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Abstract

We investigate two realizations of parallel abductive reasomng systems using the
model generation thearem prover MGTT. The first one. called the MGTP4+MGTT
method, is a co-operative problem solving architecture 1 which model generation and
consistency checking communicate with each other. There, parallelism is exploiled
Ly ._']mr:]{ing consistencies in parallel.  However, simoe this system comsisls of Lwo
different components, the possibilities for parallelization are limited. In contrast,
the other method, called the Skip method, does not separate the inference engine
from consisteney checking, but reabzes both functions in only one MGTP that s
nsed as a generate-and-test mechanism so that consistency checks are automatically
performed in reasoning processes. In this method, multiple models can be kept in
distribuied memories, thus a great amount of parallelism can be obtained. We also
atternpt the upside-down meta-interpretation appreach for abduction, in which top-
dovwn reasoning 15 simulated by a bottom-up reasoner. Evaluations of these abductive
systems thal are appled to design problems are also described in this paper.

_‘Preseﬁﬂf at:  Department of lnformation Engineering, University of Industeial Technology,
4-1-1 Hashimotodal, Sagamibara, Kanagawa 329 Japan



I Introduction

Abduction, an inference to explanation. has recently been recognized as a very impor-
tant form of reasoning for various Al problems that deal with commoansense knowledge
as well as scientific and engineering knowledge. For example, in diagnosis, plan recog-
nition and design, when we obsgerve the hehavior of a system. we want to identify the
hypotheses that can explain the observation. Also. i natural language understand-
ing, sophisticated user interfaces and communication among intelligent agents, 1t is
recognized that an explanatory capahility may play a erucial role [Charniak and Me-
Dermott, 1985). One of the most popular formalizations of abduction in Al defines
an caplenalion as a sel of hypotheses that, if combined with the background the-
ory, logically entails the given observed formmla. This deductive-nomological view of
abduction, of which Peirce’s theory of abduction was the forerunner, has cnabled ab-
duction to be implemented using deduction, i particular with resolution-based prool
procedures, Along this hine. there are a nmwber of proposals {or resolution-based
abductive systems [Pople. 1973; Cox and Pietrzvikowski. 1986; Poole f af . 1937
Stickel, 1989 Inone. 1997 Demolonibe and Farinas del Cerro, 1001].

Thus. we can expect that stndies on automated abduction may fill the gap belween
traditional, fast deductive technigues and more advanced, Aloriented commonsense
reasoniug. From the viewpoint of automated dedvction and theorem proving, how-
ever, automated abduction iz a hard and challenging problem. 'F'his is hecause:

Lo Abduction is not a proof finding (or relutation) problem but a consequence finding
problem (see {Ilnoue, 1991 Tnoue, 1992]).

2. Usually, each abductive explanation is required to be consislent with the back-
ground theory. While consisteney checking is expensive {undecidable in general),
it i essential for some practical applications of abduction (design problems, for
example). since we are interested in systems that ean reject inconsistent theories
L oblain acceptable theories.

In this paper, we propose several techniques for implementing abduction that use
fast deductive techniques to realize fast abductive systems. In particular:

L. We provide new implementation methods for abduction using mode! generation
theoran provers such as those in {Manthey and Bryv. 1988; Fujita and Hasegawa,
19911, Instead of finding some logical consequences of the given axioms, our
methods generate some models of such fornulas.

[0

These methads are implemented 1 parallel on a parallel inference machine. Par-
allelization is an important source for realizing faster abductive systems.



3. Top-down information is lucorporated in these bottom-up procedures. This 15 an
extension of the mugic set technigue for deductive databases [Bancilhon et al.,

1G86; Bry, 1990] to deal with abduction.

We use the parallel model generation theorem prover MGTP [Fujita and Hasegawa,
1991] that is implemented in the parallel logic programming language KL1 [Ueda and
Chikayama, 1990]. Since the MGTP can be used for both testing the (unjsatisflabidity
of an axion: set and generating the minimal models of a range-restricled axiow set,
every [unction necessary for abduction can be realized on it. To this end, we show
two different program transformatien methods each of which converts an abductive
problent into a model generation problem. The hasic idea behind such a transforma-
tion has also been employed to compute stable models [Gelfond and Lifschitz, 1988]
of peneral and extended {disjunctive) logic programs in [Tnoue ef al., 1992al.

