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Abstract

This paper provides a probabilistic analysis of the scalability of load balancing tech-
niques with on-demand distribution. A problem to be solved (or a task) is assumed to be
composed of many independent subtasks that require different amonnts of com puiaiion.

In the single-level dynamic load balancing scheme, one processor divides a given task
into many sublasks, which are distributed to other processors on demand and executed
independently. We introduce a formal model of its execution as a quening svstem with
multiple servers, and estimate the efficiency (speedup divided by the number of DTOCEES0TS |
taking account of the dividing costs and the load imbalance between processors due to the
nom-uniformness of subtasks,

These results are then applied to the analysis of scalability of the multi-level dynamic
load balancing scheme, which is an iterated application of the single-level scheme in a
hierarchical manner. And we show how the scalability is thereby improved over that in

the single-leve] scheme.
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Notations and Conventions

Throngheut this paper, we assume that all random variables are defined on a standard probability
space (2,5, P), where @ is the base space, 5 ¢ 2% is the g-algebra of events, and P is the underlying
probahility measure. Upper-case letlers represent real-valued random variables and lower-case letters
represent real numbers, unless otherwise specified. Basically, we adopt frequently-used notations such
as those in [4]. In particular, we use the following.

a.s. : almost surely

iid. ¢ independent identicallv distributed

N : set of all positive integers 2 @ set of all integers

£ : oset of all real numbers R, : set of all non-negative real numbers
A" complement of set 4

AN B = An A difference of sets 4 and B

aV b= max(a,b): maximum of ¢,b € B a b= min{a,b) : minimum of a.b ¢ R
iy = max{a,0) : positive part o[ a ¢ R

lx] : larpest integer not more than x € R fr] : smallest integer not less thar r ¢ R
ap = O(bp) <= limsup, .., jay|/b, < ap = ofby] == limp_e. ag] /b, = 0

= b} = liminfl,_.. a,/b, >0 ap = wiby) = limp_a,/b, = =

ap = B{by) = ap = O(b,) and a, = 02{by,)

ap by == limp o ap /by, = 1

ap S by = limsup, . a,/b, <1 ap 2 by = liminfp oo ap/b, > 1
La : defining function of aset A se. 14z} =1(z € A), 14(x)= 0 (otherwise)
FP{A) = P{A} : probability of an event 4

E{X) = E{X} : expectation of a random variable X

E{XN,A)= E(X-1,4) : expectation of X over an event 4

VX )= E(X*) - {E(X)}? : variance of a random variable X

FiA|C)= P{A|(} : conditional probability of an event A under a condition ¢
EiX |C)= E{X |C} : conditional expectation of X under a condition C

VX |€) = E(X?| )~ {E(X |C)?

ess.sup(X) =inf{a € R| X <a as }: essential supremum of a random variable X

PX : distribution of a random variable X

|X | €, : conditional distribution of X under a condition ¢

X <Y {or PX < PY): X is stochastically smaller than ¥

w4 convolution of distributions &, 4 over R

F|X](z) = E(e**) : Fourier transformation of & random variable X

F G o-algebra generated by o algebras F.G in 0

AaFs =1, Fs : the greatest o-algebra in © smaller than any o-algebra in a family {F,}
g X1, ..., X:] : complete subo-algebra of 5 generated by random varjables Xioooo Xy
Pie)= [(Fe """ 1dt : gamma function

Blz,y)= jﬁ,] F~H1 ~ tP~'dr : beta function

€ =10.5772... : Euler's constant

g



1 Introduction

The purpose of parallel processing is to accelerate the execution of time-consuming tasks by utilizing a
number of processors. Efficiency, defined as the speedup divided by the number of processors, indicates
the performance of parallel processing. It depends not only on the algorithm itself, but also on the
number of processors, the problem size (the amount of computation required by the best sequential
algorithm for solving it}, and other factors. In general, for a given task, the efficiency decreases as the
number of processors increases, as Amdahl's law illustrates. Therefure, it is important to analyze how
Lhe efficiency depends on these factors. In particular, as increasingly larger-scale multiprocessors are
now being developed [14], scalability analysis of efficiency is becoming more and more important.

Varivus measures of the scalability of a parallel algorithm have been proposed for different situa-
tions [9]. Among these, the notion of isoefficiency succinctly captures the characteristics of scalability
of a parallel algorithm [10, 3]. The efficiency usually decreases with an increasing number of pro-
cessors, bul recovers again with larger problems. The isoefficiency funciion indicates how much the
problem size should be increased with the number of processors so as to maintain a constant efficiency.
A parallel algorithm with a slowly increasing isoefficiency function is supposed to be scalable.

1deally, the efficiency should be one, however, it may deteriorate due to various reasons: the load
imbalance hetween the processors, inter-processor communication latency, speculative computations,
or other overheads associated with parallel execution. In particular, if the algorithm is composed of
many parts requiring unpredictable amounts of computation, as is nsual with many combinatorial
search problems, load imbalance between the processors is likely to occur and may have a great
influence on the cfficiency. Thus the load balancing is one of the central issues of parallel processing.

Kruskal and Weiss [§] studied the load balance when independent subtasks are aliocated to proces-
sors o demand, assuming that the subtask running times have THR (increasing hazard rate). They
employed a queveing model with nuil arrival intervals, and showed how the non-uniformness of sub-
tasks affects efficiency, However, a subtask queue was assumed to be given at the beginning, and access
limes to the queue were incorporated into the subtask running times. Thus, the pessible bottleneck
at generating the subtasks, which might degrade the eflicicncy, was not taken into account.

Also, in a distributed computer system, load balancing or load sharing attempts to improve the
performance when different nodes are heavily or lightly loaded. Wang and Morris [15) surveyed
mote than ten different stralegies, each of which has been analyvtically or numerically studied using
gueueing models for several particular probability distributions. These are concerned with stationary
behaviors when independent tasks keep arriving at different nodes in the system from outside. The
total processing capacity and the fairness of service are primarily studied there. On the other hand,
in this paper, we will study the parallel execution time of a single finite divisible task.

Furuichi et al. [2] proposed the multi-level dynamic load balancing scheme for a program on an
MIMD machine, which requires many independent pieces of computation. They evaluated its perfor-
mance for an exhaustive tree exploration using Multi-PSI [11], a distributed memory MIMD machine
with 64 processors. Their basic strategy is to divide a given problem into mutually independent sub-
tasks, and distribute them to other processors on demand. This on-demand distribution dynamicaliv
balances the load between the processors. Thev pointed out that tuning the granularity of subtasks
is essential for high performance. Tlowever, when the number of processors increases, the number of
subtasks should increase correspondingly. Therefore, if the division is entrusted to one processor | Hhe
single-level dynamic load balancing scheme ), it will become a bottleneck. So, they propasad divid-



ing the problem iteratively in a hierarchical manner {the multi-level dynamic load balancing scheme).
Their experiments show that the latter is in fact more “scalable” than the former.

The purpose of this paper is to theoretically investigale the scalability of these load balancing
schemes. We define a formal model of the single-level dynamic load balancing as a quening system
with multiple servers, taking into account the positive finite dividing costs. Here the unpredictable
amount of computation required by each subtask is probabilistically treated. We will estimate the
efficiency and show how il depends on the granularity of subtasks. The results on the single-level
scheme are then applied Lo the analysis of the multi-level scheme. Among others, we show:

1. With subtasks of random sizes, the efficiency is worse than that with subtasks of exactly the
same size. The isvefliciency function in the former case is logp times larger than that in the
latter case, where p is the number of processors.

2. The multi-level scheme is indeed more “scalable™ than the single-level scheme. The isoefliciency
function for the former has a smaller fractional order of p than the latter.

3. In the tree configuration of the processors in the multi-level scheme, a processor at a higher level
should have a larger fan out degree than one at a lower level. 'I'heir ratio is of the order of a
fractional power of log p. In particular, the uniform tree configuration with the same degree at

all lewvels i= not optimal.

In this paper, we present our analysis in detail, where familiarity with basic notions from modern
probability theory hased on measure theory is assumned. Some of the material in this work appeared
previously in concise terms in Ref. [7], where we made a compromise in rigidity and gave anly intuitive
prools.

The rest of the paper is organized as follows. In Section 2, the single-leval and multi-level dynamic
load balancing schemes are described. In Section 3, a formal model of single level dynamic load
balancing is defined as a quening system. Its behavior is analyzed in Sections 4-6: for a special case
with & uniform suhtask size, a typical case with random subtask sizes, and general cases. In Section 7,
we investigate the probability distribution of the parallel execution time with the single-level scheme,
based on which the multi-level scheme is investigated in Section 8. Finally, concluding remarks are
given in Section 9.

2 Single-Level and Multi-Level Load Balancing Schemes

In this section, we describe the single-level and multi-level dynamic load balancing schemes proposed
by Furuichi, laki and Irhiyoshi [2]. These schemes are applicable to a parallel program on an MIMD
machine, which requires many independent pieces of computation. In particular, they applied these
schemes to exhanstive tree exploration, and evaluated the performance using Multi-PSI [11), a dis-
tributed memory MIMD machine with 64 processors. Ilere, we intuitively discuss the performance
these schemes in order ta promote detailed analysis in subsequent sections.

2.1  Assumptions for problems
We asswme that our target problem can be divided into many subproblems as follows:

(A-1) The subprohlems can be solved independently of ane another.



(A-2) The amount of computation required by each subproblem is unpredictable before it is solved.

These assumptions seem natural in the OR-parallel exhaustive search procedures for many combi-
natorial problems. For instance, consider an exhaunstive search of a tree, which represents the search
space of a combinatorial problem. This tree can be divided into many subtrees at any depth d, and the
search of the entire tree will be reduced ta the searches of these subtrees. The latter searches will be
independent of one another, as long as we don’t employ any special pruning strategies. Furthermore,
as is inherent in combinatorial problems, the entire tree will be irregular and the size of each subtree
will be unpredictable before we search it. Thus, both assumptions are satisfied.

Now, in general, assumption (A-1) implies that the problem can be solved efficiently in paraliel
— different processors can solve different subproblems simultaneously. However, assumption (A-2)
makes it difficult to statically balance the load between the processors. This prompts us to employ a
dynamic load balancing strategy.

In the following, we will refer to the problem to be solved as a task, and similarly, to & subproblem
as a subtask,

2.2 On-demand load distribution (single-level load balancing scheme)

We comsider one of the most naive on-demand load distribution techniques: — given a task, one
producer processor divides it into a number of mutually independent subtasks, which are transmitted
to the consumer processors on demand and then executed.

This on-demand load distribution will dynamically balance the load between the processors. We
refer to this load balancing strategy as the single-level load balancing scheme [2].

2.3 Tuning the granularity

In order to make this load balancing scheme work efficiently, we have to tune the granularity of the
subtasks. With a few large subtasks, load imbalance between the consumer processors is likely to
occur. As an extreme case, if the number of subtasks is less than the number of consumer processors,
some of the processors will never be used. On the other hand, with many small subtasks, the producer
is likely to become a bottleneck.

S0 we assume that:
(A-3) The granularity of the subtasks can be controlled.

Namely, we assume that the task can be divided into more subtasks of smaller sizes or less subtasks
of larger sizes, at will.

For example, let us consider the OR-parallel exhaustive search of a tree again. Fach subtask is the
search of a subtree with its root at depth 4. So, by choosing an appropriate depth d, we can control
the granularity of the subtasks.

2.4 HBottleneck in speedup

This on-demand load distribution technique has the apparent drawback of not being scalable.
Suppose that the number of processors is increased. Then, as we just saw in the last subsection,

the granuiarity of the subtasks should be tuned accordingly. In this case, we have to increase the

number of subtasks so that they are a certain extent larger than the number of consamer PIOCessnrs,



Rut if we increase the number of subtasks, the producer will become a bottleneck, since it 1= in charge
of producing all of these subtasks. 1'hus, efficiency will inevitably drop.
0. in order to improve the scalability, we should remove such a producer bottleneck.

2.5 DMulti-level load balancing scheme

The multi-level dynamic load balancing scheme alleviates the producer hottlencck by hierarchical load
distribution.

In the 2-level dynamic load balancing scheme, we divide a given task at a root producer into many
subtasks. They are distributed to the second level producers on demand, and are, then, divided again
into smaller subsubtasks. These subsubtasks are further distributed to the leaf consumers on demand,
and are finally carried out. For instance, consider the exhaustive scarch of a tree again. This search
tree is divided into many subtrees at depth d; by the root producer, and each subtree is again divided
into many subsubtrees at depth da(>> d;). Thus the search of the entire tree is reduced to the searches
of these subsubtrees.

