~ ICOT Technical Report: TR-0814

TR-14514

Probabilistic Analysis of the Optimal
Efficiency of the Multi-Level Dynamic

Load Balancing Scheme
by

K. Kimura & N, Ichivoshi

Octoher, 1992

1992, ICOT

Mita Kokusat Bldg. 21F (03)3456-3[9] - 3

IC OT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Probabilistic Analysis of the Optimal Efficiency of
the Multi-Level Dynamic Load Balancing Scheme

Fomch Kimura

Nobuyvuki Ichivoshi

Institute for New Generation Computer Technology
[-1-28 Mita, Minato-ku, Tokyo 108, Japan

Abstract

This paper mvestigates the optimal efficiency of the
nmulti-level dynanie load balancing scheme for OR-
parallel progranes, using probability theory,

In the sawgle-level dynamie load balancing scheme,
oiure processor divides a given task into a number of
subtasks, which are distributed 1o other processors on
densd and then sxecuted independently. We intro
duee a formal nodel of the exerution as a qUELSINE
systemn with several servers. And we investigate the
aptimal grawularity of Lhe subiasks to attam the max-
il elficiency, taking account of dividing costs and
load imbalance between the processors. Thus we ob-
tam estingales of the maximal efliciency.

W then apply these resulls o analysis of the
effictency of the mult-level dynamic foad baloncing
sofremne, which is the iterated application of the single-
bevel sehiense in a Licrarchical manner. And we show
how the scalability is thereby iniproved over the single.
level schen

Key words, parallel processing, load Dalancing,
efficiency, #1'a]a|}i.|it}', isoefficiency, qucui:]s theory.

1 Introduction

The purjaeese of paralle]l processing 15 to acceler-
ale the execution of time-consuming tasks by utiliz
g a nuwmber of processors. Efficiency, defined by the
speed-up divided by the number of processors, indi-
cates Lhe performance of peraliel processing. 1t de-
pends not only on the algorithim itself, but alse on the
nutber of processors, the problesn siee {Lhe amount
of comnputation regquired by the best sequential algo-
nithin for selving it), and other factors. To general, for
a given task, the efficiency decreases as the number
of processors mereases, as Amdahls law illosteates
Therelure it is important (o analyze how the efficiency

depends on these Factors. In particular. as inereasingly
larger-scale wolliprocessors are now being developed
[9]. the scalability analysis of the efficiency is becom-
ing more and more importand,

Various measures of the sealability of a parallel al
gorithmy have lwen proposed for different situations
6] Among these, the notion of “isoefficiency” (5] suc-
cinctly captures the characieristies of sealability of a
paraltel algorithim. The efficiency usually decreases
with an increasing nnmber of processors. hutl recovers
again with = larger problem, sorfficee ney funelon
indivates luse aonch the problemn size should be in-
rreased with the nwwiler of processors so as Lo main-
tam a constanl efficiency. A parallel algorithm with
alower snler isoelliciensy fanction is supposed to be
more sealable,

Ideally the efficieney shoulid be one, however, it may
deteniorate due 1o varions reasons. the load imbal-
ance between the JIroesEserE, e E-Proc eSS0 COINITIW-
nivation latcney. speculative computations. ar ather
overheads associatel with parallel execution. In par-
tieular. of the algorithin s composed of many parks re-
quir]ug IJI]FJFF‘lJ.if1R]|-|H anncnils of CoMmpuiation, as 18
usual with ey combinatorial search problems. load
imbalance between the processors is likely 1o occur and
may have a great influcnee on the efficiency. Thus the
lead balancing s one of the contral ssues of paraliel
[Provessing.

