSMO

The purpose of this section is to introduce the basic components of our scheme. These
components are the building blocks for the strategies and methods of communication to he

presented in Sections 4 and 5.



3.1 Operational model

In COSMO, we consider two major kinds of communicative acts: those used to initiate
actions and those used to respond to these actions. For an agent to know when to Initiate
an act A (see question Q1) and whether that act is successful {question Q2), we use the

following operational model of communicative acts:
{precondition}: A: {postcondition}.

In this model, {precondition} denctes a set of internal constraints which must be satisfied
before A can he performed, and {postcondition} denotes a set of conditions which must he
met in order to consider that A is successful. Such a model is similar to the representational
formalism used in most plan recognition algorithms, and which originated in the earlier
research on Al planping in STRIPS [20] and NOAH [43]. The representation formalism
specifies that a precondition needs to be true to carry out the planning eperation {a
communication act in our case) and an eflect that holds once the operation is accomplished.
The model of COSMO extends this formalism into distributed systems communication and
enriches it with the concepts of the degree of strength and the classes of communication
acts.

For {precondition}, usually, it is the reasoning program of the agent which decides the
act that is performed at a particular stage of operation. However, sometimes a reasoning
program can have several alternative actions, and deciding which one to perform becomes
a problem (again, a problem related to Q1). For example, suppose that an agent wants to
know something about p, but does not know which agent it should ask and is reluctant to
broadcast the request in order to aveid excess communication. Its knowledge handler would
then assign every feasible alternative a number and select the alternative with the highest
number. Such a number is called a utility value. In the next section, we describe certain
heuristics for setting utility values in the knowledge handler for general communication
pUrposcs.

Furthermaore, the other constraints in {precondition} include:

s Honesty: An act must be compatible with the internal state or knowledge of the
sender. For example, an agent will not ask a question when it already has the answer,
or it will not make 2 statement that it knows is false. This concerns the truth condition
of an act and is noted as an honesty condition for cooperative systems communication

(refer to Q1.

« Propositional Content: This constraint also relates to Q1. It states that every mes-
sage type may be subject to a “propositional content condition” other than honesty.
The recognition of propositional content as an aspect of communicative acts echoes

Austin’s notion [5] that every genuine speech act has a locutionary component, not



Just those that vouch for the truth of the representation as required in the honesty

constraint. We will illustrate this point with examples in Section 3.3.

= Role: A CEBS in this scheme is also an organized information svstem. Thus, the
message type must satisfy a specific role constraint between the sender and the receiver
in the organization (see question Q3). The role constraint relates to the priority of
the message as well as dedicating the communication behavior of the two agents. We

discuss this constraint in the next subsection.

* Accessibility: The sender must be able to access the receiver. This accessibility
requires not only the support of a reliable communication network but also the use
of knowledge handlers to eusure compatibility of the two agents at the software level

{question Q2).

To terminate an act A properly, its {postcondition)} requires that the sender must receive
a message that either is a direct response of defined types to A or is a control message
indicating certain communication problems. We also present certain functions of control
messages in Section 4.

However, the scope of this operational model is limited in the sense that it manages
isolated communicative acts. It neither tells us how to relate one act with many other
acts in a discourse among agents (question Q4), nor does it enable agents to communicate
intentions that are more complex than simple communicative acts {question Q35). Before
addressing these hard questions in Section 3, we first need to introduce three other basic
components of COSMO: the organization roles, the message types, and the communication

and computation steps.

3.2  Organizational roles

Organization hierarchies are used in cooperative problem solving systems to: (1) establish
the problems to be solved; (2) segment the problems into separate activities to be performed
by different agents; and (3} coordinate activities and tasks among agents so that overall
solutions are achieved. Depending on the application, {1) and {2) may be pre-determined or
may be jointly decided by the agents in the course of communication.

Generally, there is a set of admissible toles in such a cooperative system, and each agent
in the system is assigned one of these roles. The function of the roles is to indicate the
position of that agent in the hierarchy and to determine what reasoning stralegies to use. To
compare the ranking differences of agents, this proposed scheme assigns a number to every
role. For example, for two agents, a of role, and b of role,, agent a ranks higher than b if
and ouly if (iff) v(roleg) > v(roley}, where v(role.} denotes the role value of an agent z.

In the current architecture of COSMO, the information of the organizational structure is

encoded in a role table, which contains information about all agents' roles and their role



values in the organization at a particular stage of operation. Since agents' reasoning pro-
grams and their knowledge handlers access the information of the role tahle frequently, we
allocate a copy of the role table in every computational process for efficiency. Whenever the
underlying organizational structure is changed, all copies of role tables in the cooperation
system will be updated immediately. As will be shown later, this synchronization of role
tables is necessary for the proper operation of the scheme. This arrangement also assumes
that the organizational hierarchy of particular applications is reasonably stable. Otherwise,
the frequent broadcast of updated role tables would overload the communication network.

The ranking difference between any two people in an organization affects their interactive
behavior, such as decision making and communication. Any cooperative computing system
which claims to exhibit certain human problem-solving abilities should exhibit such adaptive
hehavior. One way to accomplish this, as is implemented in our prototypes, is to have every
agent partition its set of problem-solving strategies into several classes. An agent selects a
particular class of strategies based on the ranking difference between itself and the would-be
receiver. As an example, suppose that the set of strategies of agent a is 5, = 51,5,
where the subscripts are the indices of individual strategies. Then, agent a chonses 5 in 5,
to interpret an incoming message from agent b when v{role, ) — v(role,) = i

[n this way, one can say that an agent has several classes of problem-solving strategies in
its reasoning program and switches among them according to which agent it communicates
with. The subsection below provides an example oo the use of organizational roles to decide

the types of communicative acts,

3.3 Message types

In COSMO, agents use two disjeint sets of message types: one set contains types that
are strittly used in communicative acts for initiating actions, and the other contains types
that are strictly used in response to the former acts. Hence, these response tvpes are a
posteondition of the acts of the first types. We call the messages in the first set, action
messages, and those in the second set, response messages.

COSMO classifies message tvpes according to the performative intents or purposes of
their associated acts. It further distingnishes the tvpes of a class to indicate the role
relationship belween the sender and the receiver. BDN application, for example, has three
classes of message types: inguiring, informing, and complaining (see Figure 2). Inguiry
messages have two uses. To inquire is either to query for information or to request some
action. Informative messages are hoth assertive and directive. 'To inform is either to give ont
information or to instract someone o do something. The content of an informative message
must be in grounded form, that is, without variables, while there is no such restriction for
inquiry messages {the propositional content constraint in Section 3.1). Complaint messages

are used to cxpress one’s dissatisfaction. To express dissatisfaction with a state of affairs

10 —
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quiing | @Y CB

@ assert/is_unknouwm & answer/is_unknown & reply [ is_unknown

| @ recomniend ® offer ® tell
Informing ﬂ.ﬂ
@ endorse/reject @ accept/refuse @ report/is_confused
@ protest @ complain
Complaining ﬂ.ﬂ @
@ approve/disapprove @ validfignore

* particular response types for control:

end:
notify and busy Leg

() - an agent node

—= - message flow edge
@, @ - message sequence
x/y - either typex ory

Figure 2: Communicative acts currently implemented in COSMO for BDN.

commits the sender to presuppose both the existence of that state of affairs and that this
particular state is bad for the sender. Complaining acts are used to initiate negotiations
among agents (the propositional content constraint of complaint acts, see Sections 5.2 and
5.3).