Schemes of more than two levels can be defined similarly. More precisely, it is defined by induction
on the number of levels £. For § = 1, the l-level dynamic Inad balancing is nothing but the single-
level dynamic load balancing. For £ > 1, the (€ + 1)-level dynamic load balancing is the single-lovel
dynamic load balancing with each consumer being replaced by a number of processors, which execute
each subtask in parallel using the £-level dynamic load balancing scheme, By increasing the number
of levels £, we can improve the scalability, as we will see later,

3 Model of On-Demand Load Distribution

T this section, we introduce a formal model of the on-demand load distribution (parallel execution
with the single-level load balancing scheme), which gives an expression for the parallel execution time.
This is intended to capture the speedup deterioration due to the load imbalance. Here, we assume
that the inter-processor communication lateney is negligible, which 15, hence, not incorporated into
the model, We describe the basie assumptions in our analysis, and define several usefnl characteristics.

3.1 Expression for parallel execution time

1n this subsection, we give an expression for the parallel execution time of a task assuming its division
into subtasks.

Lel p be the number of consumer processors and N the number of subtasks. For eachl1<n <N,
let R, be the CP'U time required for executing the n-th subtask with a single processor, We refar to
Rn as the size of the n-th subtask., Let U/, be the CPU time for the producer processor to cut the
ti-th subtask from the whole task,

Foreach 1 <m < N, let X, and ¥, be the time when the execution of the n th subtlask starts and
ends respectively at a consumer processor. Neglecting the inter-processor communication latency, the
first p subtasks are executed at different consumers as soon as they are generated at the producer.
Hence,

-:I‘-n:[';1+"'+ﬁn:- {1571{?}-



According to assumption (A-1) in Section 2.1, we assume that no snspension accurs in executing each
subtask. Hence, ¥, is simply given by:

Yo=X.+H, {]i:nEP]'

As soon as at least one of these p subtasks is completed, the corresponding consumer becomes free.
S, if the next subtask is generated at the producer, it can readily be executed at the free consumer.
Henee,

Apr = max{ly + - + Upjr,min{¥3,.. ., Y5} ], Yor1 = Xpi1 + Fppa.

Similarly, each of the remaining subtasks can be treated inductively. Namely, they can be executed
as soon as (1) they are generated at the producer and (ii) at least one of the consumers becomes
free, although at most p =1 of the preceding subtasks may still be in execution. Finally, the parallel
ereculton time, denoted by 1}, is given by the maximum of ¥y,..., ¥, — when all of the subtasks are
vompleted.

We summarize these in the following definition.

Definition 3.1 (i} A division of a task is specified by ({ R}, {U.}Y, ) with ¥ € N and R,., U, ¢
R, foreach 1 <n < N, where N represents the number of subtasks, [, the CPL time for producing
the n-th subtask, and /iy the size of the n-th subtask (CPU time regquired for execution).

(i} For 1 <p€ N and a division of a task specified by ({Ha},, {Us}is, ), we define T}, the parallel
erecutton fime with p consumers by

(3.1) T = max YV,

1<no iV
where ¥, as well as X, 0, Z,, are defined by induction on n.

o

On = EU;‘ (l<a<N)
k=1
Xe = OuWV i, {1<n<N)
(3.2) { Yu = Xo+R, (1<n<N)
15'!":“!‘1:1::—IE11 1 IETEa:.{—l Y (F < ﬁ}
Zn = A ripet
] (1<n<p).

Here, Oy, represents the birth time of the n-th subtask, X", (¥, ) the start (end) of its execution period,
and Z, the time when at least one of the consumers becomes ready to exerute the n-th subtask after
completing the previously assigned subtask. Note that Z, depends only on Y5, . .. JYooq, which makes

induction on n possible.

Lquation (3.2) defines a queuing system with p servers, where R, represents the service time for the
n-th enstomer and IV, represents the interval of arrival between the (n—1)-th and n-th customers. Here,
a subtask corresponds to a customer in the queneing system, and a consumer Processor corresponds
to a server. Hence, the production of a subtask corresponds to the arrival of a customer and the
execution of a subtask corresponds to the service to a customer. Thus, the dynamic behavior of the
on-demand load distribution can be naturally expressed as a queueing system with multiple servers.



3.2  Probabilistic assumptions

In terms of assumption (A-2) in Section 2.1, the exact values of N, R, and U, will not he known
beforchand. One of the worthwhile approaches is the average-case analysis of algorithms initiated by
R. Karp [6] and others. We suppose that a problem instanee is given randomly from a problem space
(2 set of similar problems), and regard N, R, and U, as random variables. And we will be engaged
in the average-case analysis over the problem space.

In this paper, we assume that the subtasks are probabilistically equivalent and that there is no
correlation between them. Namely,

{fntaz1a, ¢ Lid, {Uatn= 0 ddd., N B, Uy (n=1,2,..): independent.

If the subtask sizes were not probabilistically equivalent, nam ely, if we knew that some of the subtasks
were expected Lo be larger than the others, they should be distributed in a different manner. If there
were correlation between the subtask sizes, for example, if we could predict the size of a sublask based
on thal of another, we conld balance the load better, based on such prediction. Iowever, we will not
discuss such cases here as these might suggest other more efficient load distribution strategies, which
might be complicated, strongly problem-dependent, and hard to analyze in a general setiing,
According to the analogy with & queuing system, we introduce several notations:
% = E(Us) : average time for producing a subtask
1

Pl E{R,) : average subtask size

In other words, A represents the production rate of the subtasks per unit time and g represents the
consumplion rate of the subtasks per unit time at cach consumer processor. Heducing the scale of
unit time, if necessary, we assume that A, x < 1 {in fact, we will be intcrested in the situation where
A= 0). We define p as the ratio of the production rate to the overall consumption rate of the
subtasks:

A

p= -,
up

A small value of p implies fine-grained granularity, while a large value of p implics coarse-grained
granularity. Intuitively, the optimal granularity of the subtasks seems to be specified by p = 1 {this
is when the subtasks are being produced and consumed at the same speed). In later sections, we will
see how the performance of the parallel execution depends on the value of p. These notations, A,
and g, are conventional in quening theory,
We also write:
v = E(N): average number of subtasks

In terms of assumption {A-3) in Section 2.3, we assume that we can control the grannjarity of the
subtasks in the average sense, Namely, we assume that we can control ¢ but not N itself,

We define the size of the task, denoted by T3, as its sequential execution time, i.e., the CPU time
required for executing the whole task with a single processor. We assnme that it is given hy the sum
of the sizes of all the suhtasks:

Ny =M +---+ Ry

We write:
p = E(1y) : average task size

8



Accordingly, &, = v/u holds regardless of the choice of the granularity.

On the other hand, we regard [;s as the overheads associated with parallel processing, and assume
that these are moderate in the following sense. Informally, producing a subtask is just computing an
“address” which specifies the portion of the search space assigned to it. We assume that this address
shonld be computed in a reasonable amount of lime, f.e., in a polynomial time of log p, the description

length of p. Namely, we assume:
1 '
3= O{(logp)*)  for some k' = 0.

Fuor example, in the exhaustive tree search. a subtask, t.e., a subtree with itz root at depth d, can
be specified by a path of length d from the root of the entire tree to its own root. If the nodes of the
tree have bounded degrees, the “address™ of a subtask can be written down in O(d) time. We should
choose d = O(log p) in order to produce a polynomial number of subtasks in p. Later we will see that
the oplimal granularity, in fact, takes a polynomially bounded number of subtasks in p (ef. (5.15),
(6.20)).

Furthermore, we assume that the worst-case computation time for the “address™ of a subtask,

o = ess.sup 7,

is not too diverse from the average-case computation time 1/A. If [/,’s were the same for all n, the
average-case and worsi-case computation time would coincide: & = 1/A. However, we will assume a
somewhat more relaxed condition:

oA = 01,

Since we are interested in the scalability of the load balancing technique with an increasing number
of processors, we should consider increasingly larger problems. However, the size of a task (problem),
defined as the CP'LU time required for executing it on a single processor. is itself a random variable
given by Ty = Ry +4+--+ fy. So, we assume a family of problem spaces with different average sizes (t, ).
A family corresponds to a general question, e.g., color the vertices of a graph so as to satisf v & certain
condition. Fach problem space may consist of problem instances with the same description length,
e.g., graphs with the same number of edges. Problem instances with a larger description length will
require a larger amount of computation on average, namely, they will have a larger averape size, {;.
Thus, those with different description lengths will constitute a family of problem spaces with different
average sizes,

In general, in order to exploit a larger number of processors efficiently, a correspondingly larger
task should be treated that can compensate for the growing parallelization overheads. Namely, we
will study the case with #; — oo and p — 0o, However, we assume that the average task size should
not grow too fast, ie., #; should be polynomially bounded by p, ie..

4y = O(p*)  for some k > 1.
We summarize these assumptions in the following.

Assumption 3.1 We assume a family of independent random variables:
Tler oyl {HE"“]}“““_1, {trlwrlye=

9



parameterized hv ty = ¢ > 1 and 1 < pe IV with
(3.3) Tty <apt forsomea>1,k>2

such that the following hold.

(i) ¥+ e N as., and each of {RL"}= | and {[F.Et""‘p}};“;l arc iid. over Ry,

(i) E(N)y =g

(iii) T{", defined by 7{") = RI") £ 4 RI%*) does not depend on v, and E(T{™)) = ;.
(iv) 1/Atve) = Brpif#)y and alt®) = ess.sup U5 satisfy

1

(3.4) 1< ey © a'-(logp)*  forsomed > 1, k' >0
{3.5) sup el Pter) < 0" for some o” > 1
b, 1y

We will refer to such 71" ag a division of a task iof expecied size 1)) between p consumers in
granularity i /v, For each ¢; > 1, 71) = {Twn) | 1 < » < 1) < ap, 1 < p € N} represents a
divisible task of expected size 7;. We will also refer to 7 = {Tlar) | | < p <ty < ap*, 1 < pe N}
as @ family of divisible tasks. Tor each (fy.v,p), the parallel execution time Tj’“ “%l i¢ defined by
{3.1)-(3.2), and p*) = vy < 1, plosr) = Albwel ey For brevity, we will often omit the
superscripts and write: N = N go= RS o gihe) and so on.

Here we give two examples satisfving this assumption. These will be studied in Sections 4 and 5.

Example 3.1 (deterministic case) This is a case when all the random variables are distributed
according to the delta distributions: for any 1 < p€ N and §; > » > 1 with v € N and (3.3),

1
A{tl l;lﬁ

1
ﬂf*l-"}’

Tlfh'ﬁ =1, N(n,#} = Riu,p] = Hih.n-'.p_] —

(»=1,2,...)
where 1/ul%#) = ¢; /v and M%7 s any constant satisfving (3.4). This case corresponds to a uniform
program, in which we know the exact size of a given task and can divide it into an arbitrary number
of snbtasks of exactly the same size in a constant time for each.

Example 3.2 (exponential case) This is a case when the task (subtask) size is distributed ac-
cording to the exponential distribution, and the number of subtasks is distributed according to the
peomelric distribution — for any ¢ > » > 1,

Fiz < Tf“:' <z+dr)= flexp[—;-]dx for ¥z 2 0 (exponential distribution with mean ¢;)
1 1

Plr < R < 2y dr) = pe™dr for¥z >0, V¥n (exponential distribution with mean 1/u)

- ] 1yt :
PNl = gy = = (l - —) for¥n = 1,2,... (geometric distribution with mean v)
B 1

where g = plt+) = v /1, For example, if a subtask consists of a simple loop and there is a constant
probability of termination at each iteration, the size {execution time) of a subtask is distributed ex-
ponentially. The above condition fer HE"”] 15 its continuous variant, which is referred to as Markov
service fime in queuecing theory. Condition (i) in Assumption 3.1 is verified by the following propo-

sition.,

i



Proposition 3.1 Let N and R, (n = 1.2,...}) be independent random variables such that N is dis-
tributed according to the geometrie distribution with mean v > 1 and each Ry is distributed according
to the erponential distribution with mean o > 0. Then Ry 4 -+« + Ry i distributed aceording to the

erponential distribution with mean vo > 0,

Proor: Applying Fourier transformation, we obtain

1
l - ireaz

FlRy + -+ Byl(z) = E((1 - icz)™ ") = E = 1= %‘“"‘ (1l —idgz)™ =

n—J
3.3 Performance measures and other technical notions

In this subsection. we define several useful characteristics and notions. We define the rmean erecution
time as t, = E{T,) and adopt as a proper definition of the mean speedup

iy
E '

by = “collective” mean speedup

instead of the usual erithmetic mean speedup E{T1/Ty). In general, a “collective” mean represents
& weighted mean of ratios according to their denominators and is calculated by dividing the sum of
their numerators by the sum of their denominators. For instance, suppose that a task is chosen at
random uniformly from the probiem space with Ty € {.!':[ll], z”}} and T, € {t"r” __,1;,:]]_ Then,

. - zi”+ M 4
o = D e R
TR~ £ A U

where 1) i /i ‘] 15 the speedup for the i-th problem instance and is weighled in proportion te its parallel
execution tiie I[ ].
We usually have 0 < s, < p, and s, = p in the ideal case. Normalizing the speedup, we define:

. & N .
(3.6) n=-+t=  mean officiency
n vty
(34.7) Hmax = supy{p, i, ) @ maximal mean efficiency.
L=

Thus, we usually have 0 << 5y << 1. and 5 = L in the ideal case. The mazimal mean efficiency fay is
the mean efficiency when we choose the optimal granularity for a given p and ;.
Finally, we define a technical notion that will be required in the proofs in later sections.