Furwichy of al [2] proposed the mulii-fe vel dynamee
toad balancing schemns for OR-paralie]l programs, and
eviduated its peeforinancs using the Muiti-PS1, a dis
tribuied temory MIMIDY jachine with 64 pProcessors,
Their basic steategy is to divide a given problem into
mutually independent subtasks, and distribule them
to other processors oo deand. Uhis on-demand dis-
tribution balances the load between the processors.
However, when the nwmber of PPROCESS0rE Increases, the
numiber of subtasks should increase correspondingly
Therefore, if the dividing is sitrusted to sie proces-

sor (the singledevel dymanrie foad badwnemy scheme), 1
will become a bottleneck. So they proposed to divide
the problem iteratively m a hierarchical manner { the
multv-devel dynameic load balancing seheme). Iheir ex-
periments show that the latier s 0 facl more “seal-
able” than the former.

The purpose of this paper s to theoretically in-
vestigale the aptimal efficiency of these dynamie load
balancing schemes. We define a formal miodel of the
single-level dynamic load halancing as a quening sys-
temy with several servers. The unpredictabile amound
of comnputation required by eacl subtask is probabilis-
tically treated. The resulis on thie single level scheme
arc then applied 1o the analysi of the multi-level
scheme. Among others, we show

L With subtasks of vamdon sizes, the oplunal ofi-
clency 15 worse than with subtasks of exactly the
same size. The imwlﬁl'ivm'y functon i a typacal
formier case 1s log p thines larger than that in the
latter case, where pois the munber of processors,

2. The mmlti-level load balancing seliene 15 mdeed
mare “scalahle” than the single-level one, The
isoefficiency function for the fonmner has 2 smaljer
fractional order of p than the latter.

A In the tree configuration of the processors i the
multi-level dynanne loal balancing sehene. a [ro-
cessor al a higher level should have a barger fan
out degree than one al o lower level The order of
their ratio 15 a fractional power of lugp. In par
ticular, the unilorn tree configuration with the
same degree at all levels 15 ned optimal.

For ronciseness, we make a compromise in rigidity
and give only intuitive proofs in this paper. A rigorous
treatment will appear in [4).

2 Dynamic Load Balancing Scheme

In this section we deseribe the multi-level dynamie
load balancing scheme. proposed by Furuichi of al. [2].
It can be applied to many parallel programs on MIMD
machines,

2.1 Assumptions for problems

We assmine thal our target problem ean be divided
inte many subproblems such that:

(1} The subproblems can be salved independently of
ome anolher,

(i) The amount of computation required by eacl sub-
problem is unpredictable before it is solved.

These assumplions seem natural in the OR-parallel
exhaustive search procedures for wany combinatorial
problems. Fur instanee, consider an exhaustive search
of a tree, which represents the search space of a combi-
natorial problem. This tree can be divided into many
sitbtrees at any depth d, and the search of the en-
‘Ill"!:" tree will be [{'duted to the m\arfhﬁ gf [_I]fl-g.p sub-
trees. The latter searches will be independent of one
another, ws long as we don't employ any special pron-
mg strategies. And, as is inherent in combmatorial
problens. the entire tree will be irregular and the size
ol ench subtree will be unpredictalile hefore we search
H. Thus bolh assuinptions are satisfied,

Now, in general, assumption (i) imples that the
problem can be solved efficiently i parallel: — dif-
ferent processors solve different suliproblems simulta-
neously. However, assumption (i) makes it difficult
to stafically balance the load between the processors,
This prompts us to employ a dynanic boad halancing
sirategy.

2.2 Single-level load balancing scheme

In the fullowing we will refer to the problem to he
solved as & fask, and sinnlarly. 10 a subproblem as a
aubitask.

We consider here one of the most naive on-densnd
load distribution technigues: given a task, one pro-
ducer processor divides it into a nuher of mutually
independent subtasks. whirh are transmitted to the
ronsgmer processors on demand and then executed.