Different communicative acts can sometimes achieve the same performative function with
grealer or lesser degrees of strength, e.g. suggesting that the receiver abort the task is
weaker than ordering it to abort the task [45]. Following the discussion in Section 3.2,
we have a role relation between the two communicating agents that dictates this degree
of strength in COSMO. Here, we, in turn, use appropriate message types to indicate role
relations explicitly. Figure 2 illustrates this point with a set of communicative acts that are
currently implemented for BDN application.

In this section, we briefly comment on the general usage of these message types. Let



degree(r) represent the characteristic degree of strength of an act of action type t. For
inquiring acts, as an example, we have degree{direct) > degree{ask) > degree(request), as
indicated by the role relations of the sender and the receiver. Such a comparision of message
types has many implications in cooperative systems communication. For instance, an act of
request or ask type lets the receiver know that the sender is either of the same rank or a
lower rank. Thus, the receiver can grant or refuse the inguiry by returning messages with
either an assert or answer type. However, in a direct act, such a refusal is precluded as
it is coming from a higher authority (see Figure 2). Or, to resolve the ordering conflict of
messages, when direci(p) and ask{p’) arrive at the same time from two remote agents, the
local agent would execute the former message first.

If an inquiry could not be understood, that is, it is not computable, then the receiver
would simply send back an is_unknown message. Similarly, for informative acts, an agent can
accept or refuse an act of type offer or recommend but must [ollow the instruction of a tell
act. When the content of an informative message is not computable, a response act of type
t5_confused will be zent instead,

Complaining acts are used by the sender of a lower or an equal rank to seek the approval
of a receiver for starting negotiation. COSMO does not define any complaining act for a
sender of higher authority; such a sender can simply tell lower ranking receivers to start
negotiation right away. Ilewever, to maintain the mode of cooperation (assuming that this
mode can achieve better results than the others), we must avoid abuse of the positional
power in communication. In Section 5, we discuss some way to deal with such problems,
Moreover, types nofify and busy can replace any of the response types [or specific control
purposes. Section 4 provides some cxamples on the use of these two types.

In addition, the set of message types listed in Figure 2 is a minimum set, in the sense
that the intention or communicative function of any message type cannot be replaced by
any other or any combination of other types. On the other hand, a more complex kind
of intention, such as bargaining, to be discussed in Section 3, may be convened by several
protocols composed of these types. Note that the current classification of message tyvpes in

COSMO covers only a subset of speech acts in Searle’s live illocutlionary categories [45].

3.4 Communication and Computation Steps

A communicative act of one agent may spawn many other acts among agents; lor instance,
agont & asks b about p, b then asks ¢ about p, and so on. A process of communication
among agents is a sequence of communication and computation steps. A communication
step encodes the specification of a sender into a message and sends it out to a receiver, i.c.,
performs a communicative act. A computation step changes or updates an agent’s reasoning
program, and when necessary, decodes an incoming message. Hefer to Figure 1, for an

example, Step 1 is a computation step in which the local agent desires to know about x;
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Steps 2 and G are communication steps including questions and answers; and Steps 3-3 can
he grouped into one computation step involving the decoding of an action message and
internal computation of the remote program.

A sequence of these steps terminates properly when the first sender of that sequence
receives a response message to its initial act. Te keep track of multiple sequences accurring
simultaneausly in a cooperative system, the first message of any sequence contains a unique
label which will be included in all subsequent messages of the same sequence.

In particular, we are interested in those sequences with precisely defined steps. We call
such a seguence a protocol. Protocols are regulated means to convene complex intentions in
terms of a few elementary communicative acts. They enforce an order on the way that co-
operating agents interact with one another. An agent which wants to initiate communication
of a specific aim would select a particular protocol. The agent would then communicate that
it is using this protocol to the other agents. This would then allow the intended receivers
to select corresponding acts and to ignore irrelevant messages. In this way, the protocol also
avoids excessive communication and keeps discussion ameng agents under control.

We use the following formatl to describe communication and computation steps. For
simplicity, we do net express coding operations explicitly, We also assume that every step in
COSMO is an indivisible operation in the sense that it runs from the beginning to the end
without interruption.

A communication step whereby agent a invokes an act of type v is expressed as:
a—b|r p,{; where b is the receiver, the content p is a specification of a common format,
and ! is a unique 1dentifier of the sequence. A computation step of agent a is written as,
a | #(p), where 7 is an internal operation on the content p of an act in the previous step.
The global language used in our prototypes is of a logical form such that p can be a term,
a list, a predicate, or a complex sentence, i.e., predicates connected by lugical operators such
as A (and), v (or), and 2 (implication). I'he transformation operations of such a handler
also include the parsing of a message content into its atomic components for evaluation in
the reasoning program, and the composing of evaluated results into a proper logical form for
reply. The parsing and composing operations are described in Chapter 4 of [54). For clarity
in this presentation, we ignore the case where p is a complex sentence.

Vignre 3 describes a typical login protocol between a remote host h and local computer
¢, of equal rank [58]. In this figure, f in Step 4 is a one-way function; i.e., given y, it is not

feasible to find an x such that f{x) = y.

4 Comimunication Strategies of Handlers

This section presents some of the general heuristics used by knowledgze handlers to manage

message transactions. A strategy, in this context, refers to a decision-making procedure used



retrieve record(e, f{password )

(1)e—~h | ask login, !
(2Yh—c | answer, “okay, give me your password”, !
(B)e—=Hh | affer, password, !
(4) h |  compute y = f{password)
t

from user datazbase
| v = f(password,) then accept;

otherwise refuse.

Figure 3: A simple login protocol.

to observe and evaluate its environment and — in response to it — preseribe some immediate
action. Some of the strategies simply make use of message types o convene their purposes.
However, when several options are available, a knowledge handler would then apply an
appropriate utility function to select the preferred act, A utility function would consider the
general factors of the environment such as message types, organizational roles, and statistics
of communicative acts. This is demonstrated in the communication strategies presented in
this section.

These communication strategies are largely domain-independent, that is, weak methods
in Al. They are operated by default when the reasoning programs lack domain knowledge
to drive the communication process. Olherwise, system developers should supersede these
strategies with more effective, but domain-specific, strategies from the chosen application.
This is analogical to the case where a programmer would rather tailor an efficient algorithm
to execute important programming tasks than use the general algorithms provided by the

underlying operating system.

