ICOT Technical Report: TR-0817

ITR-0817

A Uniform Approach to Fixpoint
Characterization of Thisjunctive

and General Logic Programs

by
K. Inoue & C. Sakama (ASTEM)

November, 1992

i 1992, 1COT

Mila Kokusai Blde. 21F (03)3456-3191 5

I[: DT 4-28 Mita | Chome Telex ICOT 32064

Minato-ku Tokva 108 Japan

Institute for New Generation Computer Technology

A Uniform Approach to Fixpoint Characterization
of Disjunctive and General Logic Programs

Katsumi Inoue Chiaki Sakama
ICOT ASTEM
Mita Kokusai Bldg., 21F Hesearch Institute of Kyoto
1-4-28 Mita, Minato-ku 17 Chudeji Minami machi
Tokyo 108, Japan Shimogyo, Kyoto 600, Japan
phone: +81-3-3456-4365 phone: +81-75-315-8651
inousicot.or. jp cakamafastem.or. jp
Abstract

This paper presents a uniform framework for constructing a fixpoint for dis-
junctive and general logic programs. We first introduce a mapping which
operales on a set of interpretations and show that the minimal elements
ol its fixpoint closure is equivalent to the set of minimal models of a posi-
tive disjunctive program. Next, we extend the fixpoint semantics to general
disjunctive programs by using a suitable program transformation of a gen-
eral disjunctive program. Then, we characterize the stable model semantics
of general disjunctive programs by the fixpoint closure of the transformed
program. The result is further extended to the answer sel semantics of
extended disjunctive programs.

1 Introduction

A declarative semantics of logic programs is usually characterized by using a fixpoint
of a program. For definite Horn programs, van Emden and Kowalski [VEK 76| have
imtroduced a closure operator which acts over a lattice of Herbrand imterpretations and
shown that the operalor reaches the least fixpoint that is exactly the least Herbrand
model of the program. For non-Horn programs, Apt, Blair and Walker [ABWSS]
have devcloped a nonmonotonic fixpoint operator for logic programs with negation
and shown that its iterative fixpoint characterizes the perfect model semantics of
stratificd logic programs [PrR8]. The result has further been extended to general logic
programs in the context of the stable model semantics [GLSS] and the well-lounded
semantics [VRS91, VG39, Prag).

A disjunctive logic program is a program in which disjunctive consequences are
cantained. The semmantics of disjunctive logic programs was firstlv studied by Minker
[MiS2] where he introduced the minimal model semantics of positive disjunctive pro-
grams. In the presence of negation in a program, Przymusinski has developed the
perfect model semanties for (Jocally) stratified disjunctive programs [Pr88], and much
of recent studies have been devoted to the semantics of gencral disjunctive programs
containing nou-stratified negation [RLM90, FMY42, GL91, Pri90a, Proob, Rosg).

A fixpuint theory of disjunctive logic programs has firstly been developed by Minker
and Rajasekar [MR90]. They have extended van Emden and Kowalski’s fixpoint op-
erator and characterized the minimal model semantics of a disjunctive program. The
idea of thair lixpoint operator is to consider a mapping over a sct of positive disjunc-
tious {called state), instead of mapping over interpretations. Then they showed that
the least fixpuint of Lhe operator consists of positive disjunctions which implies a set
of minimal models of a disjunctive program. Such a state based fixpoint scmantics has
also been extended Lo stratified disjunctive programs [RM89], and general disjunctive
programs [Ro89, BLM90, Proob]. Another approaches such as [Sa89, FM91, Dec92)
present hxpoint theories of disjunctive programs based upon the manipulation of
standard llerbrand interpretations.

This paper preseuts yet another fixpoint semantics of disjunctive logic programs.
The fixpoint seantics presented in this paper provides a uniform framework not
only for disjunclive fogic programs, but also for general and extended logic programs.
Furthermore, our fixpuint theory of disjunctive programs can give a fixpoint charac-
terization of model generation theorem provers such as [MBSS, FII91, [KH92).

The organization of this paper is as follows. In section 2, we present the fixpoint
semantics of positive disjunctive programs and show its correspondence with the
minmal model semantics of disjunclive programs. In section 3, we exlend the results
to general and extended disjunctive programs and present its connection to the stable
model semantics. Section 4 discusses comparison between our fixpoint semantics and

%]

previvusly proposed approaches.

2 Fixpoint Semantics for Positive Disjunctive Programs

2.1 Puositive Disjunctive Programs

A positive disfunctive program is a finite set of clauses of the form:
AvoovA —BiA L N By (Lm = 0) (1)

where A% and B)'s are atoms and all variables are assumed to be unmiversally quan-
tified at the front of the clause. A clause is called definite (resp. positive. neqative)
1 =1(resp. m =0,1=0). A program containing only definite clauses is called
a definile (Horn) program. Note that in the presence of negative clauses, a program
is possibly inconsistent. The disjunction A, v ...V Ay 15 called the head and the
conjunction By A ... A [s called the body of the clause. Fach predicate in the
head is said to be defined by the predicates in the body. A ground clause is a clanse
which contains no variable. A growad program is a program in which every variable is
instantizled by the elements of the Herbrand universe of a program in every possible
way. A ground program is a possibly infinite set of ground clanses. From the seman-
tical puint of view, a pragram is cquivalent to its ground program, thus we consider
a ground program in this paper.