This on-demnand load disteibution will halanee the
load between the processors, We refer 1o this load
halancing strategy as the sengle-dv vel dynamee foad bal-
ancing scheme [2]

2.3 Tuning the granularity

In order 1o make this load h'd.l.:‘llll'illH sehene waork
efficiently. we have to tune the granularity of the sub-
tasks. With a few large subtasks. load imbalance he-
tween the consumer processors is likely to oreur. As
an extreme case, if the number of subtasks is less thao
the number of consumer processors, some of the pro-
cessors will never he used. On thie other hand, with
many small subtasks, the producer is likely Lo become
a hottleneck,

So we assume that:

(1i) The granulariy of the subtasks can be con-
trolled.

and we will optinaze 1. Namelyv, we assumee thal Lhe
task can e divided into more sublasks of simaller sizes
or less subtasks of larger sizes, at will.

For example, let us consider the OH-parailel ex-
haustive search of a tree again. Eacll subtlask s the
scarch of a subtree with its roat at depth o So by
choosing an appropriate depth o we can control the
granularity of the subtasks,

2.4 Bottleneck in speedup

The single-level dynamie load balancing sehenw hias
an apparent drawhack: 1t does not scale.

suppose thal the number of processors 15 nerepsed
Then. as we Just saw iy the last sobsection. the granu-
larity of the subtasks should be tieed accordimgly, o
this case, we have to increase the number of subtasks
(b a certamn extent lurger than the number of the con-
sumer processors). But if we inerease the nusber of
subtasks, the producer will becotne a bottleneck, sinee
1 asn charge of producing all of these subtasks Thus
the efficiency will inevitahly deop

So, i order to Juprove the scalability, we should
remove such a produrer bottieneck

2.5 Multi-level load balancing scheme

The multr-devel dr,.li'ramz: {oirdd Frlhl'urr“ug,r siheres al-
leviates the producer bottleneck by hierarchical load
distribution,

ln the 2devel dynamee load balavcing scheme, we
divide a gjt-en task at a roef prn-r,l’urqr ik many sub-
tasks. They are distributed to the second feodd -
ducers on demand, and then are divided again into
smaller subsubiasks. These subsubiasks are Turthe
dhstributed to the feaf comsumr s on deniand . anld are
finally carried ont

Schemes of more than two levels can be defined sin
tarly. By illﬁ'r!:-a-billp_, the nualeer of levels, we can i
prove the scalability as we will see later,

3 Model of Dynamic Load Balancing

We introduce a formal model of the single-level dy
narme lowd distribution. The ann of our analysis 1s
ta study how the efficiency s deteriorated doae 1o 1]
load imbalance.

3.1 Model of single-level dynamic load
balanecing

The dynamic behavior of e on-demand load dis-
Lribution can be naturally expressed as a gurnemyg sys-

fem with several servers — customers arrive one alter
another and wail in a queue for service at any one of
the counters.

Here a sublask corresponds to a customer in the
queueing system, and a consumer processor corre-
sponds to a server. Henee the production of a subtask
corresponds to the arrival of a customer and the ex-
ecution of a subtask corresponds to the service to a
customer,

Maotivated by this analogy, we define the parallel
execution time by the single-level dynamic load bal-
ancing scheme as follows.

Definition 1 Lei W be the number of sublasks and L
b the number of consumer processors. We define the
sizé of a subfask as the CPU time required for crecul-
my o We denaie the size of the n-th sublask by R,
and the (P07 fime reguired for producing i by L, ihe
define the parallel erecution time T, as.

Ip = max 1},
Isns N

where Yy as well ws O X, and 2, are defined as
Jollows by induction on n,

L]
0, = Zf-ri- (1<n<N)
k=t

Ny = max(,, £,
}.ﬂ - -'tlﬁ + H1I

(1 <n<A)
(1<n<A)

usin max Vi (p< = N)
: I Sipa <0 ISk<n -
L EEiL Eps
0 (l=au<p)

Here O, nepresents the crealion time of the n-th sub-
task, N, (Y,) represents the starting {ending) tom:
of ds erecution, and Z, represents the time when af
least one of the consumers hecomes ready fo ereenle
the ai-th snbiash.

Here we ignored inter-processor conuuunication la-
teney and assumed that a subtask is inunediately
transiitted from the producer to a consumer wlen
demanded (At time Z2,) and available (at time O,).
According to assumption (1) in Section 2.1, we as-
sumed that no suspension occurs i executing each
subtask and that Y, is simply given by the sum of .\,
and f,. Note that Z, depends only on Y,.. ... Yoot
Hence X, Y, and Z,, are determined by induction on
.