4.1 Which agent to notify

The handler of every agent records all messages into its discourse table. This table also
includes other information such as time of transactions and the status of messages, ie.,
whether a messape iz pending or has been responded to. An agent updates its discourse
table whenever a message is sent or received. There are two ways in which a discourse table
can be deleted. First, the local agent or user can issue a deletion command to the local
knowledge handler. Second, an agent can remove the previous table entries from its system
memory at the starting session of every new global problem that is unrelated to the previous
one. The deleted entries are antomatically stored in database files on the hard disk.

The information in a discourse table is frequently accessed for many purposes during the
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(Iya—b& | ask, p(x), 4
{2} b | don't know p(x)
(B b=c | ask p(x),
(4) e |  don’t know p(x)
(8ye—a | ask p(x), s
(6) a | find p(x} in discourse table
pending the response of b
| netifye
(Tya—c | notify, circular(p(x)), {5

{circular is a predicate with

p(x) treated as a term)

Figure 4: An example of a circular inquiry.

communication process. One reason is to notify the cccurrence of redundant acts in inquiry.
A redundant act refers to an agent asking the same pending question to another agent
twice. A eircular act refers to some other agent asking the same question for whiclh the
Iocal agent is also awaiting an answer.

Iigure 4 shows a circular inquiry involving three agents of equal role (see also Figure 5
for a graphical illustration). In Step 1 of Figure 4, agent a asks b about a predicate p(x).
But, in Step 2, b could not match that predicate with the set of clanses in its knowledge
base. In Step 3, b then asks ¢ about p(x). The latler does not know the answer either and
acks a instead (Steps 4 and 5). The knowledge handler of @ decodes the message from ¢ in
Step G and finds that it is still waiting for an answer to the same query. Thus, in Step 7, a
notifies ¢ about the circularity found.

In a closed computer system, agent @ will automatically write off ¢ in its future query
abuut p(x). A cooperative knowledge-based system, however, is an open system. Agent ¢
may kuow about p{x) through other agents or its user later on. An extension of this strategy
in COSMO is that a still considers ¢ in the future query, but will lower the priority of that

agent in its list of possible candidates. This brings us to the next strategy.

4.2 Which agent to query

One of the purposes of the interaction between distributed agents is to query one another for
missing information. Sometimes an agent may not know who has the answer to its question,

and being afraid of overloading system resources, may be reluctant to broadcast the question



notifylcircular(p(x))) /3

ask(p(x)), I3

ask(pba), Iy ask(p(x)), I3

Figure 5: A graphical illustration of the circular communication in Figure 4.

to all other agents, or a large subset of them, in the network. In this case, it uses the
following strategy in its handler to guess the most likely candidate for inquiry.

Let the local agent be denoted by a and a set of possible candidates to query be Qg
= {ay, --,a,}. Normally, the local reasoning program is expected to have some domain
knowledge to limit the number of agents in Qg, e.g., the relevancy of an agenl’s expertise in

refation to its inquiry.

Strategy 1
1. Form a linear ordering O, of these candidates according to their role values.

2. Porm a linear ordering Oy, of these candidates according to their normalized frequen-

cies.

3. Calculate the utility value of any candidate a; € Q, based on the utility function Uy:
U'I{“i:' = .Iﬁ'rl:ah Ornfz} + lmf“{'“ir{:._j"l}}l for ':lue.;‘uh: r_: Ni]‘llr
Uile)) = WEIGHT x W{a;,0pp), otherwise,

4. Select the candidate with the highest utility value caleulated in Step 3 for inquiry. If

thers is more than one snch candidate, then randomly pick one.

The terms and the operation of this strategy are deseribed as follows. Basically, Strategy
1 considers two factors, namely, the ranking ol an agent and its statistical information on
acceplable responses. Unacceptable answers include the is_wnknown and control responses.
These two factors are discussed below.

First, the scheme presumes that the amount of information encoded in a cooperating
agent is proportional to its position in the organization hierarchy, that is, the higher an
agent's position, the more it knows. In addition, a higher ranking agent generally accesses

more information sources than a lower one. Thus, in Step 1 of the strategy, the agent derives



a preference ordering O,y based on the role values of all possible candidates for its inquiry,

Second. the previous response messages from a particular agent recorded in the discourse
table would provide insight on the likelihood of success in querying that agent. In Step 2,
using the information recorded in the discourse table, the inquirer calculates the frequency of
acceptable responses of an agent by taking the ratio of the previous inquiries to that agent
with acceptahle answers and the total number of inquiry messages, excluding pending ones,
sent to that agent. [t further normalizes these frequencies with their standard deviations to
reflect the size of the samples, ie., the number of previously responded inquiries, and forms
a second ordering Oy, of all candidates using these normalized frequencies. Remember that,
for a frequency [ of a sample size N, the standard deviation of {is ((f x I:l-’f'jlil,"I.'Hi'm [38].

In Step 3, we initially consider that both factors are roughly of equal importance and
calculate the utility value of a possible candidate by adding its weights in O, and Oy,
The weight is caleulated as follows. If an ordering O of n candidates has agent b in the j**
position, then, the weight of b in that ordering is: W{b.0})=n + 1 — j.

The term que_, ,, shown in the same step, denotes the total number of query messages
with acceptable answers that a has sent to g, up to that point in time t. As more Messages
are exchanged between two agents, more is known about each other's response pattern on
inquiries through the information recorded in the discourse table, and the importance of one
agent’s position in making a guess will be diminished. To reflect such a change, once que, , ,
is over a threshold value Ny, we ignore the role factor and assign a weight, WEIGHT,
to the frequency ordering Oy, This weight is a system parameter tunable for a particular
application (il is sel to 2 in BDN application}.

An example may help Lo show how this strategy works. Let WEIGHT still be 2. Suppose
agent a wants to know aboul a proposition p, and it identifies three possible candidates:
b, ¢, and d. lLet the valnes of the rales of b, ¢, and o be 2, 1, and 1, respectively. Hence,
the role ordering O.g i5: b > ¢,d, and their weights are 3, 2, and 2 (see the formula above
for assigning weights). Next, ament a obtains the total number of inquiries responded to and
the total number of acceptable replies from b as 10 and 6, ¢ as 30 and 15, and d as 5 and 4.
Based on these numbers, a caleulates the normalized frequencies of b, ¢, and o as, 3.87, 5.48,
and 4.47 (refer to the calculation of normalized frequencies in this section), and we have that
Opisce>d> b

Mote that although o has the highest percentage of acceptable answers, 80%, due to its
small sample size (5), the normalization result shows that d does not deminate ¢, which has
a lower percentage (15/30 = 50% ). Accordingly, the weights of b, ¢, and d, in Oy are: 1, 3,
and 2. Since the number of inquiries to any of these agents is less than 100 {Ny), the utility
values assigned are: Uy{b) = 4, Uy{e) = 5, and U {d) = 4. Thus, a picks ¢ for its inquiry.