This paper is organized as {ollows. In Sections 2 and 3, ahduction and the MGTP
prover ate summarized.  Section 4 presents two realizations of parallel abductive
vatems using Lhe MGTE. In Section 5, we evaluate these systems by applying them
o a logic circuit design problem in [Maruyama et al., 1988]. Some extension of the
presented abductive systemns and related work are disenssed in Section 6.

=]
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2  Abduction

The definition of abduction we consider here is similar to that proposed in [Peole et
al . 1987]. An abductive framework 15 a pair (E, T, where ¥ is a set of formulas (the
background theory) and 1" is a set of hterals (the hypotheses or abducibles). Let & be
a closed formula (the goal}. A set F of ground instances of I is an caplanation of G
from (E,T}if

.EUK|=0, and

20V E s consistent.

An explanation of (' is minemal if no proper subset [2' of I is an explanation of .
The compulation of cxplunations of & from (£, I') can be seen as an extension of
prool finding by introducing a set of hypotheses from [' that, if they could be proved
by preserving the consistency of the augmented theovies, would complete the proof of
(. Alternatively, abduction can be characterized by a consequence finding problem
[Inoue, 1991) in which some literals are allowed to he hypothesized {or skipped)
instead of being proved, so that new theorems consisting of only those skipped literals
are derived at the end of deductions instead of just deriving the emply clause. In
his sense, abduction can he implemented by an extension of a top-down, backward-
chatning theorem-proving procedure. For example, Theorist [Poole et al., 1987) and



SOL-resolution [Inoue, 1992] are extensions of the Model Elimination theorem proving
procedure |Loveland, 1978].

However, there is nothing te prevent us from using a bottom-up procedure to im-
plement abduction. In fact, we have developed an abductive reasoning svstem called
APRICOTL /0 [Ohta and Inoue, 1990], which consists of a forward-chaining inference
engine and an ATMS [Reiter and de Kleer, 1987). The ATMS is used to keep track
of the results of inference in order to aveid both repeated proofs of subgoals and
duplicate proofs on different hypotheses deriving the same subgoals.

Thus, the two reasoning architectures, top-down and hottom-up, are complemen-
tary, yet both have merits and demerits for computing abduction. As [noue {1992]
pointed out, SOL-resolution is direct in the sense that it is both sensitive to the given
goal clause and restricted to scarching only those formulas consisting of candidate
hypotheses unly. However, Lop-down reasening may result in redundant proofs of
subgoals. On the other hand, bottom-up reasoning eliminates redundancy, while it
may prove subgoals unreliled 1o the proof of the given goal.

These facts suggest that il is promising to simulate top-down reasoning using a
hottom-up reasoner, o to ulilize cached results in top-down reasoning. The former
simulation has beei propused for definite Horn databases as the Magic Set [Baneil-
hion et al., [986] or wpside-down meta-interprefation [Bry. 1900] methods. As Stickel
{19917 argues, this approach is better for abduction than the simulation of botton-up
reasoning by a top-down reasoner. This is becanse caching 15 more complicated and
less effective [or abduction since the search space for abduction is larger than that for
deduction. Therclore, [Stickel, 1991] attempts the upside down meta-interpretation
approach for abduction [ur Horn and non-llern clanses. While Stickel does not con-
sider the consistency of abductive explanations in his procedure, his approach has
heen extended to abduction for Horn clauses by incorporating consistency checking
for a parallel version of APRICOT /0 in [Ohta and Inoue, 1602],

3 MGTP

In this seclion. we outline the model generation Lheorem prover MGTP [Fujita and
Hasegawa, 1991; Inone ef al., 1992a) on which our parallel abductive svstemns are
based. The MGTP is a parallel and refined version of SATCHMO [Manthey and Bry,
1088], which is a bottom-up model generation theorem prover that uses hyperresolu
tion and case-splitting on non-unit derived clauses.