This model can be regarded as a queuing systein
with p servers. F, represents the service time for the
n=Lh customer and €, represents the interval of arrival
between the (n— 1)-th and n-th eustomers.

3.2 Basic assumptions

Liv terins of assminption (o) 1 Section 2.1, the exact
values of &, A, and Y, defined above will not he
known beforchand. One of the worthwhile approaches
is the probabilistic analysis of algorithms initiated by
R. Karp [3] and others.

We suppose that a problem s given randomly from
a set of sinular problems {a probdlem space) and we will
engage 1 an average case analysis. Here W, R, and
Iy as well as 7, are regarded as random variables.

The size of a task {problem) is defined as the CPL
tine required for exeruting 1t nsing one processor. It
is also a random variable, and we denote it by T, and
s expectation by

ty = E{7) . average task size

We assume that there s a [amily of problem spaces
of different average task sizes. For example, a family
PGTI‘E‘SPGIIL{S to a gencral question e g rolor the
vertices of a geapl so as to satisfy a certain condition.
Each problem space consists of problen instances with
the same deseription length - g graphs with the
same number of edges. Problens instances with a
larger desceiption length will require a larger amount
of computation on average. Namely, they will have a
larger average 1ask size,

In terms of asswmnption (i) in Section 23 we as
suime that we can control the granularity of the sub-
Lasks mn the average sense. Namely, we assumie that
we ran control

=LA average pumber of subtasks

bl ot A piself,

And we assuine that the subtasks are probabilisti-
cally equivalent and that there s no correlation he-
tween the subtask siges Namely,

{#odu=12 = Lid,

{'r?ﬂ:n:l_'_-_'_ - i-i.';l.

{iad. stands Tor wedependent ideniically distributed.)
If thie subtask sizes were not probabibstivally equiv

alent, namely, if we knew that some of the subtasks
were expected 1o be larger than the others, they should
be distributed in a different manner. It there was a
rorrelation between the subtask sizes, for example, if
we could predict the size of a subtask based on that
of apother. we could balance the load better based on
such prediction. However, we will not discuss such
cases here. They will suggest other load distribu-
tion strategies, which might be complicated, strongly

problem-dependent and hard to analyze in a general
setting.
We define several other eharacieristic values:

% = E{liy) 1 average time for producing a subtask

;l; - !:I = L l,) 0 average sublask size
In other words, A represents Lhe production raie of the
subtasks and p represents the consumplion rate of the
subtasks at each conswmer processor. We denote the
rabio ol the production rate to the overall consuiplion
rate of the subtasks by

A
= —
iy
A small value of p inphes fine-grained granularity.
while a large valur of g iniplies coarse-grained granu-
larity. Later we will see that pis a normalized indica-
tor of the granularity of the subtasks
We assuwine that the total amount of the subtask
size= iz equal to the size of the whole (ask:

By b+ ey =1

and regard ' as the overhieads associated with par-
allel processing, We assunme that these overheads are
moderate i the following sense. Informally, produc-
ing a suliask 5 just computing an “address™ which
specifies the portion of the search space assigned te i1,
We assume that this address should be computed in a
reasonable ameunt of time — 0 a polynomial time of
log p. the deseription length of p. Namely, we assume

% = {M{log p]}] for some & = ()

For example. in the exhaustive iree search. a sub-
task, e.e., a subtree with its root at depth 4, can
he specified by a path of length o from the root of
the entiee tree 1o its own root, If the nodes of the
tree have bonnded degrees, the “address™ of a subtask
can be written down in Qid) tine. We should choose
d = (MNlog p) in order Lo produce a polynomial number
{in p) of subtasks. Later we will see that the optimal
vs n fact polynomially hounded in p (Corollary 1).