In addition, for efficiency, a local handler in BDN continuously updates the number of
inquiries and normalized frequencies of incoming messages. When Strategy 2 is invoked,

the linear orderings can then he obtained directly from these updated values, with little
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searching and calculation. Remember that the handler and the reasoning program of a BDN
agent are two concurrent processes. At the software level, this ongoing updating does not
interfere with the operation of the reasoning program. This, however, does interfere to a
certain extent at the operation svstem level, as both processes share the same computing
resources of the UNIX workstation in which they reside. To compensate for this, the priority

of such ongoing updating is set to be lower than that of the local reasoning program’s jobs.

4.3 "Which incoming message to execute

Al any point of the operation, an agent might have several incoming messages in its handler
waiting to be executed. The task of sclecting which one to execute first is important from

the perspective of computational efficiency.
Let the set of messages waiting in the knowledge handler of an agent a be buf,. Let

us denote the set of response messages in buf, as Mg and the remaining action messages
as M4, Let us further denote the sender of message m as m. and its time gquening in
the handler as m;. The following strategy is adopted to decide which incoming message to

execule,

Sirategy 2

1. If there exists one or more control messages, then execute any one of them arbitrarily
and exit. If there are no response messages, then skip to Step 4. Otherwise, go to Step
2.

2. Calculate the utility value of every message m in Mg using the utility function:
Uz = role value of m; + {m/TIME), where TIME is a system-defined normalization

parameter.

3. Send the decoded information of the message with the highest utility value to the

reasoning program, and then exit.

4. Repeat Steps 2 and 3 with M, in replace of Mg.

Essentially, Strategy 2 treats the following factors in descending order of importance.
First, the agent would select a response message before interpreting any action message.
(ne can say that the agent prefers receiving information to giving information; moreover,
the more it knows, the betler it answers questions. Second, a response message for control
purposes, such as notifying the circularity found in a discourse, has a higher priority than
other direct responses. Third, the higher the rank of the sender, the higher the priority (or
the greater the strength) of its message. Note that the information about the ranking is
indicated by the message type. Last, the longer a message has been waiting in the handler,

the sooner it will be executed. This follows the first-in-first-out approach of job scheduling
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that is used in most operating systems. Further, the importance ordering of the last two
factors can be adjusted by modifying the normalization parameter TIME. This tunable
parameter depends on the estimation of the allowed time in the buffer, the frequency of

incoming messages, and the preemption rate of pending messages.

4.4 Which pending message to throw out

Ideally, every agent in a network should be able to entertain all messages sent to it. During
heavy traffic communication, however, an agent would have so many messages in its handler
that those with low utility values, as determined by Strategy 2, might never be executed.
Such delays might have a negative impact on the performance of the overall system. It
is better for an agent to let the other party know about its busy schedule so that the
latter can take alternative actions, such as working on other unrelated problems temporarily,
before sending the message again.

In COSMO, an agent imposes a limit on the number of pending action messages
allowable from each of the other agents., Whenever the limit of a particular agent is
exceeded, the local agent must decide which of the pending action messages, not the
response messages, to throw out and must send a message of type busy to that partieular
agent about the rejection. Such a limit is set while considering two factors: (1) the estimated
processing power of the local agent, and (2) the ranking difference between the two agents.
Agents of higher ranks in an organizational hierarchy would have more privilege to access
information than lower ones. Therefore, for three agents a, b, and ¢ such that v(role} >
v(roley) and v(roley) = v(rele;), the maximum number of pending action messages which b
allows for a is more than what b allows for ¢,

For any agent a, let us denote its set of pending action messages from b as waity, The

strategy that agent a uses to discard one of the messages in wait, is shown below.

Strategy 3

1. Far every action message in waily, find its utility value according to function Uz of

Strategy 2.

2. Discard the one with the lowest value, and send a response message of type busy to

notify b about the rejection.

One can see that the function of Uz is twofold. An agent can use it to select a pending

message for interpretation, or at the same time, to throw out an overflow message.



5 Communication Protocols

Communication protocols are sequences with precisely defined steps to convene more com-
plex intentions than single communicative acts. They impose orderly interactions among
cooperating agents to solve specific classes of problems. The purpose of this section is to
present some of the key protocols implemented in COSMO for various purposes of cooper-
ation. The first protocol is concerned with the allocation of tasks and is generic in nature,
whereas the other protocols aim to resolve conflicts among agents and are tied to particular
decision-making methods. We anticipate that when the protocols become more sophisticated,
they will be more closely related to the domain knowledge of the agents,

For clarity of presentalion, we assume that the underlying communication network is
reliable and ignore the case in which some agent will reject a message, such as when it is
too busy to participate. In COSMO, when any faulty process is detected, it would abort the
protocol. Meanwhile, the handler of the sender of a rejected message will keep trying the
same message a number of times before it notifies the sender or asks the initiator agent to
abort the protocel. We leave it up to the reader that, for these protocols, the redundant
and circular acts never occur and the delay of issuing messages (due to different internal
computation times) will not cause malfunctions.

In addition, there are many ways to compose protocols from the set of message tvpes
listed in Figure 2 that will solve the same problems. But the efficieny of a protocol is
measured by the amount of time required for its computation and communication steps,
thus, it is possible to compare the efficiency of these alternate protocols for a set of
automated agents. Analysis on the cost performance of protocals, however, is bevond the

scope of this paper.

5.1 Contract Nets

A contract net [49] consists of a group of distributed agents that communicate te solve a
prablemn by task sharing. Fvery agent has the same communicative competence, i.e., every
agent is capable of accepting and assigning tasks. Every agent can take on all possible roles.
The agents can take on the role of manager (one who announces contracts, evaluates and
accepts bids, supervises task execution, and processes the results of execution) or the role of
contractor (one who makes bids and executes tasks in contracts). These roles are taken up
dynamically during the course of problem solving. Let the manager of & cooperative system
be a and the set of contractors identificd by the manager for a set of tasks be aq,...,a..
Figure 6 shows Lhe announcement and bidding phases of a single-stage contract net protocol
of "YSMO (the reward and result phases will be shown in the following figure).

lo imprave computational efliciency, Step 1 of the protocol considers a contract of
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(1) a—ay,..am | tell, contract([pl,...,pn]}, {

(2) o |  decide bid(yes, list;) such that list; € 2Pl-—Pn
otherwise bid(no,nil}

(3) aj —a | report, bid(yes, list;), {

(4) a | if ne combination of bids can complete

contract([pl,...,pn]} then abort;
else select contractors

{rewards and result phase)

Figure 6: A single-stage contract net protocal of COSMO.