Each cluuse in an axiom set ¥ input to the MGTP is expressed in the form:

A'|1--~-A7rl - C|:|1""'I:'-"rl.k|_ ["'|r-"1'!.\|:'--1{-'v1-|...i.'.11 (]}

where A's (1 <2 < mym > 0) and Cp,'s (K 2 1,1 € 3 € n) are aloms, and all
variables are assumed to be universally quantified at the front of the clause. Clause (1)



represents the formula Ay Ao A Ay D A A C e W v (G A A Cag)
i the standard notation of first-arder logie. The left-hand side of — is called the
antecedents of the clause, while the right-hand side 15 called the consequents of the
clauvse. When n = 0. the clause Ay...., A,, — s called a negative clause and means
that whenever a ground instance of 4, A _. A A is true, there s a conlradiclion.
When =1 and &) = [ the clause A 00 AL -+ O s called a definite elause. A
Horn clause is either a definite clause or a negative clause.

In the fellowing, an inferprefation is defined as a set of ground atoms as usual, and
15 uften called o medel candidete. Groen a curreat set M ol model candidates, the
MUGTP applies the tellowing two operations to every mode] candidate M ¢ M and
generates the next set M’ of model candidates:

. (Model candidate extension) Il there 1s a non-negative clause of the form:

'Li' "‘-.L.‘il ' I'I'-f'l:..l" '-lt:r].-‘-l | e f—-lu.'l-' "1|:'r.‘|...'|.

and a substitution @ such that M = (4, A .04 AL e and
ME(Coa Ao Moo forany 0 = 1,0,
then Mo {C el Chop b s in M for everv 7 = |, ..., n,

2. (Model candidate rejection) If there 15 & negative clanse of the form:
Aoy Ap —
and @ substitution o such that M =14, A oA Ande, then M s discarded,

Here, we call the process of obtaining such a substitution & a conjunctive match-
ing of the antecedents against elements in M. Note that this process does not need
full unification if every clause is range-restricted [Manthey and Hry, 1988], that is,
if everv variable in the clause has at least one occurrence m its antecedents. Since
everv model candidate constructed by the MGTP in such a case contains only ground
atoms, it is sufficient to consider one-way unification, i.e., matching, instead of full
unification with costly occurs checking that does not allow circular bindings for vari-
ables. This 13 also a nice property lor the implementation of the MGTP in KL
[Ueda and Chikavama, 1990], because KL1 head unification is simply matching., The
MOTP also improves efficiency by removing redundant coniunctive matching with a
vamifivd-stack algorithm [Fujita and Hascgawa, 1991).

I the Following, we assuine Lhal lunction svibols in the Janguage are only constants
and that the number of constants 15 finite, Given a set B of clavses and the initial
set ol model candidates My = {8}, the MGTP applies the above two operations to
My and gencrates My This process is repealed as long as M, # M, holds, If
the MGTP cannot apply any vperation to some model candidate set M, {(Lhat s,
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Figure 10 Abduction Architecture based on MGTP

M, 1s closed under the above two operations], it stops and returns M. If M, — ¥,
every madel candidate has been rejected so that B s unsatisfinble. Otherwise, since
each interpretation M € M, satislies every ground elause from ¥, M is a model of
Y. For example af

S [ fix) = Pla) | Qle), Riz) - S(2), — R(A). Qz),S(x) — },

then My = {0}, My = {{B(A)}}}, My — {{R({A). S{A) ], Ma = {{R{A), S(4), P(A)],
(H{A), STAY, QA and My — {{R{A), S{A), P{A)}} = M,. Now, let us denote
the set of minhnal {in the sense of set inclusion of atoms) model candidates from
M as mun( M), Then, the set of minimal models of T can be precisely given by
main( M) [Inoue et af., 1092a].

4  Abduction by Model Generation

Here, we introduce two realizations ol abductive reasoning systems built on the
MGTP. * Fignre 1 illustrates the abstract arclhiteclure for these svsterns. In the
following, we consider the first-order abductive framework {5, T, where ¥ is a set of
range-restricted Horn clauses and 1 is a set of atvimns { abducibles). Given an abductive
framework (¥, T}, these systems first transform the framework into a set of clauses

YA fixpoint semantics of the MGTP is formally discussed by Inoue and Sakama [1992].