An interprelation of a program is a subsel of the Herhrand base HEB of the program.
An interpretation [sefisfies a ground clause (7 (denoted by I = C)af for €2 Ay v
oMy = By AL A B, {8, .. B} C T implies 4; C T lor some 1 < ; < L
Lspecially, il { = 0 and Ry, .. H, arcin I, T does not satisfy the negative clause.
For a program P, a minimal set / which satishies every ground clause from P is called
a minimal model of P, IF P has a unique minimal mode) I, 1t is also called the leqst
niedel ol P. When no interpretation salisfies every ground clause from P, we say that
has an wmeonsistent model | = £ where £ s the set of all literals in the language.
A program is eonsistent if it has a minimal model different from L, otherwise it is
called contradictory.

In the next subsection, a program means a positive disjunctive program unless
stated otherwise, '

2.2 Fixpoint Semantics

This subsection presents a fixpont semantics for positive disjunctive prugrams. To
characterize the non-deterministic behavior of a disjunctive prograi, we introduce
a closure operator which operates over a lattice of sets of Herbrand interpretations
27" Then our first task is to define an ordering over such powerdomain.

Definition 2.1 Let T and J be sets of interpretations. Then, TC JTif I = J or
Vo eIV O 2 IV T such that 7o J.

Lemma 2.1 = 1s a partial order.

Proof: Since reflexivity and transitivity are obvious, we show anti-symmetry. Sup-
pose that IC Jand J C I Assume INJ #£ 0. Then, J\I # 0, and I C J implies that
WJ e I\ A5 € TN T such that T J. While, J T Timplies that there exists J' € J\1
such that J' ¢ I. Repeating this step generates a decreasing chain ... C J' C I J
whose lower bound is 0. In casc of § € IV I, I C J does not hold. While, in case of
1\ J, I C1Idoes not hold. In either case, it contradicts the assumption. Hence.
IVJ =0, Also J\ I= 0 holds in the same way. Therefore, I=J. O

Fach element in 22" makes a complete lattice under the ordering C with the top
element @ and the bottom element 2%%,

Definition 2.2 Let P be a program and I be an interpretation. Then a mapping
Tp: 278 5 2977 s defined as follows:

0, if1EB ... A B, for some ground negative clause
— My n o n By from P
Tp(I)= ¢ {J | for cach ground clause C, : Al v ... v Al‘ll — BN A B
[rom P such that [= H{ MR H‘fm and [=AY V...V A,
J=1Tu UC,{AH (1=<7<l)}, otherwise.

We say that a ground clause is violated in an interpretation 7 ([MBS&8]) if for
Co AsV .oV A &= BiA A By {Bry- By} © Thut (A ATNT =0
Definition 2.2 says that, if an interpretation I does not satisfy a ground negative
clause then T(l) = @, else Tp(I) contains every interpretation obtained from I by
adding each single disjunct from every ground clanse violated in [.

Example 2.1 Let P={aVbe—e¢, d—0c, c+~—., +~hbrd}.
Then Tp{{c}) = {{a,c,d}, {b,c,d}} and Tp({b e, d}) = .

Definition 2.3 Let P be a program and I'be a set of interpretations. Then a mapping
Ty : 227 — 27" is defined by

Te() = | To(1)

Iel
Especially, Te(#} = 0.
Example 2.2 {cont. from Example 2.1) Tp({{c},{b.c,d}}) = {{a,c,d}, {h,e.d}}.

The mapping Tp is not monotonic.

Example 2.3 Let P={avVbe—rc, c—. « cAb e[}
Then, {{}} C {{c,] {c.a,e}}, while Tp({{c}}) = {{e,a},{c,b}} and
Tf’({{ﬁ“}r{cﬂﬂ"f}” = i{crﬂ}1 {cra‘-‘ﬁ}]" Thus, Hcrﬂ}r{c!b}} «D‘: {{Enﬂ}:{ffﬂsﬂ]}-

Lemma 2.2 Let ¥ be a program and [be an interpretation of P, Then, Tp({1}) =
{7} ff Tis & model of P.

Proof: [is a model of P

il I satisfies each negative clause in P, and for each ground clause

A Vo VA = By AL A By from Py {By, .., B,) C 1 iplies 34, € 1 (1 <2<
M Tu(1) = {1}

it TR((1)) ~ {1} O

Lemma 2.3 If [€ Tp({I}) and J ¢ Tp({I}). then [= J.

Proof: Suppose that S € Tp({l}) and T £ J. Then, there exists an atom A
in JA T and a gronnd clause A, V.. v 4 — By a0 n By from P osuch that
Tl ByA L ABn, THE A V...V A and 4 = A; for some 1 {1 < 1 < [). Hence,
I'¢@ Tpi{l}} by Definition 2.2, O

Lemma 2.4 Tp(l) = Liff for cach [€ I, Tp({1}) = {I}.

Proof: Since the if-part follows immediately, we prove the other dircction. Suppose
that ‘Tp(I) = I Assume to the contrary that Te({7}) # {1} for some I € I. Then,
I'@ Tp({l}) by Lemma 2.3. Since [is in L, there exists J in I such that J — T and
FeTp({J}). U Jds in Te({J}), Tr({J}) = {J} by Lemma 2.3. Since J # J, this
is impossible. Hence, J & Tp({J}}. Then there exists J' in T such that J' « J and
J € Tp({J'}]). Repeating this step generates a decreasing chain ... ¢ J' J c T in
I which has a lower bound §. Since there is uo element smaller than @, 0is not in I
This contradicts the assumption. Therefore, Tp({1}) = {I}. O

The above lemima presents that if Tis a fixpoint of Tpe, each element in T is a
medel of 17 (by Lemma 2.2). Now, the ordinal powers of Ty are defined as follows.