(17 a—b,c,d
(2} b—a

| tell, contract([p,q,r]), {
[ report, bid(yes, p), |
e —u | report, bid{yes, [q,r]),
d—a | report, bid{yes, [p,q] h
(3) a—b | el p, !
| tell, [q.0], d
J
|

report, result,,!

@ —c
(4) b—a

c—a report, [resulty, result,], |

Figure T: Communication steps in the contract net protocol in Figure 6.

multiple independent tasks, pl,...pn, instead of one task as in conventional contract net
protocols. (In the syntax of the global language of COSMO, [...] represents a list of terms.}
This simultaneous announcement of several tasks may not always be possible. For example,
the tasks pl,..,pn are interrelated such that the result of any one of them will affect the
solution of others. In Steps 2 and 3, every contractor evaluates a list of lasks that it wants
to bid for and sends the list to the manager. Note that 2° denotes a power set of x. In Step
4, the manager attempts to identify a comhination of agents that can complete the contract.
If none is fonnd, the manager abarts the aperation,

Figure 7 shows an example of the communication steps involved in this protocol. This
example assumes one manager and three contractors bidding for three tasks: p, q, and r. In
Step 4, the term resulty denotes the computed results of task x. The manager awards the
contract to & and d, as these two together complete the tasks indicated in the contract,

COSMO also adapts a more general form of contract net protocol: multi-stage negoti-

ation protocol [10, 11]. In short, this protocol involves the decomposition of a global goal



into subgoals (this presumes that the agenis have the planning ability te do so) and iterative
announcements and hids on subgoals to acquire sufficient knowledge to solve the mutual
goal. This protocol is not shown here since the implementation of contract nets in COSMO
is illustrated adequately in Figures 6 and 7.

5.2 DPreference-Based Negotiation

This subsection describes a set of protocols that support the negotiation of conflicts. There
are two sorts of conflict. Some are conflicts among agents and some are confiicts that an
agent has with itself. Let us call these social and personal conflicts.

What, then, do we mean by “conflict”? An agent (knowledge-based system) conflicts
with itsell when it asserts two propositions that it knows can’t both be true at the same
time. Such an agent asserts both o and § and believes that & — -8 and thus § — -c.
This personal conflict is cavsed by inconsistency in its knowledge. In a social conflict, this
is parcelled out among several agents. In this case, some agents want o and others want 3.
Each of them thinks that they cannot have both, Research in the past has been focused on
the problems of personal conflict, ie., the consistency of a single computer program. The
recent attempt to use cooperative problem solving systems for broader, more complex tasks
has Lrought home to researchers the difficult issues of social conflict.

Where now is the problem of confiict? A conflict usually causes a standstill, that is,
it inhibits further action during the computation process. Not every conflict is like this
however. It can happen that agenls in a conflict don't even know they are in one, or don’t
care enomgh to make an effort, or are too weak to block the others.

The protocols presenied in this paper are mainly concerncd with the type of social con-
flicts which paralyze action, since its impact on the entire cooperative system is immediate
and detrimental. Something or other must be done at once, and agents stand in each other’s
way.

These protocols are used in conjunction with the group decision making methods in
sncial choice theory [46, 4], a rich research field in decision science. In essence, these
methods generally include an agenda which contains 2 list of criteria for cach mutual
problem. The agents would first form individual orderings of prefercnces on competing
alternalives of a problem according to the specified criteria {which may vary for each agent).
They, then, apply some aggregation procedure to select an outcome out of these individual
preferences. Such an outcome is often known as a collective choice.

Nevertheless, it is difficult to obtain a “fair” choice that satisfies all agents. Thus, in
{OSMO, we allow negotialion among agents to iron out the differences and uncertainties
of individual preferences. In this regard, we depart from the social choice theory, which
normally does not include the notion of feedback in the group decision making process.

The process of gathering and forming preference orderings in our scheme is briefly
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Table 1: Individual ordering and aggregated ordering.

deseribed as follows. An agent of the coordinator role would gather all individual orderings
of preferences (using the contract net protocol in Figure ) and combine them into one
ordering according to a certain aggregation procedure. If any agent disagrees with the result,
it can then protest to the coordinater in order to start a session of negotiation. This strategy
allows only one coordinator in a cooperative system.

In addition, the formation of individual preferences for cooperative problem solving
is neither fixed nor arbitary. In the context of knowledge base applications, individual
preferences are normally derived from domain knowledge encoded in individual agents. If
agents interact with the users, then the derivation of preferences may include the additional
information provided by the users. To express the individual preferences of a problem, w, for
different criteria, f;,...,1,, an agent a requires justification from different parts of its domain
knowledge, KB, ,,,..., KB,,,. Likewise, another agent & would derive its preferences on w
from KBy yoy KBy,
set of criteria for their mutual problem. This is expected as the agents often possess different

. Note that m < n, that is, cooperating agents may not share the same

kinds of expert knowledge and problem priorities. The agents may also update or revise their
knowledge when they accumulate more information in their interaction. This in turn may
dynamically affect the ordering of individual preferences.

A scheme based on the formalism of preferential logic that supports the derivation and
aggregation of individual preferences for knowledge based applications has been presented in
{57, 54]. The discussion of this scheme is beyond the seope of this paper, however, a simple
example on aggregation is given below.

Let us suppose that there are three cogperating agents a, &, and ¢, where a is the
coordinator and b and ¢ are peers such that v(coordinator) > w(peer). Let us further
suppose that each agent has its own criterion to judge its preferences, and the coordinater
uses a standard procedure of aggregation: the simple majority rule. This rule specifies that,
for a criterion, if both a and ¢ prefer z to x while b laone prefers x to z, then the aggregated
preference is that z is preferred to x, or 2 > x, with respect to that criterion. Table 1 shows
the set of individual orderings O,, O, and O, and the aggregated ordering of preferences
O, of a problem with competing alternatives x, y, and z. In this table, z is a collective choice
as it is the highest ranking alternative in O,.

If there is a dispute, then the following strategy of negotiation is used.



Sirategy 4

1. Each of the agents computes a heuristic index by calculating the ranking difference of

every feasible alternative between its individual ordering and the aggregated ordering.

2. Each of the agents checks if its index is over a threshold value, and, if so, asks the user

whether it should complain or not; otherwise, it exits.

3. If any of the agents complains, start bargaining, and il bargaining fails, try forcing.

Strategy 4 includes the users of individual agents in the decision making process. A
variant of this strategy wounld he to have one ar more agents to not ask local users. In Step
1, every agent first obtains a heuristic index of bargaining. For example, in Table 1, agent b
caleulates x's ranking difference between its ordering Oy and the aggregated ordering O as 1
and the total difference, that is, its heuristic index H,, as 4. Similarly, we have H, = 0 and
H. = 4. An agent uses its heuristic index to decide whether to flag the users for conflicts
and to estimate whether the negotiation is converging towards a satisfactory solution.