We denote the mean erecution time by t, = F(T,)
and adopt as a proper definition of the mean speed-up:

g = — © rollective” mean speed-up

instead of the artthme e mean speed-up E(T./T,). A
“rollective” mean represents a weighted mean of ratios

according to their denominators and is caloulated by
dividing, the sum of their numerators by the sum of
their denominators. For instance, suppose that a task
is chosen at random uniformly from the problem space
with 1, e {1 !'l“} and T, & {ti'' M)
Then

il ! i} filr':

if
"‘:-=rl| +m+rfl.r =Z i b i
T SRR o Sl (LSRRI AL LA

where 117/ is the speed-up for the i-th problem
instawce and s weighted i proportion o its paralle]
execution time 1,
Finally, we define;
-"\:i

Ji

W= miean elficiency

Tnx = supylp fy, v} maximal mean efficiency

¥
The smaramal mean ¢ fficrency g, 15 the mean of
ficiemey wlhen we choose the optimal granularity f(or
given poand 1)

4 Analysis of the Single-Level Dy-
namic Load Balancing

4.1 Deterministic case

Farstly we study a special case that corresponds to
uniform progeams, i wlich we know the exact size of
a given task and ean divide iU into an arbitrary number
of subtasks of exactly the swne size in a constant time
for each:

T, =1
) | i 1 .
Ny, No=-=-2, Py=— forWe=12, ...
[T A

We refer to such o special case as the dederminis-
foe case, since everything s determimstic here, 0.,
all random variables are distributed according to #-
distributions. Lo this case, optimizing the granularity,
we ohtain the following estimate of the efficiency,

Proposition 1 {deterministic case)

I r
=]
Thnay + A |

Heve == moans thai the lcfi-hand side and the right-
hand sode duffer only o0 a lower order term as p — oo,

InTuimive Proor: The producer will becomne a bot-
tleneck and hence the elliciency will be deteriorated.
when and only when g < 1 [8]. S0 we assume p > |
mince each of the p consumer processors completes p
subtasks per unit time, the execution of the last sub-
task will start at time:

i — |

Hp

X N =

And since the last subtask will require 1/ computa-
tion timne,

o
|

. . 1 1 f1 pp
To= Ny 4 — = o —
r N I Jige Iz P * A

1_P_¢E~]+F_P3

n N i - Ah
Choosing p = 1. we obiain the desired result, (Note
that p may not be exactly one stnce v takes only dis-

crete values J [|

Here the optimal granularity of the subtasks is char-
actenized by p== 1. which implies that the production
rate and the consmmption rate of the subtasks should
b balanced. This 1s intuitively convincing

4.2 Exponential case

Next we sty another special case, fhe erponentral
case, i which the task (subtask) size is distributed ae-
cording to an exponential distribution, and the nume-
ber of subtasks is distributed according Lo a geomet rie
digtribution:

l .
PlreT <r4de) = f—L‘X]J{—: e for ¥e =0
1 1

Flr< R, <r+de)=pe " dr for¥r >0, ¥n

=]
l(]—l) for Yo = 1.9 3.

PN =)
3 Iz

I

Note that the last two equations imply the first one.
Henee this s a consistent assumption

For example, il & subtask consisis of a simple loop
and there is a coustant probability of termination ar
each iteration, the size of a sublask 1s distributed eXpo-
nentially. Such a case is referred to as Markor service
fime in gueuelng theory.

Theorcm 1 (expounential case)

. | *
(i) Forvp =1, zl-&ﬁ-im{p
] Aly
N) 1 P’
fi) For <v¥p<|, -~z 14 = .logp
- 1 Jtt|

InTUITIVE PROOEF: (1) Sinee g > 1, the starting time
of executing the last subtask is the same as in the
proof of Proposition 1. We may assume that ali the p
consumer processors are busy at this time, otherwise
the “producer bottleneck™ must have oceurred in spite
af = 1 Hence, fromn Lhe Fellowing Lenuma 1,

frvrrli{il:illg exerution time) = = - il_‘ﬂg 1
I

Therefore:,
=1 H o
i — - o — 4 — - logp
" ey g r 1 y el
1 oty - frp |
- = —_ g)
ot M, OBl