Definition 2.4

T,l:' 10 = {ﬂ}
Trintl = Tp(TeTn)
Tp T Lt = EHI!J{T}- Tn | n < u.-'}

where n 13 a successor ordinal and w is a limnit ordinal.

Although the mapping Tp is not monotonic, the next lemma shows that powers
of Tp by Definition 2.4 are alwavs increasing.

)

Lemma 2.5 For any ordinal n, Tp [n C Tp T n+ 1.

Preoof: By definition, for each interpretation I in Tp T n + 1, there exists an
interpretation J in Tp T n such that T € Tp({J}) and J C L. If I = J, Tp({J}) =
{7} by Lemma 2.3 and there is no I' in Tp T n + 1 such that I' € Tp({.J}) and
J < I'. Then after subtracting every such [from Tp Tn+ 1 and Tp T n, if I' is in
Ty T n+ |, there exists J' in Tp T n such that J' C I, hence the resull follows. O

Lemma 2.6 Let {I4,,..., [, } be any finite set of ground atoms. If {B,y,..., B} C I
for some I € Tp T w, then there is a successor ordinal & such that {B...., Bm} C
" 1 ior gome I'€ Tp T k.

Proof: Let ¢ Tg T wsuch that {By,....B,,} € I. Suppose to the contrary that
no Tp Tk (k < w) contains an interpretation [such that {#,,.... B, € I' C [.
Then, for any successor ordinal £, Te Tk & Tp Twand Tp T kA C Tp T w =
b{Tp T n n < w) Since T is a partial order (Lemma 2.1), Tp T w @ Tp T k
holds. However, as Tp T A © Tp T k41 by Lemma 2.6, ub{Tp T n | n < k} =
Tp 1 & holds. Therefore, Tp T w & ub{Tp T n | n < k} for anv k. Hence,
Trlw={TprIn|n<w)Zub{TerTn|n<w}, acontradiction. O

Lemma 2.7 Tp(Tp Tw) & Tp T w.

Proof: Let [be any interpretation in Tp T w. Suppose that J @ Tp(Tp 1 w).
Then, for any J € Tp Tw, I ¢ Tp({J}). Especially, I € Tp({{}). Two cases arise.

Case 11 3J € Tp({f}) such that 7 C J. In this case, there is a ground clause
AW VA~ BiAL A D, from P such that {By,. .. B} C Tand {A,,... AT =
&. By Lemma 2.6, there exists a successor ordinal k such that {By,... B, C [, C T
for some I, € Tp T k. Then, since A; ¢ I for any A;, 37" € Tp T k + 1 such that
'\ I # 0. Thus, any interpretation including {B,,..., By} in Tp Tn for any n < w
takes some A; at Tp T n+1. Therelore, T cannot bein Tp Tw = lub{Tp Tn|n<w),
a contradiction.

Case 2t Tp({l}) = @. In this case, there is a ground negative clause «— B, A
oo N By from P such that {H,,..., 8.} © I. Again, by Lemma 2.6, there exists a
successor ordinal & such that {B,,..., B} €I C I lor some I, € Tp T k. Then,
Te({lc}) = 0. Thus, any interpretation including {By,..., By} in Tp T n for any
n < wis pruned away at Tp T2+ 1. Therefore, I cannot be in Tp Tw = (ub{Tp |
n|n < wl, a contradiction.

Therefore, I € Tp(Tp T w), and hence Tp(Tp | w) 2 Tp T w. By the definition
of C, the result follows. O

By Lemmas 2.5 and 2.7, we have the [ollowing theorem.

Theorem 2.8 1'p 7w is a fixpoint.
We call Tp Tw a disjunctive fizpoint of P.

Example 2.4 (cont. from Example 217 We get Tp 71 = {{c}},
Te12={{c,da},{c,db}}, and Tr | 3= {{c,d,a}}. Then, TpTw=TpT3.

Hy Lemmas 2.2 and 2.4 and Theorem 2.8, the following result holds.
Lemma 2.9 Fach element in Tp Twis a model of P. 0O

Furthermore, the next theorem shows that T'p T w includes the set of all minimal
models of P. In the following, iet min(1) = {/ ¢ 1| AJ ¢ I such that J < J}.

Theorem 2.10 Let P be a consistent program and MM p be the set of all minimal
models of P. Then, MMp = min{Tp Tw).

Proof: Since MMp 2 mun(Tp 1 w) is clear from Lemma 2.9, we show the other
direction. Let [be a minimal model of P. Then for each atom A in [/, there is a
ground clause A; V...V A; « By AL A By, from P such that {3;,.... B, C I and
A — A; for some ¢ (1 < ¢ < I). Then, by the definition of fixpoint construction, [is
contaimed in T'p T w. Since each clement in Tr T w is a madel of P, [is a minimal
element of Tp T w. lence, [€ min{Tp Tw). O

Theorem 2.10 characterizes the minimal model semantics of a positive disjunctive
program in terms of the disjunctive fixpoint of the program.

Example 2.5 Let P={a b, avhe }. Then Tp 1w = {{a},{a,b}} and {a}
is the unigue minimal model of P.

Corollary 2.11 A program P is contradictory iff Tp T w = .

Proof: If I’ is contradictory, there exists n such that Te T n = 0, hence the result
follows. O

Recall that a contradictory program bas no model different from £. Therefare,
the above corollary also characterizes a test for refutability (unsatisfiabality) of a set
of non-Horn clanses in first-order logic.

Corollary 2.12 If P is a definite program, Tp T w contains a unique element [
which is the least Herbrand model of P. O

That is, for a definile program our fixpoint construction reduces to van Emden
and Kowalski's fixpoint semanties [VEK76].