Definition 8.2 Let 71ws) = (Ntaw) (Rifr¥)jen | (i “P)}e0 ) be as in Assumption 3.1, For each

! 2 0, we define Fy = FHYP) information up lo time 1, by

ko= f‘\ FlAp e, Yons Zons|n=1,2,..l
st
where X, Y, and Z,, are those defined by {3.2).

Note that {JF;}iq is a complete and right-continuous increasing family of o-algebras on (£, B, P).
Eacl of Xy, Yy and Z, for any » is a stopping time { Markov time} with respect to {F }isp. Strictly
speaking, F; represents the information availuble lo the consumers up to time t. In general, Oy is noi
a stopping time with respect to {F.}ea.

For any stopping time 5, we refer to Fg as the information up to time 5, where

Fs={AeB|AN{S<t)cF (vt>0)

11



4 Deterministic Case

In this section, we investigate the cfficiency of on-demand load distribution (single-level load balancing)
in the deterministic casc, in which a task can be divided into subtasks of exactly the same size in
a constant time for cach {cf. Example 3.1). In this case, all the random variables are constants
(distributed according to the delta distributions):

(4.1) =1y, N =y, U"E%‘ Ei (n=12..))
withty > v > 1, ve N, 0< A< 1and p=w/t;. The deterministic case corresponds to D/ /s with
5> 1 in gueuing theory,

Throughout this section, we assume that Tl = (Nt [ R'["-#'.l}ﬂ o fpihw rp]}nmzl} satisfies
Assumption 3.1 and (4.1) for cach 2;, v and p. We call such 7 = {T"#P)} 4 family of divisible tasks
of deterministic type. We will constantly use notations (J,, Xn, Yo, Zy and T, defined by (3.1)-(3.2).
The efficiency n is defined in (3.6).

Theorem 4.1 Lel T bc a farmily of divisible tasks ﬂf deterministic lype. Then, we have fmax < 1,2

P 1 P
- —— L — - =
Jor Ay = p,ﬂﬂdl-{—ll . +.Jn’, (1 } Sor M1}p

Proof: According to (3.2), the sublasks are assigned to the consumers circularly since U, and T), are
constants independent of n. Note that each consumer completes each subtask in time 1/, and that
each cousumer can get a new subtask in time p/A after it got the last subtask. We tiratly establish
several basic estimates of T for (i) 0 < p < 1 and (ii) p > 1 separately.

{i) When 0 < p < 1, we have 1/p < p/A. This implies that each consumer, aller completing its
last subtasks, always waits for a while (p/A — 1/u) for a new subtask to come. Accordingly, the abifity
of the producer is relatively poor, to which the overall execution time is sensilive:

i

(4.2) T,=On+Ry=24+21_Y,
A I

v
oA
{1} On the other hand, when p > 1, we have 1/u > p/A. This implies that each subtask always
waits for a while {1/ — p/A) for ils Lturn to be carried out, wntil the consumer in charge completes
the previously assigned subtask. Therefore, the ability of the consumers is relatively poor, to which

the everall execution time is sensitive. Now [et
v=kptor, k=, 1<r<p, krC 2

According to {3.2), the last subtask is carried out by the r-th consumer as its (k4 1}-th job, and

rook+1 r  kp 1
= - E.}r = — —_— = - —_— _—
"t {_E.R”” PR S
Sinee A > up, we have
A]]‘ = T 1 ETpi ki‘l‘f' i
A p g op
e H 1 i
{4.3) .'.-—+—11:T,,ﬁrl-§—1
A P
And alsa l
T =1 w p—r r i P
By =sti— 41} —=— 4+ — 4 - — 4L
A n noomp o AT up A



Now assume that Aty < p*. By (4.2) and {4.3), in either case of (i)} or (i) above, we have

i

.f] 1 &:} 2_1'1 ~ 9
A

LWL .
+r.rr_2 A T ot T AL T

I, >
Assume that At; > p? throughout the rest of this proof. First we give a lower bound of 150,
When 0 < p < 1, according to (1.2), Ty is a convex function of v > 0, and takes a minimum value at

vp = /Al Since v = My /pp = M /p > vy, we have

1 Ay b1 1 p?
T o= — =y e o= L
PEY T T RS T

On the other hand, when p > 1, {(4.4) immediately gives 1/n > 14+ p*/Aty.
Finally, we give an upper bound of 1/9max. By choosing v = |M;/p|, we have » > 1 and
p = Atyfup > 1. Hence by (4.3)
2 2
! P < F _<14+2 (1—§}'11

<145 < =
- +u" +A!1—p Aty

As one can see in the proof of this theorem, the efficiency is maximized when v = [ Aty /p], which
implies p = 1, i.e., the production and consumption rate of the subtasks should be almost equal. This
l¢ intuitively convincing. The optimal efficiency is asymptotically given by

1 pz
4.f — =14+ ik — o0 with ) » —
{ 52' Thnax + !}'-I‘J F ! A

This expression succinctly describes how the efficiency 7 depends on the number of consumers n, the
production rate A, and the overall task size ¢;. In partienlar, the task size ty should be 0(p*/A) as
p — oc, in order to maintain a constant efficiency. Its principal factor is given by p* because of the
reasonable cost in producing the subtasks as in (3.4).

5 Exponential Case

I this section we investigate the efficicncy of the on-demand load distribution (single-level load bal

ancing) in the exponential case {cf. Example 3.2}, We assume that the task (subtask) size is distributed
according to the exponential distribution and that the number of subtasks is distributed according to
the geomertrie distribution:

P[z{Tx{r-l-d.r}—-zlexp[—::H;r for ¥z = 0
1 1 .
(5.1} Plr < By <z +dz) = pue ¥ ds for Vo >0, ¥un=1,2,...
n-1
Plf."'f:n}::l (1 l) for ¥n=1,2,...
. Fe

with ty » ¥ > 1 and p = »/1;.

In this case, although both of the subtask size and the number of subtasks are random, they satisfy
the so-called Markov pruperty. For any ¢ > 0 and n = 1,2,..., the distribution of B, — { under the
condition Ky > ¢ does not depend on 2, and is the same as that of Hy itself, For any k = 1,2,..., the
distribution of ¥ — &k under the condition ¥ > ¥ does not depend on k, and is the same as that of N
ibsell, Namely,

Flr<fiy—t<a+dr| R, >1t)= ue""*dz for Ve 20, Ve 20, %¥n =12, ..

13



1 n=]
PIN—k=n|Ns>k = ;(1_5) for Yk = 1,2, ¥n=19 ...

These properties make the analysis cxceptionally easy. The exponential case corresponds to [ M
with & > 1 in queuing theory.

Throughout this section we assume that Ttwe) = (Vi) (pltvlyee it ""ﬂ}ﬁ‘;l} satisfies
Assumption 3.1 and (5.1) for each #;, v and p. We call such T = {T("*®)} 4 family of divisible tasks
of exponential typc. We will constantly use notations On, Xy, Yo, Z, and T}, defined by (3.1)-(3.2).
The efficiency 7 is deflined in (3.6).

3.1 Lower estimate of the efficiency

In this subscction we give a lower estimate of the efficiency in the exponential case. Let us define

W, = X, - O,, waiting time of the n-th subtask for the start of ils execution.

Lemma 5.1 There exists {V, 192, such that

() {Va}52, ¢ idd according to the ezponential distribution with mean 1/up

(i) AU o2, Vel o independent

(i) Wy =0, 0= Wiy S max(Wy 4+ Vo = Unjn,0) as (Vne N)

Proor: Note that Z,.y > X, occurs if and only if each of the p eonsumers is still wxeculing one of

the first n subtasks at time X, + 0. We lirst make anp observation on Znyi — Xn when it 1s positive.
Assume that Fy . the information up to time X, is given and that Faw1 7 Xp las occurred with

the subtasks of order &y, .., kp being exccuted at time A, +0for 1 < ky < -+ < ky < n. Let g

be the elapsed time in execating the ki-th subtask up to time X, for each i = 1,2,...,p. Then we

have g > ay,.. By > ay and 24y — Xy = min{fy, - ay,... Ay, —ap}. Henee 7,y — X, is

distributed according to the exponential distribution with mean 1/up owing to the Markov property.

Now, let {¥5,}7%, be iid. according te the exponential distribution with mean 1/up, independent
of {5}l and {R, )52, For each n, lev G, = Ty, v alVy,. ., Vary), and define 1, by

Vi = (Zup1 = Xa)  lzepnxa + Vs Lz, ex,
From the above observation, (i) follows immediately. We also have:
(a) WV, iz Gopy-measurable.
{b) Vs is independent of G,,.
(e} Vi is distributed according to the exponential distribution with mean 1 Jep.
Indeed, (a) follows immediately from Z,40) < X2y, For ¥z > 0 and ¥4 € Gy, we have

PV, = z}nA)
= PlZner = Xn 2 2} AN Zogy > X))+ PV 2 2} AN {Z0ps € X0 })
= B(P(Zapr~ Ko 2 21G0) 14| Zusr > Xu)- P(Zugs > Xo)
+P(Vp 2 2)- PIAN {Zysy £ X))
(") {Znsr > Xi} and A are G, measurable and V), is independent of G, .
= MP(Fap = Xa 20 | Fa, ) gl Zogr > Xa) - P(Znyy > X,

14



+ €T AN {Zny € X0 })
E(€% .14 | Znpa > Xo)» P(Znys > Xa) + €707 PIAN{Z0y € X))
gL PUA)

This implies (b) and {c). From (a}, {b) and (c), we obtain (i). Finally, according Lo (3.2), we have

W - max“'i'rﬂ + 2:r1.+1 - -:{n - ‘I-"rﬂ+1 ,U} {Zr.-i-] > -:fﬂ.]
T max(Wy - Uays,0) (Zus1 € X.)

from which (iii) follows. 1
Let us define {1,122, and {5,}°°, by

ﬂ’] =10, ﬁ;[-ﬂl = TI'IM“"E'-:: + V= I'ilﬂ.-l'-11ﬂ_} (n=1,2,...)

n—1

$1=0. Sa= Y (Vi-Uia) (n=12..)

-
Ll
—

(hwing to the preceding leimuna, we obtain

by induction on n. Hence we have Wy, < W, 4+ V), — Ungr + Unsr 15, o 2.5., and

E(Wari) € E(Wou 4 Vo = Upir) + E(Uns1.Supr < 0) € B ) + E(Vy = Unsr} 4 @P{Susy < 0)

i
L E(W,) < E(S,)+a Y PS5, < 0)
k=1

Now assume that p > 1. For each n > 1,

1 1 —1ip-1)
-—).—: E_w_{}ﬂ

E(Sai=(n—1)[— -

(50} = (n }(;:p : )
(p* + a*A?)
AT

V(S) < (n=1) (o 0?) = (270
jip
and by Chebyshev’s inequality
2 o242
. e at A
P& ) € ———————
e NV (Y
Therefore,

p—1 alp? + oA’

E{W,) < BE(W,) < 5 (n-1)+ VRS }{l +login =13} (1 < ¥ne N)

. _ 2 Ip2
nEWe < 2wy e+ oo 1)

Let K be the number of consumers executing one of the first N subtasks at time Xy + 0. By
Proposition 5.1 helow,

. . ! . 1 i
BT, - Ap | K =g} < ;'{'**5[¢+1?*m+¢ +9} (g=0,1,...,p)
: Xy L. b1 — 1
. BTy = Xn) < P {]ag[p{ 1) CTESY +C+2}
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where " = 0.5772. .. denotes Fuler's constant. From thess estimates, il follows that:

BTy} < E(On)+ E(Wx)+ E(1, - Xn)
Th2
O %*—T}ﬂ{umu- 1)} + = {loglp + 1)+ C +2)
242
< i+‘ﬂ—:~}{lﬂg[p+1}+ﬁ+2} %}:—“jﬂful v)

p’ A : Ay
1—11 l-!-—h~{i'~'*5:|f11*+1,‘J+{"'+.?.’+‘:'t—l[—"ﬁ—:l-ﬂ ( -I-log ! }

plp— 1)°

Thus we obtain the next theorem.