(1) can be proved similaely aocd we ot tlee detaids B

Lemusa 1 Lef NN 0000 N be cod accordeng to the
expone whial disiedbuteon welh mean 7

. 1 r
Fle o N < rddir= expl ple fur e =0
i i

Then, for ¥ oa =0,

N —aiN ru=0

i

N o2a) =t

EiEY — a)®

f"[ﬁmm Ni)z=wo o logp i1}
Crdp

Proor: "he first twe clauns can be vertfied directly.
The PI‘-’J:‘JFﬂFIhH last elaimi i shebehed e «'luj:|lr-lli1isi [|

Now. compare the result i the determnnstic case
with Bt o thee exponentiol case An extra nctor of
log g appears i the latter. wloch stemns from the load
ibalance between the consumers due to Lhe diversi
fied subtask sizes. {In the forter case, all the sublasks
have the s sige) Thos che sealability i the Tatver
case 15 poorer by this factor

4.3 General case

Now let us ronsider a general case. However,
order to ensure reasonable elliciency, we need Lo miake
HONIE ITaore rL‘thllleJ[il?]lh

Hemember that once a subtask 1s entrusted to
abe cousuiner processor s never distribuled 1o oor
shared with other processors. 50 a subtask should be
“stequlily ™ executed . To be more precise, the expecta-
tion of the remaining execution tie {ffe erpectancy)
of a subtask should never blow up n the following
SCNEC,

(Moderate diversity m the subtask size) For
Yon=1.% .. and ¥a =10

|) 1
EiK,—a|H, za)< = (] 4+ —~——m)
Z £ l_|_“‘_“__‘i“‘¢|]

E'[Rfl - “]:I | H“ - a) = ()I.L'}}
-

as po— x and g — 0 Here E{N|C) represends the
condilional crpectation of N under condition

As for the first ineguality, 11 1s sufflicient to assome
that the hfe expectancy of a subtask (D77, - o |
fiy, = o)) should vever exeesd its il life expectancy
(1) For example. in the deterministie ease. the Life
expectancy decregses by the amonnt of elapssd time o
This 15 the “steadiest” case. In the exponential case,
lhf\']]ﬁ' f'x]'ll";"-.:lil':'} renlns SoHisbant Ll[]l:,:l fiEver I'_ll!'_l“'.‘"_,
up [Lemma 1) This s the marginal case,

O the contrary, when Lhe sige of o sublask s dis
irtbuied oo divergently, ths condition may be viee
lated and the efficieney may be poor. For example,
suppose that most of the subtasks are small (ol siee o)
Al culy w few e cveoptionalty Jarge (of size A4 3 a).
Then the few subiasks thar have survived the -
tial small period (o] will have w omuels longer life ex-
pectancy (A=) than the overall initial life expectancy
{7). They will donenre o Gakad londd pobalanes and the
cificienry will be damaged. A respedy for such cases
wight be 1o subdivide the subtasks that have heen
found Lo bhe exceptionally large. Such a load balane-
g scheme =5 beyond the seope of diseussion here

Thus, in order to ensure reasonable efficiency. we
should assuiw Lhat Lhe subiask sizes are not too di-
verse. The above assumption in terms of life ex-
prectancy indirectly bimts the diversiios of the subiask
sz, We can show that the sealabiiity in this general
CAST IS 10T Worss 1|||'-||| [II!' l'!'[]”lllr"‘l]rl],li LT

Theorem 2 {general case)

-I:l.ﬂ-p‘;.'-l- "

o e N A -

] Afy
INTUITIVE PrOOF: According to Lemina |, we may
regan] the exponential case as one of the worst cases
under our assumption. Hence the efherency in the gen-
eral case would not be worse than the exponential case,
for which Theorem | provides the desirable hoand. B

A rigorous proof of this theorein s given m [4]