In Step 2, suppose that a uniform thresheld, Hy, = number of alternatives — 1 = 2, is
applied across all agents. Thus, b and ¢ both would query their users. Let us further suppose
that the user of ¢ decides not to complain, since 7 is in a reasonably pood position in O..
The user of b, however, would like to complain about the outcome as z is its least prelerred
choice.

The predominant mode of negotiating over a conflict in this strategy follows Galbraith's
nation of bargaining, ie., the agents push for acceptance of the alternative which is pre-
ferred by them and occasionally “give in” by making incremental changes to their preforred
alternatives (21, 22}, This treatment differs from the prevalent approach in distributed Al
that presumes the knowledge of conflict resolution can be encoded and centralized in a
special negotiator agent [32, 50, 51, 42).

COSMO uses many different types of bargaining protocols. For brevity, this section
illustrates three of them and foeuses only on the discussion of agents’ preferences. A more
extensive interchange of domain knowledge and partial conclusions is frequently involved.
In BDN application, for example, the agents can query the background knowledge of one
another that deduces conflicting preferences (see Chapter 8 of [54]). Note that, in this
prototype, the agents” knowledge is represented with a mix of representation schemes such as
object-orientation, semantic nets, and production rules [56, 54] but that are mapped into the

same global format for communication.

5.3 Negotiation Protocols

In Figure 8§, we show a protocol of bargaining, bp_I. The protocol considers a set of agents

a,bay, .., ay of the following role assignments: ¢ is the coordinator and b,ay, ..., a, are peers.



(1) b —a [ protest, protocol(bp 1), |

(2) a | if approve ther start bp;

else tell b to abort
{3) a—¢b | approve, protocol{bpd), ! {assume approved)
{4y & determine to swap p {may exchange

|
| inform all agents about p (background knowledge)
(5) b—a | recommend, p, |
b— ay,..,aq | offer, [p, protocol(bp.)j, {
|

(6] a,ay, .0 dy if p is feasible then accept;

else reject
(7) a—b | endorse/reject, nil, {
a —+ b | accept/refuse, nil, |
(8) & | if all agree then swap;
else abort

Figure 8: The bargaining protocol hp_I of COSMO.

Basically, any agent which wants to complain must first seek the approval of the
coordinator. If approved, the agent would then attempt to persuade all other agents to swap
two alternatives' positions in their individual orderings (computed in Step 4 as p), such
that the expected aggregation results would favor its best choice. We skip the interchange
of background knowledge among agents here. In Step 5, the protesting agent b also informs
othier agenls about the protocol used so that the latter can select appropriate operations for
this protocel. The protocol bp.l is successfully terminated only when all agents agree to the
change. The reader may want to refer to Figure 2 for the message types nsed in Figure 8.

(ne should also note that, sometimes, the content of a response message is ignored when
its type carries sufficient information. Step 7 of Figure § shows one such occasion, where the
{easibility of p is indicated by the response types,

Let us continue the previous example in lable 1. We show a sequence of steps using
the bargaining protocol bpd in Figure 9. In .Slep 5, feasible(swap(a,x,z)) denotes whether
it is feasible to swap the positions of x and 2z in a's ordering. One of the conditions of
feasibility is thal the new index after the change should not be over the threshold value,
Le., 2. Other conditions would involve checking the background knowledge which derives
the preferences. This part concerns the underlying problem-solving methods of the reasoning
programs, which will he discussed in a separate paper. Table 2 shows the new set of
orderings after the completion of the bargaining in Figure 9. The set of heuristic indices are:
H, = 2, Hy = 0, and H; = 0, where Hy, is still 2 {see Section 5.2).

Often it is difficult for all agents agree to a change. Consider the previous example, for ¢



(1) b=a | protest, protacol(bpl), !
(2) a | start bp.l
(3) a—="b | approve, protocal(bp.l), |
(4) b | determine swap x, z
| inform all agents
(8) b—a | recommend, feasible(swap(a, x, z)), {
b—c | offer, [feasible(swap(c, x, )}, protocol{bp I}], !
(6) a | test that swap(a, x, z) is [easible
c | swap(c, x, z) is feasible
(T} a—b | endorse nil, |
c—& [ aceept, nil, |
(8] b { invoke the change
9y b—=c | offer, swap(a, x,z),{
b—a | recommend, swap(e, x, 2), !
(10) a— & | endorse, updated, |
¢ b | aceept, updated, |

Figure 9: A sequence of bargaining using Protocol bp_I.

0. 0, 0. o,

X X X X

i ¥ ¥ ¥

Table 2: Preference orderings after the bargaining process in Figure 9.

to change its best preference to the worst would require considerable revision of its domain
knowledge, but b is not in a position to do so. Thus, the strategy of another bargaining
protocol, bp IL, is to have an agent attempt to persuade, not all, but as many agents as
possible to its preferred alternative, and hopefully, the new ordering of ageregation derived
will be close to its expectation. One problem of this approach to bargaining is that an agent
which refuses to change might stand to lose and, thus, would initiate another complaint.
To avoid such situations, the protesting agent should also consider potential conflicts arising
from its change. This is accomplished by the agent simulating the aggregation and detecting
possible problems internally. For example, let us consider the case in Table 1 again. In
Figure 10, agent b is still the protester which initiates bp_II, but this time ¢ refuses to accept
b's offer.
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{1.5) is the same as (1-5) of Figura 9, except bp_II replaces bp.I

(6) a | test that swap(a, x, z) is feasible
¢ | swap(e, x, 2) 15 infeasible
{7) a—bt | endorse nil,l
e—b | refuse, nil, {
{(8) & | mot all agents agree, examine
the would-be ordering (see Table 3)
if okay then invoke change;
else inform e, ¢ to abort.
(9 b—a recommend, abort{bp II}, I

endorse, nil, [

(10) a—b

¢ —+ b

|

b—se | offer, abort{bp 1), !
|
|

accepd, nil, {

Figure 10: A sequence of bargaining using Protocol bpl

Table 3: Preference orderings after the bargaining process in Figure 10.

Table 3, apparently, shows why b decides not to press the change in Figure 10. The
expected Og: x > y > 2z would satisfy &, but would likely upset ¢ as the latter would have
an index of 4 and, thus, exeeed the threshold value (Hy,) of 2 (there is no change to the
indices of @ and b). Further, the ‘best’ collective choice x would be the worst choice from
c's perspective. We consider that this kind of “good faith” negotiation, where the concerns
of other agents are taken into account in negotiation, is cssential to cooperative behavior.
On the other hand, one can say that agent b plans to avoid possible futility, as ¢ definitely
would object to this change and would start another round of bargaining to attempt to undo
the change.