“We have also developed several parallel abductive systems nsing the MGTP other than the two
deseribed i Lhus paper. See (lnoue et al., 1992h)]
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Figure 22 MGTP+MGTP

in a suitable form. Then, the MOTP s used for both (a) Model Generation of the
transformed formulas and (b)) Consistency Checks of some set of formulas augmented
with hypotheses, These two lunclions correspond to the two conditions for each
caplanation B of & from (5, 1) deflined in Section 22 {1 EUE = and (2) B0 E is
consistent. Here, we convert the problem of finding £ by (1} to some model generation
problem (a). T Lhis case, since © is a set of Horn clauses, any set £ U E for any F
from T i set of Horn elanses and has the unigue minimal model. In this way, the
problem of hnding explanations of & can be reduced (o that of finding models of ¥
that satislv . The MGTP, Lhus, outputs every model M of the transformed clauses
such that M containsg a minimal explanation of the given goal.

The two abductive systems below differ in how they Lransform the abductive frame-
work (L, '), The first one, the MGTP2 MGTP meibod, 13 a co-operative system in
which Mode! Generalion and Consistency Checks communicate with each other. The
second one, the Skip method, on Lhe other hand, does not separate Model Generation
from Consistency Checks, but expands some model candidates while pruning others.
UBoth methods can be considered as natural extensions of a standuard rmodel generatlion
method for deduction to model generation for abduction.

4.1 MCTP{MGTP

The MGTP+MGTP method combines multiple MGTTs as illustrated in Figure 2.
In the MGTP+MGTP method, two kinds of MGTP's are combined: one MGTD is

used for Model Generation, and the other MGTP's are used for Consistency Checks.

Then, MGTP-1 works as a forward-inference engine, while MGTP-2 only tests

the (un}satisfiability of the given axioms. In this system, cach hypothesis H in T is

represented by fact{ H.{H}), and each definite clause in £ of the form:

AaonA, o0,

=1



15 transformed into a Horn clause of the form:

m

JrﬂctﬁfdllsEl]s mroy .Ir'“";-l‘il-r"qn' E!'FI':I — faﬂtlr:‘-. CC': U bli' :IJ H (2]

1=1

where 15 a set of hypotheses from I' on which A, depends, and the function cc is

defined as:
Lo ¥ U FE s consistent;
Al otherwise.

cc(ﬁ'}={

Lspecially, a positive unit clause — O is transformed to — + faet{C,#). In this case,
since each transformed clause is a Horn clause, a unique, global medel candidate
{ralled a set ol befiefs and denoted as M) is kept in each set of model candidates M
at every stage of computation. Fach M contains a set of atomic formulas in the form
of fact(A. F] that represents a meta-statement that ¥ U EF £ A, and is stored in
MGTP-1. Each time MGTP-1 derives & new ground atom, the consisiency of the
combined Lypotheses is checked by calling an MGTP-2. * Notice that MGTP-1
never uses any negative clause in & {or Model Generation.

In MGTP-2. each clausc of T is used as is. and. in particular, the negative clauses
are necessary. This MGTP is used just for Consistency Checks, and whenever a set
of hypotheses £ is received, it tries to find a model of U E. If a model is found
then it returns £ itself, else nil is returned, Note that even when £ U E is consistent
we do not have to generate all of its minimal models.

The parallelism iu this method comes from calling muliple MGTP-2% at once.
However, since cvery transformed clanse is lorn, no case-splitting oceurs so that
MGTP-1 may not be parallelized. Thercfore, the effect of parallelization depends
heavily upon how much consistency checking can be performed in paralle! at once,

4.2 Skip

No miatter how good the MGTP+MGTP method might be, the system consists of two
different components. The possibilities for parallelization therefore remain Linited.
In contrast, the Skip method does not separate the inference engine from consistency
checking, but realizes both functions in only one MGTP. In this method, the MGTP
15 used nol only as an inference engine but also as a “generate-and-test” meclhanism
so that cousislency checking is automaticaliv performed. For this PUTpOSE, We Call
nhilize the capabilily supplied by the MGTP to extend and reject model candidates.,
Therefore, multiple model candidates can be kept in distributed memories instead of
keeping a single global belief set M as in the MGTP i MGTP method. Thus, a greal
amount of parailelism can be obtained.