Corollary T {(isocfliciency function for the
single-level scheme) Let p and ¢ be as above. For

U Ve < 1, lf wre hare a lask fr::h‘rr l'rn:mglr.ﬁ That,

= flogy 4 o)
£ A

then by choosing v as

|
Q-zﬁ)

1
o= =pe(logp+r
fpfm-'](i

we can maintain the efficiency as; p = 1 —«

5 Isoefficiency Analysis of the Multi-
Level Dynamic Load Balancing

‘Thie multi-level dynamic load batancing scheme 1s
an iterated application of the single-level scheme inoa
hierarchical manner {Section 2.5). I our ternnnciogy,
it is defined as follows by induction oo the manbeer of
levels £

f-level dynamic load balancing is nothing but the
single-level dvnanme load balancimg. For £ > 1, the
(f 4+ 1)level dynaimic load balancing 1= the single-
level dynamic load balancing with rach consumer sub-
stituted by a number of processors, which execute
each subtask wsing the Flevel dynamic Toad halane-
ing scheme. We assume that the production rare X is
common o all levels,

We now apply the results i Section 4 to the soef-
ficiency analysis of the multi-level lnad balancing

We begin with a remark on the single-leve] dy-
namic load balancing.
assumptions, we assume that AN, the number of the
subtasks, should also he moderately diverse. Namwely,
for Wm =12,

In addition to the previous

1
EN=n|Nznj<v (1l +0{—)

|;_1E i

E({N — I’I‘]E [N Zu) = f'}{p-"]
Then it can be shown that hoth the 1otal task size
T and the paralle]l execution tioe T;. ilsee have the
same property [4]. Thus we can apply the precedg
analysis teratively to the multelevel load bakbaneing
and obtain the following results

Theorem 3 (isoefficiency function for the
multi-level scheme) With the fdevel scheme, for
arbilrary ¢ = 0, there erisis ¢ >) such that

flzi-pq'l-i'logp‘,ltp = Thoax = 1 —¢

Jor mfinstely many p, where p s the nuwmber aof con
SUMET Processors.,

INTUITIVE PROOF: Lel np{p) denote the isoctficiency
funetion of the level dynamic load balancing: — the
average size of the task for which the {-level dynamie
load balancing 1s expected to work with efficiency of
at least gy using p consumer processors. where gy 1s
an arbitrarily given positive constant less than [

We use induction. Assume thal

arg

]
melpz) ~ 5 pY Alog pa) ™

for sonme £ > L oand po > 1 Here ~ shows that the
left-liand side and the right-hand side have equivalent
magniiude as p — 40 Note that Corollary 1 imiplies
this for £ = 1 with oy =2,) = |,

Regard the (f 4+ 1} level dyvnamic load halancing
as bewng composed of the root producer and py vir
tual “ronsumners” . each of which 15 1 fact composed
ol a number of processors using the “level dynamic
load balancing scheme with real pq consumers, where
po=pp o pe Then the overall efficiency is maimtamed
if and only if both the single-level dynaniic load bal-
ancing at the root producer and the f-level dynamic
load balancing inside each “ronsuowr” waintain their
efficiency.

Corollary 1 gives the condition for the Tormer:

1.
rr‘+l[.i-"i""1 o log g pe

L,
Hi A
where |.-"IJ-|-1 denotes the average subilask stze carmed
out on the “ronsumers”. Note that each “consumer”
15 accelerated o proportion Lo pe, when the (<level
lowd balancing inside it works efficiently.

On the other hand, the induction hypothesis above
wives Lhe condition for the latter:

(2)

1

— iy —

PR {4

pa o {log)
From these equations we obiam

1
Tegrlpl ~ 3 Sptte -[Iogp]'“*'

1

i
“t+1:2*u—r1 —

Begr =1+ -
thy

Hence we obtain the following as desired

F41 f+1
T. ﬁr— 2

This theorem implies that the molu-level dyvianne
load balancing scheme is indeed imore scalable than the

| (4)

ny =

single-level one in the sense of izoefficiency. Scalability
15 vmproved with Ll monber of levels.