7

3 Fixpoint Semantics for General Disjunctive Programs

3.1 (General Disjunctive Programs

A general disjunctive program is a disjunctive program which contains negation by

failure in a program. In this section, we present a fixpoint semantics for general

disjunctive programs using the fixpoint operator introduced in the previous section.
A general disjunctive program 1s a finite set of clauses of the form:

AV VA= B AL A By Anot B A Aot B, (120n>m>=0) (2)

where A;%s and H,'s are atoms and all variables are assumed to be universally quanti
fied at the front of the clause. An operator nof preceded each atom By (m+1 < k < n)
denotes negation by failure [ClaT8]. A clause is called normal if [= 1. A program
containing only normal clauses is called a gencral logic program. A program which
contains no predicate defined recursively through its negation is called stratified. A
program reduces to a positive disjunctive program, when m = n {containing no not)
for every clause. The notien of head, body, aud ground clause (program) are defined
in the same way as in the previous section.

As for the semantics of general disjunclive programs, we consider the stable model
semantics of disjunctive programs which was initially introduced by Gelfond and
Lifschitz [GLEY] for general logic programms.

-Definition 3.1 Let P be a general disjunctive program and I be a subset of £. The
positive disjunctive program F; is defined as follows: A elause

A]V.-.V(igi—ﬂjﬂ...ﬂgru

15 in Py if there is a ground clause of the form (2) from P such that B,,,,,..., B, ¢ I.
Then, if I coincides with a minimal model of Py, T is called a stable model of P.

Note that the above definition is an extension of the original one in the sense
that stable models are defined for a program containing disjunctive clauses as well
as negative clanses. Similar extensions are also found in [Pe90a). Especially, when a
program is siratified, it has at least one stable model called & perfect model.

The set of all stable models of a program P is denoted by ST p. In particular, if
&T pois emply, P is called incoherent. Note that an incoherent program is different
from a conlradictory program. By definition, a contradictory program has an incon-
sistent stable model £. A program is called consisfent if it is neither incoherent nor
contradiclory.

Example 3.1 A program { a Vb — . ¢+ notc } is incoherent, while a program
{avbe | «—a b} iscontradictory.

In the next subsection, a program means a gencral disjunctive program unless
stialed otherwise.

3.2 Transformation

1o characterize the stable model semantics of a general disjunctive program, Inoue et
al have proposed a program transformation which transforms a general (disjunctive)
logic program into a semantically equivalent not-frec disjunctive program [TKH92).

Definition 3.2 [IKH92| Let P be a program and HB be its Herbrand base. Then
FP* is the program obtained as follows.

(i} For each clanse 4, v ...V Ay — By AL A B, Anol By A .. Anot B, from P,

(A] ! _‘K.B-m+1 M ..".".-"HB,,] Voo [.A,l A "‘Kf_?m+1 ﬂﬂ_'KHfl_}
VKB, V... VKB, « Bia. . A B,

iz in P*. Especially, it [= 0, 1t becomes KB, ., v.. . VKE, — B, A ... 7B, .
(1} For cach atom A in HB, P* contains a clause «— —KA A A.
(111} Nothing else iz in %1

In the above definition, KA (resp. ~KAJ is a new literal which denotes A is believed
{resp. disbelieved). In the transformation (i), each not B, is rewritten in - K/, and
shifted to the head of the clause. Moreover, since each disjunct A; in the head becomes
true when each —KH; in the body is true, the condition ~ KB, AL .. A—K B, is added
in the head of each disjunct A;. The constraint (i) states that il cannot happen that
A = true and disbelieved at Lhe same time,

A new Herbrand base HB" of a transformed program is defined hy

HB* = HBU {KA | A€ HB} U {~KA | A ¢ HB)

An interpretation 1™ is now defined as a subset of HB". An atom in ™ is called objec-
tive it it is in M5, while a newly introduced literal (—)KA is called subjective. The set
of objective atoms in J* is denoted by ebj{I*). Note here that we consider subjective
literals not as new formulas in a suitable modal logie, but as newly introduced atoms
in a program, hence we are still within the classical propositional caleulns.

Example 3.2 Let P = { a + noth, b« nota, e¢vd+e b, ¢+ notc} Then
Pe={(ah~KB VKb« , (bA-Ka)VKa, cvde b (cA-Ke)vKee,
— Kata, + -KbAb — -Kene, +« -Kdad].

'For efficient computation, an optional rule — <KAAKA can be added for each atom 4 in HB,
but semantically it 18 not cssential,

In [IKH92|, it is shown that a bottom up computation of a transformed program
produces the sel of stable models of the original program. In the following, we
characterize the result using the fixpoint vperator presented in the previous section.
For this purpose, we lirst modily a mapping presented in Definition 2.2.

Definition 3.3 Let £¢ be_‘a transformed program and /* be an interpretation. A
mapping Tp- : 275" 24" is defined as follows. Let ", be the conjunction of atoms
(or just an atom} in HB" and conj(I'}) be the set of conjuncts from T. Then

@, I~k Bya...n B, for some ground negative clanse
- By oo on By, Trom P
Tpu(I7) = § {J* | for each ground clause C;: T{v.. VT « BjA._ A B
from P* such that I* = Bj A ... A B, and " TV . W TG

Jr=T1"U Upg, c&nj{f‘jj (l<ji<l)}, otherwise.

Using this definition, the mapping Tp- and its disjunctive fixpaint are also defined
in the same way as in Section 2.2 and those properties presented there still hold.