*Note that transformation (2) is similar to the metlod proposed by Stickel [1991], except that
we additionally consider the Tunction ¢c for consistency checking.

8



The most direct way to implement reasoning with hypotheses is as follows. For
each hypothesis H in I'. we supply a clause of the form:

v H | -KH, (3)

where =K f means that “#f is not assumed to be true in the model”. Namely, each
hypothesis 1s assumed either to hold or not 1o hold. Note here that we consider each
literal =K i nol as new formulas in a suitable modal logic, but as newly introduced
atems in a program, hence we are still within the classical first-order calenlus. Then,
we need the foliowing axiom schema for dealing with =K H:?

-KH H — for every hypothesis H . (4)

The above schema 15 an integrity constraint saying that H cannot be true and dishe-
lieved at the same tiime, In this way, each model candidate containing both A and
=K s rejected,

The above technique, however, may generate 2" model candidates, and is, there-
fore. often explosive for a number of practical applications. To reduce the number of
generated model candidates as much as possible, we can use a method that delays
case-splitting for cach hyvpothesis. * That 1, we do nol supply anv clause of the
form {3) {or any hypothesis of I, but, instead, introduce hypotheses when they are
necessary. When abducibles Hy, ..., H,. (n = 0) lrom I appear in the antecedents of
a clause in ¥ as:

Aoy Hone o8 H, D0

abduribles
we transform the ahove Horn clause into a non-Horn clause:
A, oo A~ Hy oL HL O =KH L | SKH, (8)

[n this transformation, cach hypothesis H, in the antecedents 1s shifted to the right-
hand side of the clause in the form of =K H,. Moreover, each H; is skipped instead
of bemg resolved, and 15 added 1o consequent (' of the rule since O becomes true
whenever all A;%s and [f;’s are true. This operation is a bottom-up counterpart of
the Skip rule in the top-down approach defined for SOL-resolution in [Inoue, 1992},
Just fike the transtormation in {3}, we need to supply the schema (4) for the Skip

method. For example, suppose that E consists of the clauses:

Person(z), Cold(z) — Sneeze(z),
Person(xz), Hayfever(z) — Sneeze(x),
— Person{Tom),

Person(z), Cold(x), Hayfever{z) — |

This was first introduced to regard negation as fatlere as o hypothesis in [Tnoue of el 1992a].
Ll basie wdea belund this delayed approach was first proposed for the processing of negation
as falure with the MOTE i []llnm‘. el al, ]{-ilﬂ?.al.



and the abducibles arc I' = { Cold{z), Hayfever(z}}. Then, (£,T) is transformed
to the following clauses A by the Skip method:

Ferson{r) — Cold(x), Sneeze(x) | ~KCold(x),
FPerson{z) — Hayfever(x), Sneeze(x) | =K Hay fever(z).
— Ferson|Tom),

Ferson(x] — =KCold(z) | =K Hay fever(z)

-KH.H —  [or every hyvpothesis i .

it we observe (7 = Sneeze{Tom), then its explanations are obtained from A by
computing its minimal models containing . Since two such minimal models are
conpuied as;

M = {f’er'émz{Tom].C‘uM{TomLFnﬂc::c(?'mn}.ﬁKHnyfﬂ-Erl[J"m?z}} and
My = {Person(Tou), Hay fever(Tom), Sneeze(Tom), -KCold{Torn)) .

we can get two explanations £, = {Cold(Tom)} and L, = {Hay fever(Tom)} by
extracting Lhe abducibles from M, and M.

4.3  Upside-Down Mela Interpretation for Abduction

As discussed in Section 2, bottomeup abductive systems can enhance their effi-
ciency by incorporating the goal information and by simulating top-down reason-
g, Here, we present two program transformalion methods based on upside-doun
melu-ilerpretation (VDM approaches defined by [Bry, 1990: Stickel, 1991: Ohta
and Tnoue, 1992, We first apply such a UDM transformation to the mput clanses
L, generating L', then further transform (E'.I'} by using o transformation for the
MGTP4 MGTP method or the Skip method defined in previous subsections.