Theorem 5.1 Let T be a family of divisible tasks of exponential type. When p > 1, we have

2
Loy j:li-(]u-g[ =1+ C+2 4

cop  log r-)
7

(p=12

where ¢p i¢ a constant depending only on the constants a,a’,a”. kb appearcd in (3.3)-(3.5).

Proposition 5.1 Let B\ Ry... . R, be i.id. according to the exponeniial distribution with mean ¢ >
0. Then we have Efmax;::.-q_:,, B;) = ag(p), where

9 del Mp+1) . P L
{5.2) glp) = =TI"(1) + fps1) log{ip+ 1)+ C+2 T 1 (1 < 36, < 2)

and [{-} denotes the gamma function.

Proor: Tor simplicity we may assume ¢ = 1. The probability distribution function of max) cicp i
15 given by

Az) = F{lrgf:_\gcp R <x)= (f: c“‘di)p =(1-e ")P (vr > 0)

and,

=] o 1
Eimax R;) = xdp[ﬂ:}:pf :re""fl—e'*]lf'_ldxa‘—pj (1-gP tlogydy = —p EB[:;!.n;r_}
1€i<p Jo 0 o ﬂq g=1

where B(:,-) denotes the beta function. Hence, we obtain {cf, fi])

Mip+ 1) = 2t dt
=L a4 ! f
Flp+1) +loalp+1}- 2Ap+1) +t} 4+ (p+1)7 et ]

and the last term is estimated as

E{max F;) = -1"(1} 4

1<y

I 2 di L = dt 1
] <_~f . = " = —f =
o HH{p+1F e -1 " xjy P4(pt 1) 2Ap+1)
These complete the proof. B

1G



5.2 Upper estimatle of the efliciency

In this subseciion we give an upper estimate of the efliciency in the exponential case. We consider the
case with infinite production rate (A — +4oc) and estimate its parallel execution time 7 p» Which never

exceeds 1o,
We deline 'f";, by
To=Tolly, .o iyl = ,

where { f};};"‘;t as well as {X, 122, are defined by induction on n:

Y, = Xo+ R (nz1)

p min max Y. (n >
{54) - 1< <ipoiSn-1 15k=n—1 (»>p)
Xo = kiiy g
0 (1<n=<p)

Note that (3.1 and (3.2) reduce to {5.3) and (5.4) when U, = 0 for all n > 1. i.e., when A = +no. By

induclion on w, we obtaln;

(5.5) Xn€Xn, Yo<Y¥,, T,<T, as
Lemma 5.2 Foranyn=1.2,...,
- 1 1
E(T, | N=n)= = B(1; | N =n)+—glnnp)— 22
» I Hp

Proor: Owing to the Markov property and Proposition 5.1, we have E( T} | N=n, X,_p41=1) =
pt+pfpand E(Ty | N=n, Xy ppi=t) =t +g(p)/p for any n > p and t > 0. Namely,

ET N =n)=p- Bfap [N =m)+ 2 (a2

- . = 1
‘E[Tp | J\' = ﬂ..l = E{.X'r+ﬂ—p+1 | N = I't}+ ; 'ﬁ'{_ﬂ} {.n -':_:' F}

And for 1 < n < p, we have E(T} | N = u) = n/p and E(T, | N = n) = g(n)/n. Combining these

resnits, we abtain
- = . = 1
(5.6) E(T,| N =ﬂj:E{L|N:n]+;-g[nﬂp} {¥ne N}

A

{5.1) Ely | N=n)=p-E(L|N=n)+ (¥n e N)

where we define:
- 3 ool o
{5.8) L= 1nop - Xnopn

Eliminating the term E{L | N = n) < 400 from the above equations, we obtain the desired results.
In fact, since L < Xpy_pp1, we have E(L) < (v —p+ 1)/ < 400, And P(N=n)=11- L=t =g
for ¥n e V. Hence E(L | N = n) < 400, 1

Lemma 5.3 If v > p, we have
(5.0 EflogiN Ap+ 1)) > log(p+1) -1

R . 1,
{5.10) E{g{.ﬁ'ﬁp}]l‘jfl——}IDF{P+!}—]—+C+1
P Pl
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Proor: (5.9) lollows directiy from (3.1) as

Elog(N A p+ 1))

Zp: Ll’(l - ;I:}"'] login 4+ 1)+ (1 - %}F]Dg[p-]- 1)

= —E(1~—:-“‘le: +lng(p+1}

n—I

n
- log — + logi{n 4+ 1
pg; , Tloe(rt 1)

I

1%

1
fnlﬂgzdmﬂugipﬂ} = log(p+1) -1

By {5.1) and {5.2), we have

1 1
E A > Eilog( N A 1 PRI __(n-d]
{g(N A p)) og(N Ap+ 1))+ C + P EZ A=) —

:u:l

where the last term is estimated as

1 1< 1 1
0 < {“ﬂm——{- — < -]
E n+l'p£n+lhpﬂmp+l]
Thus we obtain (5.10). §
Lemma 5.4 Ifv > p, we have
(5.11) Iy 2(1 (P+1)+C = Slog(p+1) = ——
L Ly 7= J'.: oELR pﬁg}? +1)

Proor: From (5.53) and Lemunas 5.2 and 5.3, we abtain

- o1 1 1
BT, = KT :_>—+—{1——] 1) - —— C‘+]}—
(Tp) 2 K{1y) e ( P}ﬂgﬁﬂ ) i p

Multiply the both sides by p/t;., we obtain (5.11). 1

Lemma 5.5 For anyn = 1,2, we have

—pt+l glnnp)

(5.12) E(T,|N=n)>"

Proor: When N = n > p, we have Tozmax{Op+ Ry fn—p+1<k< nh 2 Onopir + max{ Ry |
n—p+1<k<n}. Hence

E(GIN =)z 22222, 5’[;” (n>p)

Similarly, when N = n < p, we have Ty 2max{0p + R |1 <k < n} > O+ max{Re |1 < k < n}.
Henes
gin}

E(T,IN = n) > "

ol

| (1<n<p)

Combining these results. we obtain (5.127, I
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Theorem 5.2 Let T be a fumily of divisible lasks of erponential type. Then the effictency 1 is bounded
from above as follows.

(a) For 1< v < p, we have n < 1/{logp+ C 4 1/2).
by Forv>pand p > 1, we have
21402 (logps 1) 10 Llogto - 1)
1 A p p+1
{e) ForvZ>=p 0<p<1, and My 2 w(p), we have
p 1
~x 14 2 (loglp+ 0+ C - 1= Dlog(p+ 1))
7 Aty r
(d) Forvzp 0<p<1, and Aty < w(p), we have 7 < (v5 — 1)/2 = 0.6180. . ..
Here we define w(p) by

w(p) = p* (mgcn+n+c—§1ng{m n-—le)

Proor: (a) For 1 < v < p let g = [¢|. By (5.5), (5.6) and (5.2),

" o "1 'g
BT, | ¥ =n)2 B(Ty | N =) > 8025 080D 5 & (loginng 4 1) 4.0+ 3)

Hence by (5.9),
1 1 I p 1 i
1 -, .-. - R S ’ T - -
L{TP]EF (lﬂgfi’+1]+{’ +?) o (legr +C+2)_1ugp+r_‘:+2

since »~1 - (logr + € + 1/2) is a monotonically decreasing function of 1 < v < p,
(b} This is already established in Lemma 5.4.

{c) Irom Lemma 5.5 and (5.10), we obhtain

Lf—p+[ { 1 }
S L — oy i
EB(Ty)> ==t (1 jngp-i-u STICH
i I
.1_; ; }Li]{ p +p+pe WP}}

where w(p) is defined above. The right-hand side in the last inequality is a convex function of 0 < p=l
and non-increasing at p = 1 since My > w(p). Hence it is non-increasing in 0 < p < 1 and we obtain
the desired result by estimating its value at p = 1.

(d} Let v = p, A1 £ w(p), and w = (v5 - 1)/2. If p > w, by Lemma 5.4, we have ljg=1l+p=
1+ w=1/w. On the other hand, if p < w, we have E{T, | N = n) > E{(On | N = n) = n/\. Hence
EiT)zv/Aand 1/n 2 1/p > 1/w. Thus we obtain 5 < w in either case. §

According to Theorems 5.1 and 5.2{b), we have for p > 1,

1
1+J[:._p' (]-Ug[ ] o= _I'D!'-.‘:[P'FIJ—?) "’-:-]j
(5.1.4] 8
pp’ ) 1+p o p
'-':|+— logip+ L)+ C+ 24 ¢ —= « ===
( &(p+1) Ul -1 Tp J
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Hence we obtain the asymptotic behavior of the efficiency for p > 1,

1 pr’

[5.14) . ~ ]+ M logp as -

This expression succinctly describes how the efficiency i depends on the number of consumers p, the
production rate A, and the overall task size t,. In particular, the task size t; should be Q{p*logp/))
as p — o¢, in erder to maintain a constant efficiency. Its principal factor is given by p? because of the
reasonable cost in producing the subtasks as in {3.4).

Now, compare this result with that in the deterministic case. An extra factor of log p appears here,
which stems from the load imbalance between the consumers due to the diversified sublask sizes. (Tn
the deterministic case, all the subtasks have the same size.} Thus the scalability in the expenential
case g poorer than thal in the deterministic case by this factor.

According to (5.14], the asymptotic efficiency is improved by decreasing p to 1. However, for a
finite p, the efficiency may be degraded by letting p — 1 because of the growth of the non-leading term
as can be seen in the right-most side of (5.13). On the other hand, by letting p < 1, the asymplotic
efficiency can never be improved as shown in Theorem 5.2(c) and (d). These resnlts are reasonable
because p represents the ratio of the production rate to the overall consumption rate of the sublasks.
More precisely, p = 1 is preferable, since it indicates that the ability of the producer and the consumers
are comparable and that neither will become a bottleneck., However, when the number of consumers
(and also subtasks) is small, the staristical irregulasity becomes prominent with some of the consumers
idling even il p = 1. So, we should assume a small margin in the producer’s ability, i.e.. gL

Finally, we note a simple relation between the efficiency and the average number of subtasks v.
Uiven a task, we can specify the granularity of subtasks either by p or by ». Since p = p/t; and
p = Afup as defined in Assumption 3.1, we obtain from (5.14),

1
{f.15) ;}:l{-flogp ie., vzlnﬂ-plogp as  p—

lu particolar, we should have v = O(plogp) as p — oo, in order to maintain & constant efficiency.
Note that {5.15) holds enly when p > 1. For large v with p < 1, it may not hold. So g is a more
fundamental parameter than v,

6 General Case

6.1 Additional assumption for the general case

In this section we investigate the efficiency of the on-demand load distribution {single-level load bal-
ancing) in a general case. However, in arder to guaranlee a reasonable efficiency, we need to make an
additional assumption.

Remember that, once a subtask is entrusted 1o one consumer processor, it is never shared with nther
processors o matler how long its execution may last. So a subtask should Le “steadily” executed,
otherwise a reasonable efliciency will never Le allained. To be more specific, we assume that the
expectation of the remaining execution time (life expectancy) of a subtask should never blow up: for
each n = 1,2,...,

i

E{-&n_ian}IJEJ *
i

E{(Ry -2 | R, > 2} = ﬂ{ﬁ} for ¥z = 0
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as p— oo and g — 0. The first inequality means that the life expectancy of a subtask, E{R, — z |
R, > z}, should never exceed its initial life expectancy, /4. The second expression means that the
dizpersion of the life expectancy of a subtask shonld remain the same order throughout. These will
be shown to give a sufficient condition for a reasonable efficiency when the granularity of the subtask
iz properly tuned,

For example, in the deterministic case, the life expectancy decreascs by the amount of elapsed time:
we have E(Ry —z | By > z) = 1/p — z and E{{Ry — 2)? | Ry > 2} = (1/u —2)* for 0 < ¥z < 1/p.
This is the “steadiest™ case.