Definition 3.4 An interpretation /% is called canonical if 1" satisfics the condition:
for each ground atom A, if KA € % then A & [7.

Definition 3.5 Let I* be a set of interpretations. Then
abij (1) = { ebg(I*) | I" € I" and I* is canonical }.

The following theorem presents the fixpoint characterization of the stable model
semantics lor disjunctive logic programs.

Theorem 3.1 Let F be a consistent program and P* its transformed form. Then
ST p = obj (min(Tp« Tw)).

Proof: Suppose [is in obj (min(Tp~ Tw)). Let I be a canonical set in min{Tp« T
w) such that obj{i*) = I. Then for each ground clause A, V...V Ay «— By AL A
By Aonot Bpyy AL Anot By, from Pif {By, ... By} C I%, then either (i) 34, € I~
(1 <i<1)and ~KBpyi,..., KB, € I*, or (i) KB, € I" (m +1 < j < n).

In case of (i}, by condition of Definition 3.2(ii}, B,41,...,B, & I, and hence
Buit,. .., B, € I. Then there is a clause O A, V...V A, +— B, A.._AB,, in P,
Since {By,..., By} C I and J4; € /%, it holds that {B,,...,B,} €[and 34; € I.
Therefore, [satisfies the clause C. In case of (i1}, sinee [* is canonical, 3KB; € 1+
implies £; € 1" and thus B; € I. In this case, the clause C is not included in Pj.
Thus in both cases, I satisfies every clause in #;. By definition, [is a minimal set

10

satisfying each clause in /%, Then [is also a minimal model of Py, and hence a stable
model of

lo show the other direction, suppose { is a stable model of P. Let [= oby(I%) for
some {* C HB". Then for each atom A, in I, there is a ground clause (" in P such that
{Iy,....0,} C I Inthis case, there is a corresponding clause C': (Ay A =KB, 41 A

LASKEOV L (A A K A A KB VKB VL VKB, — By AL A B,

in F% such that {4, ~KH, ..., ~KB.} € ", Since Bos,..., By & I implies
Dy By & 1%, 1% is not pruned by the condition of Definition 3.2(ii), so [~ €
T'p« Tw. Then we can choose [* to be a minimal set such that KB 4y, ... KB, € I*,
hence I* € min(Tp~ Tw) and /7 is canonical witk respect to Buyq,..., By (*].

While, assume that if KB! € I for some j (m+1 < 7 < n), then there exists a
clause " in P* such that (A3 A KB, (AL A-KB V. V{AJA KB AL A
KB v KB, VL VKB, o= Bi A LA B and {B),... Bl } € I*. Since I" is
minimal, A} @ I" for any ¢ (1 <¢ <), Then a clause A} V...V A — B{ AL A o
is not in Py, hence 3" (e + 1 < 7' < n) such that Bl isin I, In this case, we can
chonse " such that j° — j, then L] is in 17 (1),

By () and (1), 1" is canonical, thus obj(I*) € obj.(min(Tes T w)). Therefore
e obj(min(Tp. Tw)). O

Corollary 3.2 Let [be a program. Then
(1) P is contradiclory il Ty Tw — Q.

(i P is incoherent iff Tps T w # B and each element in min(L'p< T w) is not
canonical, O

Example 3.3 (cont. from Example 3.2) It is easily verified thal vuly
{Ke, Kb, —Ka, b, c} is a canonical set which is minimal in the flixpoint closure, then
{b,e} is the unique stable model of the original program.

Vor general logic programs, the result of Theorem 3.1 1s lurther simplified as follows.

Corollary 3.3 Lot F Le a general]ugicl program and P be its transformed form.
Tli{-‘ﬂ
STp = ol (Tps Tw).

Proof: Clearly, I € obj.(min{Tps T w)) implies [€ obj(Tp~ T w). Then we show
thal the converse is also irue. Assume that the converse does not hold. That is,
there is & non-minimal set T € 0bj (Tp« T w) and 37 € obj(min(Tps T w)) such
that J < 7. In this case, there exists an atom A such Lhat A € T and A & J. Put
I = obj(1%) and J = obj{J"). Then, there exists a clause

|:."1. N _"K.Bm.|.| U _"KB“} A K-Hm-l-'l Vool KB,‘ Lo Bl Moo A Bm.

1L

in P*, where I* J% k= By,....B, and JKE, (m+ 1 <1 < n)in J* Since J* is
canonical, B, € J%, hence B; C [I*. Bul =K B, is also in I*, this is impossible by the
condition of Dehnition 3.2{113. 1

3.3 Extended Disjunctive Programs

An extended disjunctive program is a disjunciive program which contains elassical
negation as well as negation by failure in the program [GL91]. The definition of an
extended disjunctive program is the same with that of a general disjunctive program
except that each clause in a program has the lollowing form:

Tav.o Vi Lipgh ALphnotLoyg Ao Anotl, (n2m>120) (3)

where each [, is a positive or negative literal. * Especially, if a program contains no
disjunctive clause, it is just called an eztended logic program.

The semantics of an extended disjunctive program is given by the notion of answer
sels. Considering each negative literal in an extended disjunctive program as a newly
introduced atom, an answer set of a program is defined in the same manner with
a stable model given in the previous section. The collection of all answer sets of
a program 15 denoted by ASp. Kspecially, il .ASp is empty, a program is called
incohierent, while if an answer set S contains a pair of complementary literals 4 and
=4, § = L. A contradictory program has a unique answer set £. Note here that in
an extended disjunctive program, contradiclion may be caused not only by negative
clauses, but also negative heads of clauses in a program.”