The fivst transformation. called the simple UDM transformation. transforms each
definite clange of ¥ in the form:

A4 O i6)
into the following two clanses:

goal{(C7), A4y, .. A, — (7,
goal(C') — goal( A} for everve = 1,...,m.

In this method, the MG'TP operations are applied for clause (6) only when geal(()
15 present. Further, goal{(’) invokes the subgoals of (6) by deriving every goal( A},
Thus, top-down reasoning is simulated in a breadth-first manner.

For cach negative clanse Ay, ..., A — in T, wecan apply the above transformation
used for definite clauses. Then, since the consequent of a negative clause is empty, we

1o



supply — goal| A;) for every A, This means that any subgoal in every negative clanse
is evaluated. llowever. as Ohta and Inoue [1992] pointed out, many negative clanses
are irrelevant to finding explanations of the given goal from the abductive framework
in general. I we evaluate all the subgoals in all negative clauses, the UDM method
cannot achieve speedups compared with non-controlled bottom-up abduction. 1o
overcore this difficulty, we restrict the evaluation of negative clauses to those davses
relevant Lo the goal by using the absiracted dependency analyzer [Obta and Inoue,
1992 that analyzes logical dependencies between the goal and negative clauses at the
abstracted level.

The second transformation, called the left-to-right /OM transformation, simulates
top-down reasoning in such a way that for clause (6) each subgoal goal( A;2,) (1 <
i < m — 1} is invoked only after the previous subgoals goal{ Ay ], ..., goal{ A;) have
been solved. Thus, this method simulates ordered-lincar resolution in a depth-first
manner. In this method, each clause of form (6} is transformed to:

goal () = goal{ Ay ), conty (V)
cont V), Ay — goall Ayl conty (1),

contemi V), Ay = O

where & 15 the identifier of each clause O in X, and conty ;[ V') keeps the substitutions
Vo lor variables appearing in Ay, o Aicre As o the spople UDM transformation,
the abstracted-dependency analysis is also employed for evaluating negative clauses
i this transformation.

5 Ewvaluation

This section presents the evaluation of two abductive systems, the MGTP+MGTP
method and the Skip method, by applying them to a design problem. The prohlem
is 1o design a logic circnit that caleulates the greatest common diviser (GCD) of
two integers expressed in eight bits by using the Euclidean algorithm [Maruyama et
al., 1988]. The solutions are those circuits satislying the given constraints on area
and time. There are several kinds of knowledge on the design of circuits {about 120
clanses): datapath design knowledge {i.e., how to construct a GCD circuit by combin-
ing components) at the top level, cotnponent design knowledge (e.g., a subtractor can
b constructed from the combination of a one’s complement circuit and an adder) at
the next level, and technology mapping rules {e.g., an adder can be constructed from
a series of some CMOS standard cells) at the low level. The problem can be repre-
sented as abduction, in which we assuine that some combination of components may
satisly all constraints, Thus, if hypotheses derive a contradiction with the background
knowledge, we see that the suly design viclates some constraints.

11



Table 1: Evaluation of Abductive Svstems

Table 1 1: Normal Transformation

System type

Problem MGTP+MGTP Skip

| (limit 300-40) | 4.0/ 7.5(64) 7.2/ 13.7(64)

( (Limit 400-30) | 31.2/ 3.3(64) | 23.3/ 19.4(64)
(limit 500-60) | 54.3/ 2.6(64) | 26.1/ 20.6(64)

{Cireuwdt

Table 1-2: Simple UDM Transformation

System type
Problem MGTP+MGTP Skip

Subtracter [ (limit 500-60) [ 1.1/ 1.3(64) | 0.6/ 1.2(64)

Table 1-3: Left-to-Hight UDM Transformation

! B S}-‘Htf"ﬂl type
Problem | MGTP+MGTP Skip
Subtracter | (limit 500-60) 0.8/ 1.0(16) 1277 3.1(64)

(Notation| T / R(FPFs)
T : The smallest execution time (sec)

£ : The speedup ratio of T to the time obtained with a single PE (times)
FEs: The number of PIs used when T is obtained (number)

12



Table 1 shows the experimental result of two abductive systems at run time on
the PIM/m paraliel inference machine developed at TCOT. The area-time limits are
get 1 three ways (300-40ns, 400-50ns and 500-60ns). In order to evaluate two UDM
methods, we also solved a subproblem (the design of subtracters) of the entire problem
(the design of GCD circuits). ©

As shown in the table, the run time for designing subtractors in each system is, as
expected, much shorter than that for desigming GCD circuits, since the reasoning is
directed to the given subgoal. However, for the Skip method, the simple UMD trans
formation works hetter than the left-to-right UDM transformation, indicating that
the left-to-right simulation of top-down reasoning increases the sequential processing
more than the breadth-first manner.