In the exponential case, the life expectancy remains constant: we have E{H, -z | R, > z) =1 I
and E{{R, — 2)* | By > 2} = 2/p? for ¥z > 0. This is the marginal case.

On the contrary, when the size of a subtask is distributed too divergently, this condition may be
violated and the efficiency may be poor. For example, suppose that most of the subtasks are small
(of size @) and only a few of them are exceptionally large (of size A % a). Then the few subtasks
that have survived the initial small period (@) will have a much longer life expectancy (4 — @) than
the overall initial life expectancy (= a). They will incur a fatal load imbalance and the efficiency will
be damaged. A remedy for such cases might be to subdivide the subtasks that have been found to be
exceptionally large. Such & load balancing scheme is beyond the scope of discussion here,

Thus, in order to gnarantee a reasonable efficiency, we should assume that the subtask sizes are
not too diverse. The above condition in terms of life expectaucy ndirectly limits the diversity of the
sublusk size. However, for the sake of the applicability to the analysis in later sections, we will slightly
relax this condition. Let 4 = {(Ntw) {RUyoe  yprlierlyes 13 o g family of divisible tasks. We

assume the following thronghout the rest of this paper.

Assumption 6.1 (moderate diversity in the subtask size) There exit constants, b and ¥ > 0,
such that, for any t; > v > 1 with i) = /)

() o) plhel s gy < ) — -1
(04) BREY —2 | RO 50 S s (14 ey ) for¥ez 0= Lz

. - I
(6.2) E{(R) =2 | R 5 1) < Gioeip  forv¥zz0on=12..

In the theory of reliability engineering [13], several aging notions are defined, which arc closely
relaled to our assumption ahove. Let T be a nonnegative random variable, representing a lifetime of
adevice. At} = lim.yq P(t < 1" <t +¢|T > t)/cis called the hazard (or failure) rate function. T
15 said to have increasing hazard rute (IHR) or inereasing failure rate (1°R) if A(1) is nondecreasing.
In this case, E(0" =1 | T > ¢} is nonincreasing in {, and T is said to have decreasing mean residual
fife (DMRL). Note that the first condition in the above assumption, (6.1), is implied by DMRL.
Moreover, if BY"*! has THIL and its coefficient of variation {ratio of the standard deviation to the
fuean ) is bounded, (6.2) as well as (6.1) holds.

6.2  Lower estimate of the efficiency

In this subsection, we show that the efficiency in the general case on Assumption 6.1 is not worse than
that in the exponential case when p > 1.

Let T = {(N{fvw) {RL“'F]},,“‘;,, {f-"ih'p'w]ff;l i} be a family of divisible tasks satisfying Assumption
6.0, O, X, Yo, Za, Ty, are those defined in (3.1)(3.2).
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Ir order Lo obtain an upper bound of the average parallel execution time t,, we introduce a
“synchronized” parallel execution maodel, in which the progress of execution is rather easy to estimate.
Namely, we consider a “synchronized” parallel execution: all the consumers are synchronized so that
either all of them are “busy” executing the subtasks or all of them stay “idle” with possible suspended
subtasks. More precisely, we define the following by induction on n.

( Xo=0p, 7Zn=0, (1<¥n<p)
Kpi=i,  Dpa=Ri (1<Vi<p)

To=min{k|1<k<p, Dyx= min Do} (Va2 p)
1Ze<p

(6.3) ! Bt = for¥n>pand I <Wi<p

Zngr1=Xn+ Doy (Vn32p)
Xog1 = Onsr V 2y {(¥n = p)

En-'ru,,- — { D i — Dy, (14 d.)

- for¥n>pand 1 <¥i<p
Ry {*ZJnJ

Each of these random variables represents the following,.

Aw ¢ start of the execulion period of the n th subtask
Zn ¢ time when a consnmer becomes ready to execute the n-th subtask
Kyi @ order of the subtask being executed at the i-th consumer at time ¥ w40
Dy.; : remaining execution time of the Hyith subtask at time X, | 0
Jo ¢+ order of the consumer that first completes the subtlask resumed at time X,
Clearly, we have 0 < 2, < X; < 72 < X, =< ln € X £ Zng1 & -+, Each (Zn, Xn}is a

“idle” period and each {X,, Z,41) a “busy” period, The next lemma shows that the progress in the
synchronized parallel execution never goes ahead of the that iy the parallel execution described in
Definition 3.1{ii).

Lemma 6.1 {a) lorW¥e > pand 1 < ¥k < n, we have

y, < { X, + D, if 1< 3i<p suchthat k — f?“rg
. o kg { Ko Kb

(b) For¥n e N, we have Z, < Z, and X, < X,,.

Proor: (a) The claim is trivial for n = Pysinee k = fu'.,.* and Yy = Op + Ry < O, + Ry = Jf’,, + D,,Ik
for each 1 £ k < p. We will nse induction on n. Assume that the claim is satisfied for some n > p
According to the value of k = 1,2, n + 1, one of the following four cases eccurs,

(i) When k = Ky, and i £ J, for some 1 < i < p, we have Hoyy i =k and Xoyp + Dyyyy >
Eu+1 + f"u+l.£ = )!_-1: + Dr.,: > Y-

(i) When k= K3, we have k¢ {Rugin,+s Ky 1) and Suss > Zogy = £t Dy 5 Vi

(i) When k= n 41, we have k = an-l,d.r Hy the definition of Z, in (3.2) and by the induction
hvpothesis, we obiain

gy Smax{¥e [1 Sk <nwith k@ {fy,, Ko p) or k= Konl <X, + D5 =2
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Hence, we have X1y = Oppy V Zng1 € Uy V Znpr = Xopq and Yooy = Xy 4 Rop < Xot1 4

By = ‘J‘:-z-l-l + D..H,Jn' _ ~ ~
{iv) When1 <k <nand k & {Anq.--- Knp}, wehave kb ¢ {Kpn, - Rogipland ¥ € X, <

Anstie
(b) Forl < n < p, the claim is trivial. For n > p, the claim is already shown in (iii) above. 8
Owing to this lemma, we may concentrate on estimating the progress of the synchronized parallel

execution. Now, let us express X, and Z, in terms of the lengths of the busy and idle periods. For
Wn = p.owe define:

EE"4:' "rfﬂ'l'l = ﬁ'l'l..,jn = Eﬂ-i—l - -'-"_'Fn
[ﬁf‘] Tay1 = {Ongr ~ En-i-l}-k = -’E—n+1 - 2n+1
These represent the length of a busy period and an idle period respectively. Clearly, for ¥n > p, we
ha’ue: n T
(6.6) Xa=0p+ 3 Hit 3 L

k=pa1 k=p+1

B n n=1

(6.7) Z.=0p+ Y Het Y Iy

k=p+1 k=p+1

Note that the length of an idle period does not exceed the generation time of a subtask: I,, < U,,. In
fact, we have Z, > Xo_y 2 Opoq, and 1, = (0, — Zly €05 = Oy = U,

Now, we will proceed to estimate the lengths of the busy periods. For this purpose, we consider
the parallel execution with an infinite production rate {A = +a0), in which no idle period oceurs (cf.
Section 5.2). More precisely, we define the following by induction on n.

An=0 (1= %n<p)

K.i=1, D,i= R, (1< V¥i<p)

a - o

dy=min{k |1 <k<p, D,y= min Dg;} (¥n = p)

1gizp
(6.8} \ Kng1i = Roa (14 ".r“J for¥n = pand 1 < Vi <
Yntlg {ﬂ!+1 f::J“] ar Vi = poal T
-}:u+1 = X-n + j}mjn {‘9’1’: = ]'.I'}
X { Dui— D5 (i#Jn)
nels T

o for¥nzpand 1<Vi<p
R1|+] (3 = "'r'ﬂ-j

Each of these random variables represents the following:

X. : start of the execution period of the n-th subtask
Kni : order of the subtask being executed at the i-th consumer at time X, + 0
Dy; : remaining execution time of the i, ;-th subtask at time X, 4 0

Jn ¢ order of the consumer that first completes the subtask resumed at time X,

Note that, when A = +o00, (6.3) reduces to (6.8) with Z, =0(1 <n < p)and Z, = X, (n > pl. We
also define 1, = X, + R, the end of the execution period of the n-th subtask, for each n = 1,2,.. .,
and

(6.9) Fe= NelXans Yuns|n=12.]: information up to time ¢t (¥t > 0)
£ 11
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Note that {F, }izo is a complete and right-conlinuous increasing family of o alzebras on (9, B, P).
For ¥n € N, each of A, and ¥, is a stopping time (Markov time) with respect to {.F',},}u Strictly
speaking, ; represents the information avasluble al the consumers up to time t. In general, O, is not
a stopping time with respect to {F']iEU'

Comparing (6.8) with (6.3), we have: Koy = Koy, Dug = D, Jn = Ju, and D, j, = Hus for
any n > pand 1 <4{ < n. Hence we have

fi
(6.10) Xo= 5 He (¥n>p)
k=p1
Now, definc M., the average load per consumer for the first (n— 1) subtasks, by
n=—l

(6.11) My = }__/RJ;

In general, M, is not a stopping time with respect to {.?_'_;}-:Eﬂ. Note that the start of the exeention
period of the n-th subtask does not exceed M,,, namely,

(6.12) X, <M, as. (¥n=1,2..)

In fact, for = < p, this is trivial. When n > p, all of the p consumers are busy exccuting the subtasks
of order up 1o n = 1 throughout time X, hence, pX, < By + -4+ R, _;.

Temma 6.2 ForVn > p, we have

- . =1 b )
. M, X.|F )< :
(6.13) BMy - Xal%5,) pp ( T 1+ logl
(6.14) V(M= X | Fg ) < 12 {p- 1)

where b i > (i are the constants appeared in {6.1) and (6.2).

Proor: Let n > p and assume that the information up to time X, is given, i.e., consider under
the condition -:;_-fu' Since the values of Ky_yy,..., Ka_yp and J,. | are uniquely determined by the
information Fg | we write (k... k1) = {K, | dree K g W T with 1 < &y < - < kpoy <
n— 1. Let a; denote the clapsed time in executing the ki-th subtask up to the t:me X,., which is also
determined by Fx ien @ = X, = Xi.. Then we have oM, - Aﬂ} =3 {R;,-. — a; ), where
Ry =y M| — apy are independent and non-negative. Hence, by {(6.1) and (6.2), we obtain:

=1
., L= , _p—i( ] ‘)
CE(M, - X, Fa =§P,R,— Re, = a;) < - —_—
D { n F _;'hn:] = { &y 1I|| ky ﬂ-,:'_ i 1+ 1 +|10g'u’

r=1 .
,, S b ¥ o?ptip —
LT NENT ST M PRSP LIS N 7o S
=1

Now, let us define, for ¥n > p,

(6.15) L= XA (M - ”_*"i)
L

where b > 0 is the constant appeared in (6.1). Tn general, L, is not a stopping time either,
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Lemma 6.3 For¥n > p, we have

: o
POM, — L) < 22 V(i - 1) < AL

where b= 2(h + 1) and b5 > 0 are the constants appeared in (fi.1) and (6.2).