The two types of bargaining discussed so far are within a fixed scope of negotiation,
that is, the agenls are trying to reach an agreement under the same sel of crileria in the
problem agenda. Sometimes, the conflict may persist and no amount of such bargaining will
provide for agreement. In COSMO, an agent may propose to use a third type of bargaining

that praceeds te change the scope of negotiation. Instead of figuring out acceptable solutions



(1-3) is the same as (1-3) of Figure 9, except bpIII replaces bp.d

(4) b=a | recommend, [feasible{add criterion({new)}, reason{f,ew )], {
b—c¢ | offer, [feasible(add criterion(new)), reason(dn.. )], !
(5) =a, ¢ | if reason(f,. ) is okay

then accept add_criterion{new) is feasible;

else reject.
(6) a—b endorse, nil, [ (assume both accept)
c—b accept, nil, {
endorse, nil, {

{3} a —+ b
(9) e

f
|
(T) b—a | recommend, [success(bp_I11), add_ criterion(new}], !
|
| invoke contract net protocol to form

new preference orderings.

Figure 11: A successful bargaining sequence of Protocol bp 11

Old New Aggregate
O, Op O | O™ Opw  Quew O,
T Xz % x ¥ X
X oy oy 2 z X z
v z X ¥ ¥ z ¥

Table 4: Preference orderings after the bargaining process using hp II1.

under the existing problem agenda, this type of bargaining atlempts to reshape that
agenda, or rather, tries to replace the set of criteria with another different but closely related
set. Changing the agenda is changing the subject of the conflict. Under the new criteria that
the persuader brings up, it expects that the other agents (or their users) would likely agree
with its proposal. By getting the opposing agents to accept this new apenda, the persuader
hopes to get them to join its side. In other words, we can say that this kind of bargaining is
an altempt by one agent to change the opposing agents understanding of something, to get
them lo see it in some way (i.e. change their viewpoints) that prompts them to act as they
would not have done otherwise,

The following example is used to illustrate such bargaining in COSMO. Consider agent
b and Table 1 again. This time, b tries to persuade a and ¢ to inclede a new criterion
in the problem agenda. Refer to Figure 11, in Step 4, the term, new, is the additional
criterion that b proposed while reason{é,e, ) is the justification of b to add this criterion.

Il any other agent is not satisfied with this justification, bargaining would be aborted here.



(1) b—a | protest, protocol{bp 11}, {4

(n) c | reject b's offer by npa, times

(n+1} e—b | rejeet, nil, Iy

(n+2) e—a | protest, [breakoff(bp_II}, force(pr(g, z, x))], h
(n+3) a-+c¢ | approve, nil,

(n4+4) a—b | tell, abort{bp I}, &

(n+5) b—a | report, “okay”, [

(n+6) a—"b | tell [pr(g. z, x), foreing], Iy

(n+7) b—a | report, “okay”, Iz

Figure 12: l'orcing after a failure of bargaining.

This protocol succeeds when the coordinator agent, a, is ready to invoke the group decision
making method to form a new set of preference orderings, using the contract net protocol in
Figure 6. Thus, the kind of bargaining used in hp.Ill is a pre-decision strategy.

Table 4 gives the results of new orderings. In this table, both old and new criteria {and
thus the orderings) are taken to have equal importance in ageregation. The ageregated result
shows that b gets what it wants out of this bargaining sequence, that is, to push for x as the
collective choice. Note, a new way to calculate heuristic indices and to define the threshold is
required, but we do not deal with this here.

The bargaining protocols enable us to incorporate deeper cooperative behavior into
autonomouns agents. They, however, may not be applicable in some accasions. Agents,
for example, may resist the persuasion to change their preferences or to consider a new
criterion. Occasionally, forcing is used to back up the bargaining approach when a lack of
agreement stymies the group. The coordinator can wse the authority of its position to force
a preferred alternative on the rest of the group. The protocol of forcing is invoked when the
coordinator approves the request of an agent to break off the bargaining mode due to a lack
of progress. In our applications, such a request to break off is triggered when the maximum
number of offers npay allocated in the bargaining session is exceeded.

Figure 12 shows an example of forcing after a failure of bargaining protocol bp_ll, using
the example in Table §. In Step n, ¢ finds that b exceeds npgay. Then, in the following steps,
¢ protests to the coordinator to change the negotiation mode to forcing in order to have b
accept that the aggregated choice z is better than x (denoted as pr(g, z, x)). A change of
mode means starting a new sequence of steps. This change is indicated by a new message
label I3 in Step (n+6).

A word of caution on the use of forcing {ollows. This approach settles the problem of

action 50 that the agents can be on the move, that is, the computation process can continue,



It, however, leaves the conflict unresolved. The agents are still at odds with their opposing
beliefs ahont the matter as well as remaining in conflict. The use of forcing without proper

direction from the domain knowledge would simply generate arbitrary solutions.

6 Related Work

Intelligence interfaces between information processing systems is an important research areca
that has been gaining much atiention recently. This body of related work, in fact, covers so
much that this section mentions only the most closely related work, and briefly at that, The
references listed, however, will help the reader to probe further into this fast growing area.

The following is presented in what we see as decreasing relevance to COSMO.

e Mike Huhns and his coworkers propose the use of communication aides to support
the interaction between expert systems. These aides are implemented in the RAD
distributed expert system shell at MCC (29, 2]. Similar to knowledge handlers in
CO5MO, a communication aide can be attached to an existing expert system and
enables the expert system to interact with the aides of other expert systems through
message passing. The common language used by aides is SURF, which has been
proposed to as a superset of the knowledge representation languages of existing expert
system shells [25].

Compared to the design of COSMO, this work focuses on the low-level communication
and reasoning primitives necessary for beneficial agent interactions.! However, the se-
mantics of message types and the type hierarchy (speech acts) are not defined in RAD,
and the aides ignore the importance of background knowledge, such as the history of
acts and the priority of messages, in the discourse. Another distinction is that the
interaction between RAD agents still adheres to the master-slave assumption, i.e.,
one agent has desires and issues a command or request and the other agent takes that
command and executes it faithfully. Ongoing work includes the developing of advanced

protocols that go beyond contract nets for distributed problem salving.

+ There is other related work within the Distributed Al community [16, 15, 17, 23], and,
to a lesser extent, the Distributed Database community [39, 50]. COSMO, however,
is, to my knowledge, unique in its precise definition of communicative acts and the
resulting set of communication strategies and protocols. Furthermore, many of the

reported works are confined to conception or toy problems.

"There are also architectural differcnces between COSMO’s handlers and RAD's aides at this level For
example, & communictation aide wses UNIX pipes for message passing while COSMO adopts TCP. Aides are
expected to use a nameserver in the local network to keep agents’ addresses, but there i5 no such central

nameserver in COSMO.



+ Yoav Shoham's work on Agent Oriented Programming (AOFP) [47]. Shoham's interest
lies primarily in forming a new programming framework, in which an agent contains
the mental state of various components, that is, beliefs, decisions, capabilities, and
obligation, and interacts with other agents through speech act primitives. The model of
eommunication does not include protocols and organizational hierarchy.