[igure 3 shows the run time graph for the design of GCD circuits with a 300-
fillns limit, which is obtained by varving the number of available processor eleients
(PEs} between 1 and 61 on PIM/m. [igure 4 displays the speedup ratio for the
same problem when runping two abductive systems. All reasoning, tasks split with
digjunctions are antomatically allocated to the available number of processors,

As shown in these figures, the Skip method provides better parallelisin as well as
faster abductive reasening than the MGTP+MGTP method.

6 Final Remarks

We have presented several new program translormation techniques for fast, parallel
and bottom-up abduction. First, we have caonverted the Hora abductive problem with
consistency checking into model generation problems in two ways., Second, we have
apphed ihe two kinds of upside-down meta-interpretation transformations to abdue
tion to meorporate top-down information. Although we need to further investigale
how to avoid possible combinatorial explosion in constructing model candidates for
the Skip method, we conjecture that the Skip method will be the most promising
from the viewpoint of parallelism,

For related work on computing abduction using a model generation theorem prover,
Denecker and Schreve [1992] recently proposed a proof procedure for ohject-level ab-
duction defined in {Console et al, 1991]. But, in contrast to us, they compute the
models of the only-if part of a completed program that s not range-restricted in gen
eral even if the original definite clauses are range-restricted. To this end, they have to
extend the medel generaltion method by incorporating complex term rewriting tech-
nigues, while we can use the originagl MGTP without change in the Skip method.
Furthermore. their abduction does not consider the consistency of explanations.

Fln order to avord possible combinatonial explosion caused by many redundant model candidates

contaming non-tminnnal explanations, we introduced gome negative clauses thak ean be gencrated
autornatically by analysis in the Skip method, See lnoue et al., 1992b] for details.
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While we restricted the abductive framework (X, 1) to a pair of Horn clauses and
atorue abducibles, we can consider an extension of abduction which captures non-
monotonic and defanlt reasoning. ‘lhen, another important advantage of the Skip
method is that it may easily be combined with negution as failure so that knowledge
bases can contain both abducibles and negation-as-failure formulas as in the frame-
work of [Kakas and Mancarella, 1990]. Notice Lhat the transformation of abducibles
by (5) is not dual to the transformation of negation as failure in [Inoue ef al., 1992a.
For a negation-as-failure fornmla not P, the current mode] candidate is split into two,
one containing =K F and the other contaiving K P, where an atom K P means that
P oshould be derived. Here, for an abduable H, we generate two model candidates,
one containing H itself and the other containing -K H. This asvmmetry comes from
the fact that each abducible can be added to model candidates without imposing the
condition that it should be derived so that we do not have to test the stability of
each abducible in the ixpoint {that is, we need not test whether I” is actually in M
for eacli Ki* e M. Therefore, when a negation-as-failure formula net H mentions an
ahducibie If, it should be spht into =K H and . This extension of the ahductive
framework by incorporating negation as failure will be reported in detail elsewhere.

Finally. efforts should be also devoted to investigating extensions of hottonrup
first order abduction to deal with non range-restricted, non Horn clauses and literal
abducibles, which can be dealt with by a top-down approach like SOL-resolution
Hnoue, 1992 An example of bottom-up abduction for non-Horn clanses without
cousistency checking can be found in !St.icl-:EL 1991], which uses contrapositives in the
forin of deflinite clauses. This technique may be incorporated for the MGTP+MG' TP
method with consistency checking. One difficulty lies in the fact that, since the
definite transformation using the meta predicate faet does not involve any case-
splitting as1s the case in the MCTP+MCTP method, it does not seem to be promising
frare Lhe viewpoint of Ol-parallelism on the MGTP.
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