The answer set semantics of an extended disjunctive program is a direct extension
of the stable semantics, and the results presented in the previous section still hold
here. The only extra requirement is that, for an extended disjunctive program P, we
include a constraint

i A a A

for each negative literal =A in the transformed program P~.

Theorem 3.4 Let P be a consistent extended disjunctive program and ASp be its
answer sets. Then, ASp = oby (min(Tp- Tw)). O

Corollary 3.5 Let P be an extended disjunctive program. Then

(i) Fis contradictory ifl Tpe< [w = .

*[GLOL] uses the connective “" instead of V to distinguish its meaning from the classical first
order logic. But we abuse the connective v as far as no confusion arises.

‘Note also that the meaning of clauses ~a — and +— a are different under the answer set
semantics. In fact, an answer set of the first clause is {—a}, while the second is §. This difference is
due to the fact that the connective «— is non-conteapositive in a PIOETA.

12

(i) # 15 incoherent iff Tp. T w # @ and each element in min(Tps T w) is not
canonical. O

Corollary 3.6 Let P be a vonsislent extended logic program and ASp its answer
sets, Then, ASp = obj (Te« Tw). U

4 Comparison with Other Approaches

A fixpoint semanties for disjunctive programs has been studied by several researchers.
An early approach to provide the fixpoint semantics for positive disjunctive programs
was given by Minker and Rajasekar. In [MR90], they introduced an extended Her-
brand base that is the set of all ground positive disjunctions from a program, and
defined the notion of a siate as a set of positive disjunctions from the extended basc.
Then they have developed a fixpoint aperator which operates on stales and shown
that its least fixpoint contains positive clanses which are true in every minimal model
of a program. Comparing their approach with ours, both of them characlerize the
minimal model scimantics of & disjunctive program in terms of a fixpoint operator, bul
the approaches are basically different. Their fixpoint operator computes a minimal
state at cvery stage of closure comiputation and finally computes mininal models from
the model state of the least fixpoint. On the other hand, our fixpoint conslruction is
based upon case-splitting of disjunctions and directly computes a set of models, and
the minimality is checked only at the final stage of the computation. Further, our
fixpoint construction is s1ill hased wpon the manipulation of standard Herbrand inter-
pretations and does not require any extension of the llerbrand base. The state based
semmantics has also been developed for stratified disjunctive programs in [RMS39] and
further extended to general disjunctive programs hy Ross [Ro89], Baral et I [BLM30]
and Przymusinski [Pra0b] in the context of the extended well-founded semantics.

Fernandez and Minker [FM91] have also presented a fixpoint semantics of stratified
disjunctive programs using a fixpoint operator over sets of interpretations. According
to [FMO1], their fixpoint operator TH(I) is defined as fallows.

Ty = m?'ﬂ[U maodcelsp(statep(J})), where
TeT

statep(d) = { Ay v...v A | there is a ground clause from P of the forn (2)
such that {By,..., By} CTand {Bps,.... BNl =0}, and
maodels;(S) = { M CHE| M isamodelof SUT }.
With this lixpoint operator, they have defined ordinal powers as usual and shown
that its iterative fixpoint characterizes the perfect models of a stratified disjunctive

program. Oue important difference between their fixpoint operator and ours is that,
as s ohserved in the above definition, their fixpoint operator is defined over sets of

13

minimal interpretations which are ordered under the Hoare ordering.* To this cnd,
their fixpoint voperator has to compute minimal sets of atoms at every stage of closurc
computation which is very expensive. On the other hand, our fixpoint operator are
defined over sets of interpretations ordered by L and computes minimal sets only
al the final stage of closure computation. This has the computational advantage
that each interpretation can be treated in a different, independent process in closure
compulation so that split interpretations can be taken as the source for cxploiting
OR-parallelism. In this way, the model generation theorem prover MGTP [FH91] is
implemented on a parallel inference machine for both testing refutability of a program
(by Corollary 2.11) and generating the minimal models {by Theorem 2.10).

In [FLMS91, FM92], the result is further extended to non-stratified general dis-
Junctive programs in which they have developed a method of computing stable models
by transforming a general disjunctive program into a stralified disjunctive program
with integrity constraints. Their evidential transformation lransforms each general
disjunctive clause {2): A\ V...V A — Dy AL A By, Anot By A ... Anot B, into
the pesitive disjunctive clanse

."1]1'-\.!"..."#";4.;\'-".55";4.1v...vgﬁh‘—gif\...ﬁﬁm.

They also have new rules £4 — A in a transformed program and integrity constraints
A= EA for each atom A € HB. At a glance, their transformation is quite similar to
ours, and the new rule and the integrily constraint respectively seem 1o correspond
to the clanse «— A A KA and the canonical condition in our approach. In fact, onr
transformation was independently developed for paraliel computation of stable models
using the MGTP in [IKH92]. However, from the computational aspect of a fixpoint,
theve is an essential difference belween the two. As is presented in Section 3.2,
in our transformation each disjunct 4; in the head has its prerequisite condition
M, oKB; (i +1 < 7 < n)in an explicit way, while this is not the case in the
evidential transformalion. Let us show the effect of this difference using an cxample,
Consider the following program P, its transformed program P’ in our approach, and
the program F” obtained from P by their evidential transformation:

= {a~—notal},
P'= {{ah-Ka)VKa—, +an-Ka},
P" = {avEa+«, Eae—al.