The next theorem unphes that a producer at a
higher level should have woere “consumers” than one
at a lower level, In particular, the uniform tree con-
figuration of orocessors, in which a producer at every
level has equally pf/7 consumers. is ot optimal,

Theorem 4 (optimal processor configuration)
foarder o alltamm i, obare we should have

(degree of the rot prodneer) = O(p? -[lngp]r_}t]

Isvmvirive Proor: Note that the claim b= teivial for
i = 1. From Eguation {2503} and {4) above, we obtam

n

" 1 ‘4
P p e {logpat

r = p - (log p)

This s the desived result for (£ 4 1-level with ¢ > 1. 11

6 Conclusions

We have investigatoed the optimal efficiency of the
mult-level dlynamic load balancing seheme for OR-
parallel programs, using probability theory. In par-
tienlar, we showed Tow the molti-level dynamic load
Balaneing scheme inproves sealability over the single-
level e i terms of isoefficiency funetion.

It would he worthwhile to perform similar proba-
bilistic analysis of other load balaneing schemes, ¢.g.,
the parallel depth first search algorithims [3], kabu
wake 7).

Sofar, we have not considered inter processor com-
mutcation latency, or other overheads agsociated with
parallel execntion How the efficiency suffers froin
these should be treated m future works.

7 Acknowledgments

Wewould like 1o thank Vipin Kumar for taking
part i valuable discussioms
Appendix

A Proof Sketch of Equation (1)

For simplicity we may assume ¢ = |. Then,
g

1 , - =T Er
£{1I£_|:1£:GJ.,L} - _vf e (1

it

e T dr

1
—I'f (1=)" og ydy
1]

i
=i EEEP. ‘f”v:l

HMip+ 1)
Fip+1)

24 loglp+ 1) -

="y +

Hp+ 1}

f-" 2t df
w4 1) e

where T devotes gamma function: £, beta function:
and €7, Euler’s constant {1}, Since the last terin is
wegative aned preater than _'.'rTLm' equation (1) ful-

fows imedaately, B

Reflerences

[L. V.
(RGN

[2] M. Furuichi, K. Taki, and N lehayoshi, ~A Multi-
Lewved Loail Balanemg Scheme Tor OR-Paralicl
Exbaustive Search Programs on the Multi-PSi
Fooe o of the Znd ACM SIGPLAN Symposiom on
Prancaples 1 Practice of Parallel Frogramming,
Pl S8 (1900)

(4 B M Karp. “The Probabilistic Analysis of Some
Combinatornal Search Algorithms,” in . F. Traub
(ed), Algerithmes awd Comeple rity New Direcitons
and Kecenl Resulls, Academic Press { 1976).

[M] K. Kimura and N Ieliyoshi, “Prohabilistic Anal-
wain of the Optimal Efficiency of a2 Dynamic Load
Balancing Scliene.” i preparaiion. te appear m
TCOT Tochuread Bepurt.

(3 V. Kwwar and V. N, Rao, “Load Balancing on
the Hypercube Archutecture.” Proc, of the 1949
Conferenee on Hypevenbes, Coucarrvent Compuiers
and Applicalanns, pp 603 GU8 [1Ers,

[5] V. hmnar and AL Gupta, “Analysis of Scalability
of Parallel Algoritlons and Architectures; A Sur-
vey.” te appear e the 1994 International Confir.
EHCe ob vupercompuling (1991).

[?]' k. Kumon, H. Masuzawa, A. Itashiki, K. Satoh.
and Y. Soluna, "Kabu-waks: A New Parallel Infer
ence Method and [ts Evaluation.” ICOT Tevhnical
Keport 150 { 1498065).

[8] N.U. Prablw, Quenes and Inrventories, John Wiles
{ 1405).

{9] PO Treleaven, “Parallel Architecture Overview
Parallel Campntong 8. pp.T1-83 (1988).

Allfors, Compler Analysis. MeGraw-Hill