I'roor: Hy the definition of Ly and {6.12), we have

- 1 ~
My — Lo = (My — X)) v % < M, - %, + 21
M

And E{ My - X,,) < (b4 1)/ follows from Lemma 6.2. Hence, E(M,— L) < 2(b+1)/p < 2(b+11pp/ 7.
which establishes the first claim.
Let us define: 4, = E(M, — X,, | JE';(“}. for each n > p. By (6.12) and Lemma 6.2, we abtain

_14b . - Vo¥(p - 1)
D<A, < w E[{M"_;"“_Aﬂ]zf-r_f,,]f 5
Ohserve that

. 1 b .
O AN S T AL S VR T
: B b1
X'!-EMH - "HFI-- —Ln =B

H I

Hence we obtain:

.r;{ (M,. _bt1 L)
J'I

2 (] .
. 1r'{Mﬂ-L,,]~;IE{(M“ !-H_I—L“) ]rﬂbpr:;; 1
# F

. bp*(p=1)
'F..Tﬂ} E A2

Lemma 6.4 For'¥n > p,

- Y ! ?
P(Ln) 2 Din—bp- 1), V(L) € 22 (m 4 p-2)
Proor: Observe that:
' _ 1l a-1_p 1 ¥p?
From these and Lemma 6.3, wo obtain the desired results, 1
From Lemma 6.4, we obtain
n o p 7 1—p [ - op 1
a=dn) S —— =(n — - = - - -
E(O L}_}. }'(i bp 1) 3 {ﬂ p_ltbp+1}}5 5 {n=—ny)

Syt 5
V(On = L) = V{On) 4 V(L) < (32 + & pﬂ) 26'p

e )t e 2)

where we define:
{6.16) g = "— £ (bp + 1].‘
a1
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Therefore, Chebyshev's inequality gives, [or ¥n > ng,

A2 1 2b'p? 'p?
PO~ La20) < (2 ~{(ﬂ*+ A—f)ﬂﬁiﬁ EP—?}}

p-1 (n— ng)?
1 . 1 ng 200 (p - 2)
< I 12t ( )
= m—n‘—*{*‘* N G T o net) T o
Thus we obtain:
= 1 242 ¢ 2 w2 w? 2
(6.17) EPLﬂaD} TEEE (a® A"+ 20'p%) 1+Iug{n—nu]|+?ﬂu +E&p[p—2]
E=ngp+1
Lemma 6.5 ForW¥n =1,
g P o 242 ‘2 f_2 “Eaz
ElXa) < 3 +A{n 1j+{.ﬂ’—1:|1{[ﬁ A4 26 ptlogn + ﬁﬂg+l:|+ibp (p—2)

Proor: For n < p, we have X, = Oy and E{Jiﬂ} = p,",!l < ng/A; hence the claim is trivial. So we
assume n > p. It follows from {6.6) that

E(X.) = )+ E( Z Hi)+ E E(IL)
h=p1 k=p+1
Here the first term in the right side is equal to p/A. By (6.10}, (6.12} and (6.11}, the second term is

bounded as
n—1_pln—1)
pp A

E(S. Hi)= B(X,) < B(My) <

k=p+1
S0 we will concentrate our attention on the last term. For p < ¥n < ng, we have E:_p 4 E(I) =
Fohmpsr ElUG) = (n - p)/A < {ng = p)/A; hence the claim is trivial. So we assume that n > ng. For
Wk o g, observe that

(i Bl <aP(ly >0, since 0 < I, < U, € o as.
(i) I > 0 2 < O by (6.5).
(i) Zx > Xy 2 Ly by (6.7), (6.10) and (6.15).

Hence we have E([,) < oL < () for each k > ng, and

z E{(I) 1:.; +ur E PiLg < Og) (¥n > ng)

k=ng 41

where the last term is estimated in (6.17). Thus we obtain the desired result. B

Lemma 6.6

FE 2
BE(Xy)< PT + T” + = {{azhz + 26 p%) (iogu + —g + 1) 1 %b’ﬂgf:ﬂ“ 2]}

- 1)?
Proor: This claim follows immediately from Lemmas 6.1{b) and 6.5,

Theorem 6.1 Let T be a family of divisible tasks satisfying Assumptions 3.1 and 6.1. When p > 1,
the efficiency n salisfies

. 1 p cop”
(6.18) n = <1 e {iogl[p-i- 1)+ - 1}3}

where ¢g > 0 15 a constant depending only on a,a’,a", k. k" in (3.3)-(3.5) and b, b in (6.1), (6.2).
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Proor: Let n € N and assume that the information up to time X, is given, i.e., consider wnder the
condition Fy, . Let ky, ... k, be the orders of the subtasks which are being executed at time X, + U,
and a1, ..., a, be the elapsed time in the respective execution up to time X, where 1 < ¢ < p, Then

) - o] )
E (11%133}51“1’; |' Fxn]l = Xa+E 112:%{.%“ u,}| Fx,

1

Xo+ E{,"!‘-E‘{R*i —a;) | By >a; (15¥i< ﬁ'}}
it

Since, for each 1 < 1 < g, we have:

17 b
E(Ry, —a;—a| gy, —n; >a)< = 1+-—-—) Ya =0},
(i, —a | i, ) #L TF Tloga] (Va = 0)

we obtain by the following Proposition 6.1,

E(maw Y;

1<54n

i b
_;r“):_(x"_;__(1+_—).
X " T3 Tlog al glg)

Therefore,

. . op b .
Ny = ] L A LA, R ) T
E(T,) E(}Eﬁrh)—ﬂuh}-{_ 3 (1+1_| T m){log{p+l}+( +2}
where the first term in the rightmost side is estimated in Lemma 6.6. Hence

1 » ng p? oA - c o flogr wing 1 7., .

- 2l =+ - 7Y@ AT+ W) | =+ —— 4 = | + —b

n Atp p A (p— 1) ': ) P 6Gp p 3P
2

&(H_f’__

Aty 14 |logp

. ){lng{p+ 1)+ C+2)

where we have no/p < (b+ 1)p/(p — 1) + 1 due to (6.16); also ad < a”, » = Mifpp £ t1/p < ap,
and 1/p = pp/A > p due to Assumption 3.1. Thus we obtain the desired result. i

Proposition 6.1 Let o > 0 and Xq,..., X, be positive i.i.d. such that EXi—z|X;>z)< o hold
foranyz > 0 and 1 £i < p. Then we have E{max;<icp Xi} < ag(p), where gl(p) is the function
defined by (5.2).

PrROOF: Let ¥y,..., ¥, beiid. according to the exponential distribution with mean o, and independent
of Xy,..., X, Since (¥, -z |Y; > 1) = E(Y;) = o holds for any z > 0 and 1 < i < p, it follows
from the foliowing 'roposition 6.2 that

E(Xyv---VE VY, v vE) < B(X, Ve VX g v Ve v (l<V¥g<p)
Henee E{maxicicp Xi) € E(max;<icy ¥;), and we obtain the desired result by Proposition 5.1.

Proposition 6.2 Let X, ¥V, Z e posilive random variables such that 2 is independent of (X,Y),
E(Z) < oo, and B{X =z | X > z) < E(Y —z Y > 2} < 00 for any z > 0. Then we have
E(XVZ)< E(Y v Z)

Proor: Let () be the distribution function of Z,ie, ()= P(Z <1t). Then

E(X v 2) =f:'{a FEX =1,X > O} dp(t),  E(YVZ) -—fum{i+E[Y LY > ))delt)



So it is sufficient te show that F{t} < G(1) for any t > 0, where we define: Fltyslog E(X =1, X > 1)
and G(t) = log F(Y — .Y > t). We have E(X —~t | X > t) = —1/F'(t) and E(Y —t |V > 1) =
—1/G"{t), since

E[A’—I,X}:r}sz}’{x > t)dt, E{x-xjx”):fx (¥z > 0)

P(X > =)
Therefore the hypothesis implies that F7(t) < G'(} for any ¢ > 0. Hence F(t)-Glt) < F(0)-G(0) =
log E{X) ~ log E{(Y) < 0 for any ¢ > 0, as desired.

According to Theorem 6.1, we have for p > 1,

2

(6.19) ﬁgw%lugp as p— oo
This expression gives a succinct (pessimistic) estimate of the efliciency #, given the number of con-
sumers p, the production rate A, and the overall task size 11, In particular, we can guarantee at least
a constant efficiency when ¢ = Q(p*log p/A) as p — oo Its principal factor is given by p? because of
the reasonable cost in producing Lhe subtasks as in {3.4).

In the exponential case, this estimate (6.19) is critical, as (5.14) shows. On the other hand, in the
deterministic case, il is pessimistic only by a factor of log p, as (4.5) shows.

Finally, we note that the expected number of subtasks v does not grow too fast when we increase
the number of consumers p and the expected task size ty mainlaining the constant efficiency 7. In
fact, (6.19) implies, for p > 1,

1 .
(6.20) -5 1+ P log p Ly wp:;i-plogp as p— oo

77 & 1-mn
In particular, we can take v = O(plogp) as p — = while maintaining at least a constant efficiency
{cl. Section 3.2).

7 Inheritance of the Moderate Diversity

In this section we investigate the distribution of the parallel execution time with the on demand load
distribution (single-level load balancing scheme). Assuming that the number of the suhtasks, as well
as the size of each subtask, satisfies the moderate diversity condition, we show that both of the task
size and the parallel execution time satisfy the condition, too. In a word, the moderate diversi tv is
inherited from the subtasks by the task size and the parallel execution time. These results will be
used in the subsequent section dealing with the multi-level load balancing scheme, which hierarchically
adopts the on-demand load distribution technique.

7.1 Assumption on the distribution of the number of subtasks

In this subsection, we introduce the moderate diversity condition for the numher of the subtasks, sim-
flar to that for the size of each subtask in Section 6.1. Let 7 = {( Nt w) Ry e {pliwelyo U}

ne=]1 n=

be a family of divisible tasks, We assume the following throughout the rest of this paper.
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Assumption 7.1 (moderate diversity in the number of subtasks) There exit constants, b and
5" % (1, such that, for any » > 1,

. b
- s ) _ (1.0} — = .
(7.1) E(N n|N }n}f.u(l-[—l_l_lugp) for Vn=10,1,2,..
(7.2) E{(N" ) —a)P  NB Y ma) <™ forvYan=10,1,2,...

This condition for N1"*) has precisely the continuous counterpart for Bl in Assumption 6.1
S0 we will refer to either of these conditions as the moderate diversity condition whether it continuous
or discrete,

Clearly, this assumption is satisfied either in the deterministic case or in the exponential case. In
fact, we have E(IN —n | N >n)=vr—nand E{(N =n)? | N = n} = (v —n) in the former case:
E(N-n|N>n)=vand E{(N —n)? | N >n)} =v¥2= 1/r)in the latter case,

7.2 Moderate diversity of the task size

In this subsection we show that the entire task size inheriis the moderate diversity fram the subtasks.
Lemma 7.1 Let {R,}7, be nonzero and nonnegative i.i.d. with
E(Ry—x| By >x) < vy, E{{Ry —z){Rp>z)<v; (¥z 20, ¥ne N)
and N be a N-valued random variable independent of {R,), with
E(N-n{N>n)<g, E{N-n?|{N>nl<s; (¥n=0,1,2)
Then Ty = 00| R, satisfies
E{T 2T =)< 510, E{(Ty —2)* | Ty > 2} < 8208 + 819 (Yz > 0)

Proor: Take an arbitrary = > 0 and define K = min{k € N | Y25_, #, > z}. For any k ¢ N and
{ro}i-t & RET with ©520 v, < 2, we have
Fih -z |Bo=r, (1<V¥n<k), K=k T >z}

kel N
= E{Zrni- i+ E R, -z

n=1 n=k+1

k=1
By =1y (1€¥n < k), Rkbz—Zrn, g‘v':g.i;}

n=1

Ngk)

Therefore, E{(Ty —x | K =k, Ty > 2) < sy1 for any k € N and = > 0. Since Ty > r implies
i < 400, we obtain E(Ty - 2 | T} > z) £ 531, which establishes the first claim.

Similarly, for any k and {r, }*Z!

1

k=1
E(R;‘—:-r-l-z:r,,

n=1

k=1 N
R,L-}E-—Z!‘,L)-I-E( Z Iy,

n=1 =kl

(Y

v+ BNk | N=k=1}

NS 5

with Ei:jz *u = I, we have

E{(h—2V | Ru=r. (1<¥n<k), K=k, Ty >z)

k-1 N ? k=1
= £ (zrn+-&k'|' ZRII._"T) ‘Rﬂ=rn tli"i‘rﬂ{ﬁ]_ Rk:"x*zrn1 N>k
n=] n=k4] n=1
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E{ (Rk -I+Ern)2

ne=j

b1 N :
Rk:}z—Z?‘ﬂ}-}E (Z E-n_) N>k
fA=1

n=k+1

k=1 i k1 N '
+2E(R;,-—;c+2r“ H;,:.-‘r---zr,.)-.ﬁ'( z iy NE.&-)
n=1 n=1 n=k+1

vy E{{N - Koz +(N —k}(N -k — 1] | N2k} +2v-E{(N -k, | N2>k}
(v — i) - E(N kHUIN k=14 0] E{(N—k+1 | N >k-1)

= st 33"?

1M

Therefore, K{(Ts —z)* | K = k, T} > 2} < s20? £ 50, forany k € N and =z > 0. Hence,
E{(Ty = 2)? | T\ > z} £ 5497 4 5;0q, which establishes the second claim. B

The next theorem shows that ihe task size satisfies the moderate diversity condition similar to
{6.1) and (6.2).

Theorem 7.1 Let T be a family of divisible tasks satisfying Assumptions 8.1, 6.1, and 7.1. For any
ty = 1, the task size Tl{”]' satizfles

- () _ g oplta) . —.._E' Vr >
(7.3) KT, iy >z)<h (l-rl-t-logil) ¥z > 0}
(7.4) EUTS — o2 (1) 5 2} < e (¥z > 0)

where b and b’ are constants depending only on u,a’,a" k, k' b, b, b 6" appeared in {(3.4)-(3.5), (6.1),
(6.2}, {7.1) and (7.2).