Then in P a negative clause blocks to expand the first disjunct of the first clause
and we can inmediately know that P’ has no canonical model. In P, on the other

“The “Hoare” ordering <, in [FMO1] ie defined as: T <, Jif¥J ¢ J. 36 € Lsuch that] € .J.
This ordering is, however, usnally called the Smyth ordering. Note that <), is nob a partial order

14

hand, the first disjunct is expanded by the second clause and after computing minimal
elernents in the fixpoint, they know that the program has no stable model. That is,
in our transformation an extra prerequisite condition works as a constraint to reduce
the number of extensions, and negative clanses are effectively used to prune away
improper extensions to avoid unnecessary expansions during the computation of a
fixpoint. On the other hand, the evidential transformation dees not use any such
constraint nor negative clanse, instead, 1t again depends heavily upon the computa-
tion of minimal interpretations which plays an essential part to compute the stable
madels of a program. Moreover, to compute stable models of general logic programs,
Corollary 3.3 presents that our fixpoint operator does not need any computation of
mimimal models at all. These ohservation presents that our transformation has Lhe
advantage of computational efficiency in general and is easily realized in parallel.
The usage of negative clauses is also usefui to treat classical negation in extended
digjunctive programes. [or related work, interpretation bascd [ixpoint semanties is
also presented in [Fudl] for positive disjunctive prograims.

Decker [Dec§2] has also developed a fixpoint semantics of disjunctive programs.
His fixpoint semnantics is presented for only positive disjunctive programs. While his
fixpoint operator maps a disjunction of interpretations into a disjunetion of interpre-
tations, each disjunction can alse be interpreted as a set of atvins as our approach.
The most impoertant difference lies in the fact that while his operator computes the set
of all supported models of a program,® ours does not compute all of them. Moreover,
while Decker also permits negative clauses in a program, they are not used for pruning
interpretations during computation and his fixpoint contains inconsistent interpreta-
tions in general. On the other hand, every interpretation contained in our disjunctive
fixpoint is a supported model. As a result, our fixpoint construction avoids many
unnecessary expansions for constructing minimal models. For exainple, suppose that
a program contains the clanse aVvbve — d. Then, for T = {{¢,d}}, Decker's fixpoint
operator maps Ito {{a, ¢, d}, {b,e,d}. {c,d}} and a further application adds {a, b, ¢, d}
to it, while ours never expands I. This is because Decker's operator always expands
an interpretation [by each disjunct from the head of a clause ' whencver [salisfies
the body of 7, while our fixpoint eperator Tp incorporates the test for violatedness
of © in [{Definition 2.2). In fact, our fixpoint construction directly characterizes
clusure computation of model generation theorem provers with violatedness checking
such as SATCHMO [MBS88] and MGTP [FH91].

Reed et al [RLSS1] have developed yet another fixpoint characterization of a posi-
tive disjunctive program. Their fixpoint construction 15 hased upon the case-analysis

FHere, the notion of 4 supported model s different from that of [ABWSS], but equivalent to the
notion of a possible model in [SaB9]. Far constrocting minimal models, Decker alse defines another
fixpoint operator which is similar to that of [FM91] and again requires minimality checking at every
atage of closure compulation.

15

of disjunctions and, different from ours, two kinds of fixpoint operators, called case
and join, are used to compute logical consequences of a disjunctive program. Ross
and Topor [RT88] have also given a fixpoint construction for positive disjunctive pro-
grams to characterize the semantics of the inference rule called disjunctive database
rule (DDR), but they concern about only negation in a program and do not discnss
any connection to the model theoretical meaning of a program.

For general and extended disjunctive programs, the stable model semantics were
extended to the answer set semantics [GLI1| and the three-valued stable semanties
[P'r90a]. However, as is the case for the stable model semantics, their fixpoint com-
putation is not constructively given and is computationally expensive in general. On
the other hands, our fixpoint computation is constructively defined and its computa-
tional complexity s the same as that of computing the minimal madels of a positive
disjunctive program. Further, our fixpoint computation is also different from the con-
structive approach by [SZ00, Fad0|, because our fixpoint construction is performed
in parallel based on case-splitting of disjunctions and does not need any selection
strategies nor future backtracking during the computation of stable models.

5 Conclusion

We have presented a uniform framework of lixpoint characterization of disjunctive and
general logic programs. First, we have developed a fixpoint operator which operates
on a complete lattice consisting of sets of Ilerbrand interpretations, and shown that
the minimal element of its fixpoint cusure coincides with the set of minimal models
of a positive disjunctive program. Next, we have provided a suitable program trans-
formation of general disjunctive programs, showing that the stable model semantics
is characterized by the fixpoint closure of the transformed program. The result is also
directly applied to the answer set semantics of extended disjunctive programs.

The disjunctive fixpoint semantics presented in Lhis paper is a direct extension of
van Emden and Kowalski's fixpoint semantics for definite Horn programs. Tt provides
a uniform framework for not only disjunctive programs but also general and extended
logic programs. Compared with other approaches, our fixpoint theory is different from
the state based semantics by Minker and Rajasekar and also has a computational
advantage over Fernandez et al's fixpoint construclion. For a procedural aspect of
our fixpoint semantics, a hottom-up model generation theorem prover called MGTP
15 developed at ICOT which is sound and complete to compute stable models for
range-restricted disjunctive programs [1K1192].

16

References

[ABWBS] Apt, K.R., Blair, H.A. and Walker, A., Towards a theory of declarative
knowledge, in Foundations of Deductive Databases and Logic Programming (J.
Minker ed.), 89-148, Morgan Kaufrmann, 1955,

[BLMY0] Baral, €., Lobo, . and Minker, J., Generalized disjunctive well-founded
semantics for logic programs, Research Report CS-TR-2436, Dept. of Computer
Science, Univ. of Maryland, 1990.