A restricted form of the AOP framework is implemented in a programming language
called AGENT-0. Communication actions in AGENT-0 are limited to three types:
inform, request, and unrequest. COSMO covers the functions of these primitive types.
In addition, it takes account of the agents’ priorities and uses the primitive types as
building blocks to form more complex protocols,

In contrasting with COSMO, agents in AGENT-0 are serialized program modules
that are located in the same machine. The information is thus rather centralized.
The designer has a global view and control of the problem solving abilities of these
agents. In COSMO, agents are physically as well as logically distributed and are
often preexisting systems for particular applications. A global view and control of the

information flow cannot be presumed in such cooperative systems.

¢ The work of Candice Sidner and Darbara Grosz in the SHAREDPLAN model [33, T,
26] that extends earlier work on single-agent plan representation and recognition in Al
and linguistics (e.g., [40, 31, 1, 48]) for mniti-agent planning and discourse. In this
model, “shared plans™ are plans that a group of agents may have in order to complete
a particular action or goal. The agents arc required to have a mutual beliel that they
have a given shared plan, and a mutunal belief that each agent intends to contribute
to it. The SHAREDPLAN model also employs communication acts to convey explicitly
the intentions and uses the relationship between these acts to build more complex acts.
This idea is similar to the design of COSMO’s protocols.

Unlike COSMO, however, communication acts in SHAREDPLAN are unconstrained.
Arbitrary predicate relalions can be unsed to dennte such acts in the agents” plan
representation structure, the latter sometimes causes notational problems. Further,
communication acts ignore the importance of background knowledge in discourse inter-
pretation [28]. This work focuses on the level of conception analysis. Implementation
issues of distributed computing, such as communrication methods and query manape-

ment, are not addressed.

o Tim Finin and Gio Wiederhold are leading the efforts of the external interfaces group
in the Knowledge Sharing Initiative to define protocols and conventions that will enahle
interoperability between knowledge bases through queries and responses [36, 9]. Their
goal is to create a query language for the interface between knowledge bases and

relational or object-oriented databases [19, 35].
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In comparison, the interface issues addressed in COSMO are at a level higher than
data transactions. This work aims to design communication facilities, based in part on
the speech act theory, for cooperative problem solving among distributed knowledge
based systems. The current design of COSMO is inefficient in processing large amounts

of data and does not commit to particular data structures, except those encountered in
its applications.

+ Gio Wiederhold has recently proposed mediators as a crucial part of the architecture of
future distributed information systems, in particular, multiple heterogeneous databases
{562, 53|. Similar to knowledge handlers, mediators are independent units and have to
deal with information from multiple sources. They are explicit active modules between
the user’s application and the data resources. They do not act independently, but
respond to queries from applications or to triggers placed in the databases.

Besides communication and transformation knowledge, the mediators are also expected
to embody task-dependent expert knowledge to create and combhine information needed
for end user applications, In CO5MO, this kind of domain knowledge is encapsulated in
the reasoning program of the agent that drives the handler. For large-scale and widely
distributed knowledge bases, however, it may be necessary to encode such knowledge
into the handlers to achieve betler maintenance and modularity of knowledge. By

taking this direction, a handler becomes a special form of mediator.

7 Conclusion

Cooperative problem solving is an important paradigm for the next generation of infor-
mation processing systems. Cooperative work will be conducted in many forms among a
network of agents and will require the support of advanced communication facilities beyond
the “passive” transmission of data and messages provided by the current network technology.

In this paper, we have presented such a scheme, COS5MO, for supporting orderly and
conperative interaction among distributed systems. This scheme has been implemented in a
cooperative knowledge-based system, BN, to solve preliminary building design problems in
a project team. It is a crucial component of 2 {ramework for cooperative problem solving in
construction developed in the NSF-ATLSS center at Lehigh [54]. The preliminary concepts
of this scheme are: (1) a coding model of communication to facilitate an interface between
agents with different internal structures; and (2) the notion of communicative acts to
perform functions indicated by their types, such as promise, order, and offer. We discussed
the key design features of COSMO and provided our answers to the following set of practical

guestions on cooperative systems communication:

(Q1) When and how should a cooperating agent know which act to perform?

(Q2) What are the conditions of success of 2 communicalive act?



(Q3) What is the relationship between organizational roles and communicative acts?
{Q4) How does an act relate to other acts?

{Q5) Can more complex intentions be convened by a few communicative acts, and if so,

haw?

A summary of our results is as follows:

+ Usze an operational model to specify when an agent should initiate a communicative

act ((Q1) and what the conditions of success of such acts are (Q2).

+ Use organizational roles to select the appropriate strategies of problem-sclving and
communication, such as the assignment of message types in various acts (G3).
s UUse message types to specily particular points or purposes of communicative acts,

the strength of acts, and types of response acts (Q4).

e Devise utility functions to select the most preferable acts from many feasible alterna-

tives for general communication control purpases ((Q1).

s Dovelop protocols to precisely define the sequences of communrication and computa-
tion steps for cooperation purposes, such as negotiation of conflicts and task allacation
(Q5). These protocols should be defined in terms of a few primitive acts and might

closely relate to the underlying problem-solving methads.

¢ Usc knowledge handlers to achieve all the aforementioned design concepts. The
handlers can be attached to the existing knowledge-based systems and thus integrate

these systems into a cooperative framework, but without jeopardizing local autonomy.

The design of COSMO iz motivated by the lack of a proper communication mechanism
for suppaorting CP5S applications, and, in particular, applications in the construction domain
[3, 534]. System developers should not be handicapped by the primitive concepts and con-
structs of existing communication schemes. Higher level concepts and constructs are needed
50 that developers are free to write the highly specialized parts that provide efficiency and
are unique to a given application. This would help developers to focus on even-harder prob-
lems, pushing forward the state of the art and providing increasing value to the application
users. In prosenting this account, we attempt to offer new insight into the use of communica-
tive acts and protocols to form highly advanced communication schemes for CPS systems,
and in particular, coaperative knowledge-hased systems.

Future work will use the present COSMO as a testhed to determine what existing
constructs can be extended as well as what new concepts are needed to develop new
protocols and strategies. This will involve performance analysis on alternate protocols, that
is, analyzing the amount of communication and computation time required to solve a given
problem for the agents in these protocols and selecting the one with the least time. Another

method to enhance the expressive power of agents is to enrich the communicative acts with
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complex illocutionary acts, ie., conditional and conjunctional acts [45], and more message
types for new functions. The long term goal is to enhance the generality and portability of
knowledge handlers for various cooperative knowledge based systems. This may require the
study of new ways to encode more administrative and domain knowledge in the handlers’

knowledge bases, that is, a move towards the mediator architecture advocated in [52].
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