Proor: By Assumption 3.1(iii) and Lemma 7.1, we have, for any i > > land z > 0,

b” 1 b
. . < _— = T
E(T 5~|T:}I:I_P(1+1+1Dgp) #(1+1+[Iog,u|)

where g = v /t;. Choosing v = /T;, we establish the first clajm, Similarly, for any #; > v > 1 and
x>,

. 1 I 2 ﬁu b
R PPy UL (R 0 N A T ST
E{ETI 5"} ] 1= r} - ¥ 'u? 1+1+|10gul ¥ +l'i iugu FE —-{ (1+ ] +|:J.+E"}I }11

This establishes the last claim. B

7.3 Moderate diversity of the parallel execution time

In this subsection we show that the parallel execution time of the entire task inherits the moderate
diversity from the subtasks when p > 1. For this purpose, we study the distribution of T, — {, the
remaining execution time, given that the execution is not completed up to time £, ie., T, > t. We
assume p > 1 throughout this subsection.

Take an arbitrary ¢ > 0 and assume that the information (more precisely, available at the con-
sumers} up to time t is given and that 7, > t holds. Namely, we consider under the condition JF; and
Tp > t. P', E', and V' denote the conditional probability, expectation, and variation, respectively,
under this condition. Given F,, we know the exact values of the following:
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gn :  number of the subtasks being execnted at time o

ky<---< kg, : orders of the sublasks being executed at time !
i : elapsed lime in executing the k-th subtask up to time t (1 <1i < go)
kg ¢ the number of the subtasks that are already completed at time ¢

These concern the behavior of the consumers up to time {. On the other hand, we do not know the
current state of the producer, in particular, the order of the subtask in which the producer is currently
engaged. Hence it should be treated as a random variable: 5 = min{s € N |0, > t}.

Let us define 7, @ N » RY x BT — Ry by mp(n, {ri} 7, {w}®,) = maxy<icq 3, where g as

well as oy, x; and 2, are determined by induction on i

0;=Zu_f, ri=wVz, W==Iitr [:El}

=
(7.5] min max i
12f1 € <Jp_1<i-1 1€h<i—1 un (i>p)
&= A1y
0 (1<a1<p)

Then we have T, = (N, { Be oy AUn b oy ), according to (3.1) and (3.2) in Definition 3.1. Similarly,
the remaining execution time is given by T) = T, —t = rp( N { B, Jos, {UL 2L, ), where

{ {l <moe 5 — kﬂ}
# U;‘= g —1 fn:.‘i'n—l.:;.]l
Ul'l.+ku [:ﬂ' > 5= kU:I

fy —an (155 qy)

f':“':ﬁl'—ﬁ:u1 R;:{

Royiy  (n > qo)
Note that 7% = (N {RL Yo, {012, ) does not satisfy Assumption 3.1; in particular, each of
TR e and {U))52 ) 85 i4.d. just except for the first several members. However, 77 admits a similar

analysis as in Seclion 6.2. We give necessary modifications in the following.
We define =, : (RT) — (RT) by Z.0{r}{w}) = (o) {z:), {w}. {2)) with (7.5), and
0L X0 Y0 Z (n = 12000 by SR AU = ({01 X2}, (/). {Z]}). Just as in the beginning

of Section 6.2, we introduce the “synchronized” parallel execution of 77, where the progress of execntion

is rather easy o estimate. More precisely, we define X7, 77, K. ., D ; and J! by induction on n:

Xo=0, Z,=0, (l<V¥n<p)
Koi=i  Dy=H  (1<Vi<p)
Jr=min{k|1<k<p, D= l!:l.l_ig}l D, (¥n > p)

(7.6) 4 Ropra = { :i_‘il :E: : ji; forv¥unzpand 1 <¥i<p
Zigw=Xo+ DL (vnzp)
Koy = O VI, (Vn = pl
DL = [ Dyi- D_:t,.r;, (1? 4 --?.} for Vi > pand 1 < Vi < p
L 1 L (t=Jg)
and

) 7 N il =) 1=
His = :1,.1:, — 2N =0 -Zinls =X - 2o, ML= ;:Z R
k=]
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for each n = p. Then we have [cf. Lemma 6.1(b), (6.6), (6.7) with its subsequent remark),

X, < X}, z, < 2t , <
¥ Pyt - 1 = v
D+ZH;,+Z&, Zh=0,+ 5 Hi+ Y I
k=pal k=p+1 k=p+1 k=p41

In order to estimate the busy period length, H{, we consider the parallel execution with an infinite
production rate (A = +o0), in which no idle period occurs (cf. Section 6.2). More precisely, we define
JL;,.?-" and others by (6.8} and (6.9) with R], U] instead of B, U, (n=1, 2,...). Then we have, for
each n > p,

T
(7.7) Xo= 3 His M as (cf. (6.10),(6.12))
k=ptl
and besides (cf. Lemma 6.2)
-, o= -1 b .y e bt

MY T g 'CP"—('I-'-'——)' sreagl v i AT

PO = X1 75 < P (Ve ) VM- R B < e )
where b b > 0 arc the constants appeared in (6.1} and {6.2). We also define, for each n > B,

(7.8) L= X! A (,rur;1 - ﬂ)
I
Then we have, for each > p,
b b (p -
E(M, - L)< —i-’i. VM - L) < "’—'f‘“z- -1 (ef. Lemma 6.3)

where b > 0 is a constant defined by b= 2(b+ 1), Since E/(M!) > B 0 i) = pln—p - 1)/A,
we have, for each n > p,

gy B i : 2'p?
E(L,) = I{n— b'p— 1), VAL, = T2 (n+p-12) {ef. Lemuna 6.4)
where &' = b4 1 =2} + 3. Therefore, we have, for each n = r,
(O, - L) ot " =R itp- 1) < 2 (ao )

gf 2 i
VIO, — L) = VIO + V(L) < (ﬂ? - jif ) "+ 2{;2 ——(r—2)

where we define

(7.49]

o plbp+ 1) +ad -1
1= -1

By Chebyshev's meqnality, we have, for each n > 1,

Ay 1 T 20 p?
(p—l) (n - m}i'{(ﬂ"}' T.'f?—)n-F ,}\f fﬂ-?)}

(024 4 2% (e 4 )+sz ‘E]}

—mny  (m-omy)t (mn— ng)?

(0} - L, > 0}

[

15

(p—1)*

Thus we obtain:

- ey ’ L 242 | gt T = e
(7.10) ZP{Ln{G,,JSG-_—-”,_, (A% 4 28 p%) L+ log(n ~my) + —=n, + 5 bep-2)

k=ny 41
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Lemma 7.2 (cf. Lemma 6.5) For each n > gy,

o e Ty fel o b ]
. { Ty 3 - A 1+ |logp|
(T11) E{Ay) < at -5+ 3n qﬂj+h(1+1+]iﬂgP|

o . . o2 ) .
b TR ("% +26°p%) | log(n — qo) + Zma 1| + —Hp’(p - 2)

Proor: For gp < n < p, we have X = 0, and EX)<a+(p-1)/*<a+n /) hence the claim

is trivial. Tor n > ny, we have
E'(X.)=E(0,)+ E ( > Hk) + E E(I) + Z EIL)
k=p+1 k=pi1 k=ng+1

llere the sum r::f the first and third terms is bounded by a + (ay — 1)/, since O}, + 4L .\ i <
Oy + 251, Ul = 05, as. Owing Lo (7.7), the second term is bounded as

= . 1y b n=p—1 pln—qq)
1 H &« Iul'- T & )l § —(
E (E k)_E(M“j_y(l+l+Ingﬂ| N jin < A t A L+ Ing‘.l)

k=p+1

So we should concentrate our attention on the fast term. For cach k > ny, we have:

(i) 2L < a1, > 0}, since 0 < I} < U] < o as.
(i) I » 0 & Z, < 0]
(iii) 4] = XL = L,

These imply EY(I}) = «P'(L} < (). Therefore the last term above can be estimated using (7.10),
and we obtain the desired result for n > n,. The case with p < n < ny can be treated similarly. B

Lemma 7.3 (ef. Theorem 6.1) There crists a constant ¢ > 1 depending only on a, o, a”, k, k' in
(AA)=(3.5) and b,V B, 6" in (6.1), (6.2), (7.1), (7.2) such that:

ch ~ PP _cop” _ b
B} = f/ l-I—Iog )+ X (1""—"{“ D+ ez 1}3) (1 t .l+|]0gp,iJ

Proor: Nate that N7 is not less than g by the definition. We first consider the case with N’ > qq.

FProceeding as in the proof of Theorem 6.1, we have

ol i E'
FATL I N > qo) < E'"(Xje | N “ﬂu}+p—f( +W){|ﬂi’;'{¥‘+l]+f+ 2}

Substitute n by N'in (7.11) and take the expectation under the condition N’ = go (as well as Tp, > ¢
and 7.} Then we have

E'(Xi | N' > qu)

VoS ! h
< ot TE(N —f;olf*f}?ﬂ]"'%(“rml)

i 242 2 i owrl b ‘7'__‘2 .“211
+{IJ—1:|2{EH}L |2prj(fo.g[_£‘{h- —qp| N > qa) + GTEI“{'!)T Ebp{p-‘lj

where BN —gq | N % go) = E(N — ko= qu ! N > ko + g0) < o1 £ 5"/(1 + logv)} due to ( (7.1}
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On the other hand, when N = gy, we have T, = max{H},..., I, }. llence, by Proposition 6.1,

, b )
E(T | N = w}€7(1+m){1ﬂg{:ﬂ. 1)+ C+2)

From these observations, irrespective of whether N' is greater than or equal to gg, we obtain

Ik - ﬂ E l_)
Em]¢u+h+k@+HhM

(a2 + 20 p%) [ logw + v + LGl +1)+ r—zb’p"’{p— 2)
1+1lo o 1 3

¥
RTES: 6

op b )
(L [ T 3
+ 3 ( +1+“ﬂ_gjm| {log(lp+ 1)+ C + 3}

> (v 1rie) 3P O i) e
< e ——}+12 ]
< p(1+1+105u F3le 1+1J-iln}gp[ {log(p+ 1)+ C +3} +
oA - r 2 (lngv‘ E El"+1) .
e T R G T 7 0] oW N S Al LAY
(p—~1)* {{ ) ¥ 6 p P 3!

where we have (ny + al)/p < (b + 0"+ Lp/{p — 1)+ 1 and v = pty < ; < ap® owing to (3.3), (3.5)
and (7.9). Thus we obtain the desired result. i

Lemma 7.4

B2 4+ 2(1 + 0" yprr 4 p*
H?p?

. ' Eb' :
E{(15*} < 4{(a") + b} [{Iug (p4 1)+ C+2) + ﬁ]
ProoF: Take an arbitrary n € IV, and consider under the condition .F'_;;, s information up to time X7 .
Let &7,..., ky be the orders of the subtasks which arc being executed at time X! 4 0, and @Yy By
be the elapsed time in ihe respective execution up to time X!, where 1 < ¢ < p. Then we have
maXieica ¥ = X+ ma}{lfeg[ﬂif — aj), and

f{ max (¥/)* [fx,} < 2XL) + 2E {max”fk;—-a"}}gl >ap (1<Vi< g}}

1<f<n
Since E’{{HL: - al —a)* | Rk: — ;> a} < b'fp* forany a > D and | < i < ¢, we have, owing to the
following Proposition 7.2,

! v b
IRy i : = -
E’{,Igfgq{ﬂ; - a;) iR r e (1W< q]l} < H?h[q} < ﬂzhiw)

where fi{p) is a fonction defined by (7.21).
Whenn > p, we have X1 € X} = Op4+ 04 1+ T5mppy L < O+ ke U+ XL < and MY,
hence F{( X))} < 20%n® + 2E'{{M!)?}. and

' — 4 (m — ]}?
UMY = T B Sy < T
k=1 Hep
Therefore, since T = maxycg<n ¥y, we obtain

E’{(T;}ﬂ | N = p} < 4( + —'!.’---),E.|,',|"'|"J‘t | N’;-pj+£h{ J

where E'(N? | N' > p) = E{(N —ko)* | N > ko + p} < "% + 901 + By + p* by (7.1} and
{7.2). Om the other hand, for gy < ¥n < p, we have X< X! < (), £ ap as. and similarly,
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E'{(T2)? | N = n} < 20%p* + %"i'-h{p}. Therefore, irrespective of whether N’ > p or not, we obtain a

common upper bound:

i’

bf w2 rr 27 26‘ :
"p'l) {0+ 21+ 6")pr 4 p*) + M‘“[P}

Eﬁﬂf}gq@ﬁ+
where a < @”/A < a"/up. This completes the proof. 1

Theorem 7.2 Let T be a family of divisible tasks salisfying Assumptions 3.1, 6.1, and 7.1. When
g > 1 and the task is as larye as

{> ]
(7.12) b > ib%@+”+{ ﬂF}
for some 0 < ¢ < 1, we have 1/n < 14+ ¢ and
(7.13) ET,-1]T, >0 < & "';:'t’ {1+ 1+1;_1;} (¥t = 0)
riﬂ
{7.14) E((T, —tf [Ty > ) < p— (vt > 0)

where ¢®,e.e’ > 1 are constants depending only on a,a’,a”, k, k' b, ¥ 0" 6" appeared in (3.3)-(3.5),
(7.15)-(7.16) and {7.1)-(7.2).