[Cla78] Clark, K.L., Negation as failure, in Logic and [Data Bases (H. Gallaire and J.
Minker eds.}, 203-322, Plenum, 1978,

[Dect2] Decker, H., Foundations of first-order databases, Research Report, Siemens,
1992,

[Fa0] Fages, F., A new fixpoint semantics for general logic programs compared with
the well-founded and the stable model semantics, Proe. th Int. Conf. on Logic
Programmming, 442-458, 1990,

[FMY1] Fernandez, J.A. and Miuker, J., Computing perfect models of disjunctive
stratified databases, Proc. ILPS Workshop on Disjunctive Logic Programs, 1991,

[FM92] Fernandez, J.A. and Minker, J., Disjunctive deductive databases, Proe. Logic
FProgramming and Aufomated Aeasoning, Lecture Notes in Artificial Intelligence
624, Springer-Verlag, 1992.

(FLMSU1] Fernandez, J.A., Lobo, J., Minker, J. and Subrahmanian, V.S., Disjunctive
LP + integrity constraints = stable model semantics, Proe. ILPS Workshop on
Deductive Databases, 110-117, 1991,

[FHO1] Fujita, H. and Hasegawa, R. A model generation theorcin prover in KL1 using
a ramified-stack algorithm, Proc. 8th Int. Conf. on Logic Programming, 535-548,
1991.

[F181] Furbach, U, Computing answers for disjunctive logic programs, Proc. ILPS
Warkshop on Disjunctive Logic Programe, 1991,

[GL88] Gelfond, M. and Lifschitz, V., The stable model semantics for lugic program-
ming, Proc. Sth Int. Conf. Symp. on Logic Programming, 1070-1080, 1988,

[G1.91} Gelfond, M. and Lifschitz, V., Classical negation in logic programs and dis-
junctive databases, New Generation Computing 9:365-385, 1991,

17

[IKH92] Inoue, K., Koshimura, M, and Hasegawa, R., Embedding negation as fail-
ure into a model generation theorem prover, Proc. 1{th Int. Conf. on Automated
Deduction, Tecture Notes in Artificial Intelligence 607, 400-415, Springer-Verlag,
1992,

[LIST] Lloyd, J.W., Foundations of Logic Programming, 2nd Edition, Springer-Verlag,
1987,

IMEBSS] Manthey, I and Bry, ¥, SATCHMO: a theorem prover implemented in
Prolog, Proc. Sth Int. Conf. on Automated Deduction, Lecture Notes in Computer
Science 310, 415-434, Springer-Verlag, 1088,

‘Mis2| Minker, J.. On indefinite data bases and the closed world assumption, Proc.
6th Int. Conf. on Automaled Deduction, Lecture Nates in Computer Science 138,
202-308, Springer-Verlag, 1982

[MRO0] Minker, J. and Rajasekar, A.. A fixpoiul semantics for disjunctive logic pro-
grams, /. Logic Programming %45-74, 1990.

Pr88] Prayimusinski, T.C.. On the declarative semantics of deductive databases and
logic programs, in Foundations of Deductive Databases and Logic Programming (J.
Minker ed.), 193-216, Morgan Kaufmann, 1988,

[Pr88] Praymusinski, '1.C., Every logic progrun has a natural stratification and an
terated least fixed point model, Proc. §th ACM SIGACT-SIGMOD-SIGA RT' Sym-
posinm on Principles of Database Systems, 11-21, 1989,

(Pr00a] Przymusinski, T.C., Extended stable semantics for normal and disjunctive
logic programs, Proc. 7th Int. Conf. on Logic Programming, 459-477, 1990.

[PrO0b] Pravmusinski, T.C., Stationary semantics for disjunctive logic programs and
deductive databases, Proc. North American Conf, on Logic Programming, 40-62,
1950,

[ReT8] Reiter, R., On closed world databases, in Logic and Data Bases (H. Gallaire
and J. Minker eds.}, 55-76, Plenum, 1978.

[RLS91] Reed, W, Loveland, D.W. and Smith, B.T., An alternative characteriza-
tion of disjunctive logic programs, Froc. of Int. Logic Programming Symp., 54-68,
i949],

[Ro89] Ross, K., The well founded semantics for disjunctive logic programs, Froc. Ist
Int. Conf on Deductive and Ohject-Oriented Datubases, 352-369, 1984,

18

IRM8Y] Rajasekar, A. and Minker, .J., A stratification semantics for general disjunc-
tive programs, Proc. North American Conf. on Logic Programming, 573-586, 1980,

[RT88] Ross, K.A. and Topor, R.W., Inferring negative information from disjunctive
databases, J. Automated Reusoning 4:397-424, 1988,

[Sa89] Sakama, C., Possible model semantics for disjunctive databases, Proc. Ist Int.
Conf. on Deductive and Object-Oriented Databases, 337-351, 1989,

[SZ90] Sacca, D. and Zaniolo, C., Stable models and non-deferminism in logic pro-
grams with negation, Proe. 9th ACM SIGACT-SIGMOD-SIGART Symposium on
FPrinciples of Database Systems, 205-229, 1990,

[VEKT6] van Emden, M.H. and Kowalski, R.A., The semantics of predicate logic as
a programming language, J ACM 23{4):733-742, 1976.

[VGSY] van Gelder, A., The alternating fixpoint of logic programs with negation,
Froc, Sth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 1-10, 1989,

[VRSY1] vau Gelder. A., Ross, K. and Schiipl, J.5., The well-fonnded semantics for
general logic programs, J. ACM 38(3):620-650, 1991,

14