Proor: Theorem 6.1 immediately gives the estimate of 5. According to Lemmas 7.3 and 7.4,

F x El ﬁ” Et‘ ( Er )
- & L S - T Pl ol
E(Tp}—p(l+l+lngv)+ p U T gl

B0 o 21 o W Y 4 p*

’ )
BT < a{(a")? +) + 4% oo 1+ 24 T

pip? 6
where we have:
Aty L P I pp fy -1 oy gy 1
=—2=>p —=op —<ap! —loglp+ )= Tlogipr1) g Lo 2
ppoT ok oA P T el N OBLP » P

Therefore, we obtain (7.13) and
t? e ‘ 7
EY(TI) < ;TEE (") + U HE™ + 26" + 3) + 2 {[C + 30+ a H
hence (7.14). B

Note that (7.12) implies £, fp < E{T,) < (1 + £)t;/p owing to Theorem .1, Hence T}, satisfies the
moderate diversity condition in a slightly weakened sense. Namely, the expectation of the residual is
bounded by the initial expectation multiplied by (1 + ¢).

Now, assuming the moderate diversity in the slightly weakened sense from the beginning, we show
that the similar results are s4ll obtained,

Assumption 7.2 (weak moderate diversity in the subtask size) There exist constants, x > 1
and b, b = 0, such that. for any ¢, > » > 1 with pltiel — ey,

b
7 LR (g i) e — _
[ 15} E[Rn & | Rﬁ = }I {: |:!I|1"_:| ( + l. + I.].Uﬂlﬂ-':ij .b'}l) fﬂr ‘:f'x E ':I'r n = 1312\---
!
(7.16) E{(R") _ 2y | R} 5 g} € b forVz >0, n=102 ..

= (uliey
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Corollary 7.1 Let T be a family of divisible tasks satisfying Assumptions 5.1, 6.1, and 7.2. When
p > 1 and the task iz as large as

o _m]_ﬂ E‘°P3
(7.17) he {mgmm{—rhp_ 113}1

for some 0 < £ < 1, we have:

. L kpp* c*p?
7.18 = <14 P2 Diog(p+ 1) + b < 14 ke
(7.18) ; Vs {ﬂﬁ{P ) bo1p

. , {1+ kit o
7.19) BT =t Ty -2 5 (Vi > 0)
( R e 7 l+lng%:-

. 13

(7.20) E{(T, ~ 1)’ | Ty > ) < f};;’ (¥t > 0)

where ¢®,c.c' > 1 are constants depending only on a.a’,a", k kb, B 6 " appeared in (3.3)-(3.5),
(F.15)-(7.16) and (7.1)-(7.2).

Proor: These are direct extension of Theorems 6.1 and 7.2, and can be proved similarly, where (6.15)
should be madified into L, = X, A {My, — s{b + 1)/u} and likewise for INEIN |

Proposition 7.1 Let By, Ra... ., Ry be iid. aceording lo the ezponential distribution with mean @ >
0. Then we have F{max; ¢, (R} = o2h(p), where

Coder i By L T + - N E
721) k() ¥ (Cr2p 4 ey Rt LD z(r”‘ﬂ)

F'fp 1) T(p+1) I(p+ 1)
: o (€ +2)8, +1 gl
= {loglp+ 14+ C+2)¥+ — - — 2 lga(p+1 - -
loglp+ 1)+ € +2)7 + < 31 et 1) oy TEE

for some 1< 6, < 2 and -3/4 < i« 1/2,

Proor: For simplicity we may assume o = 1. Let @iz} denote the probability distribution function
of max,<i<p K. Then as in the proof of Proposition 5.1, we Lave

PR} = [ e asta = p [“oen ey, [ prtogyay

T<icp
Fip+1) IMp+1) | I'ip+1)

> .
—p— = (1) - 2I' _ kD B
Paplen| | =T -2 iy - R () < i

y=i
where B(.,-) denotes the beta function and I'{-) the gamma function. Here we have Mil)= =0 -2
and T"(1) = (C' + 2)* + #%/6, where (7 denotes Euler’s constant, and (cf. [1f)

My . 1 ?[W i tdt
T S MEr = — =] T e
[‘{I]. E s a 3,21-,,2 eiTt

I"z) (r’fz}}2_1+ 1 r4fm x t dt
T(z) I'(z) EERRTS o (FF LR eImio

As shown in the proof of Proposition 5.1, we have

u{jm I tat ]
B
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and also

o T {dl 1™ r 1 31 i
——— | e 1 e = _E —_ - = —
0< f:_-. [z +12)2 etnt ] ap [z + t*}?tﬁ ral (2’2) Bz?

Hence, for some 1 < ¢ = o9{z) < 2 and 1 < &3 = e3(z) < 2, we have

P'2) loes . C1 1"”{:1! (T’{I.‘J)E_i.f_n
T(z) &% 2z° T(z) \T(z)) "z ' 27

Substituting these into the above expression, we obtain the desired result. B

Proposition 7.2 Let 5 > 0 and X,,..., X, be positive i.i.d. such that E{{X;-z) | Xi>z} <+
holds for any + > 0 and 1 <4 < p. Then we have E{max,cicp(X:)*} < ¥h(p), where h(p) is the
Sunetion defined by (7.21).

Proor: Let ¥p,....Y; be iid. according to the exponential distribution with mean +/7, and inde
pquenL of Xy, Xy Sinee E(X; -z | X; > 2) < [E{(X; - 2)? | X, > z}]/2 < /7 holds for any
> 0and 1 <1< p, it follows from the following Proposition 7.3 that

E“Xl Vo VA Vg V- """Y}i} {Uﬁ -VX,,_;V?;VH-V}’},:IE} {15\""[‘?5?}

Hence E{maxyz i<, X;)%} < E{max; ¢; EP{Y;:#}? and we obtain the desired result by Proposition 7.1.
|

Proposition 7.3 Let X, Y, Z be positive random variables such that 7 ie independent of (X,Y),
E(Z%) < oo, and

E(X 2| X>2)<E(Y =2 |¥V >z) < oo (vz > 0)

E{X -zl | X>2) 2 B{(Y =2 |V >z} <y (Vz = 0)

for some 5 = (. Then we have E{X* v ¥?) < E{Y* v Z%).
Proor: Tet @{t) be the distribution function of Z, e, ¢(f) = P(Z < t]. Then we have

E(X?v 2% = fmlﬁ +UEX — X » O+ B{(X — 0, X > t)]dult)
4]

B(Y? v 7%) = jm[ﬁ P2BY = £,Y > )4 E{(Y =)%Y > 1)]dw(t)
i

where K(X — £, X > t) < E(Y - &,Y > t) as shown in the proof of Proposition 6.2, So it is
sufficient to show lltal; Fit) = Ct) for any ¢ 2 0, where we define: F(t) = E{{X = )", X > t} and
Gt) = B{(Y — 1), > t}. Note that

Lo =] L]
F(1) = :af (s = )P(X > 8)ds. Git) = zf (s = )P(Y > s)ds
i L
In fact, using the distribution function of X, @(t) = P(X < L}, we have
- o
F(t) =f nf:,.-l:.s]lf Yu du —f % .mf diofs) = f 2uP(X > v+ 1)du.
t (]

And "
) = -zf P(X > s)ds, Gty = f P(Y > s)ds,
i



FU'ty=2P(X =) =0, G =2P(Y > 1) 20,

hence
E{{A‘-ﬂzlf-‘*f}:iﬂ_ﬂ%’ E{[Y_”E'“”:Ecﬁ{{:;'

Therefore the hypothesis implies F(£)/F"(t) < G(1)/G"(2) for any t > 0; namely, PG — F(OG()
is non-decreasing in ¢ > 0. We also have IF'(£)7(t) — F()G'(t) — 0 as t — o0, since F'{+o0) =
G'(+00) = 0 and supysq F(1), supso G(t) < +oc. In fact,

F{t) = -zfn ds_{mde,:{u} - ~—2_£md:p{u]j: ds = —9£m(u — t)de()

P < i‘fwudcp{u] “2B(X,X 51) =0 as{—0
i

and 0 < F(t) = E{{X =) | X > t}-P(X > t) < %. Therefore we have FI{t)G(1) - F()G'(t) < 0 for
any & = {; namely, log #(t) — log G(t) is non-increasing in t > 0. Thus we obtain I'(t) < G(t) for any
L 20, since F(0) = E(X?) < E(Y?) = G(0) according to the hypathesis. B

8 Multi-Level Dynamic Load Balancing Scheme

L this section, we investigate the performance of the multi-level dynamic load balancing scheme
described in Section 2.5, which is an iterative application of the single level scheme in a hierarchical
manner. The results on the latier scheme obtained so far in the previous sections will be iteratively
applied.

8.1  Definitions of the Model

Iu this subsection, we introduce a formal model of the parallel execution with the multi-level load
balancing scheme, which gives an expression for the parallel execution time. ‘'he model is constructed
from that of the single-level scheme defined in Section 3, and hence covers similar factors, e.g., the
“producer bottleneck” and the non-uniformness of the subtasks, but not the IMter- Processor communi-
cation latency. As before, we assume a family of problem spaces with different average sizes, from one
of which a task (problem) is chosen 2t randem. A task is assumed {o be divisible intv many indepen-
dent subtasks at the first level, each of which iz afFain assumed to be divisihle into many independent
subtasks at the second level, and so on. Hesides, we assume that, at each level, the average subtask
size can take any continuous values, ie., a (sub)task adwits any {fine or coarse) grained (sub)division
as we like. However, in real cases, the available granularity may be restricted by the discrete nature of
a given problem. IHence the results obtained for this model should be viewed as optimistic bounds for
real cases. In order to generally guarantes positive results, we assume tle moderate diversity condition
al each level (cf. Section 6.1}, More precisely, we give Lhe following definitions.

Definition 8.1 We define Thinesepiempd 4 (| Vi, - - pe)-division of a task of cxpected
size &y, by induvetion on £,

(i) For £ =0, T = 71" §s & null division of a task of expected size &y, if and only if T} is a
non-negative random variable with inean ¢, > 1, satisfving the moderate diversity condition:

5 “]}_ T“l} < ( b ) - -
(8.1) E(T, I s x) l+__1+lﬂgx| for¥z 20, n=12,... (cf. (7.3))
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(8.2) E{(I{ =P | T > 2} < W82 forVz >0, n=1,2,... (cf. (T.4))

T:h] is also referred to as the size of T jrself.

{”} For £ £ l, ?-[“.,,,11___11,.”m Ty — {N“"V'],-[’};{”hl;q"“'"'m""'W}}:;l, {Uih .UJ«PLJ}:-;IJ isa (U|.. .o VS

P1s-- ., pe)-division of a lask of expected size 1, if and only if the following hold.

1. For each n, it fawe izl i (292, v pa, .o pe) (null, when € = 1) division of a task

of expected size ¢/,

9. sz vtiRiepe) el probabilistically equivalent fur all n. Namely, each of them consists of
independent random variables whose distribution does not depend on n.

3. (Nl {T,':f;"'m]"" (Ul ®he Y is a division of a task (of expected size t;) between py

=11 fi=1
consuiners in granularity # /14, satisflying Assumptions 3.1, 6.1 and 7.1, where Tllif"” is the size
of j:_[‘“'*’: ] ----.l".ﬁPe.---.P.:]r

In particular, the size of T1h#eeiored js defined by Ti['ﬂ - Tffl‘f Wyt T:?;;f: L}? whid does
not depend on 1. We assume that the constants a,a’,a”, k, &, b8, 0, 5" appearcd i (3.3)-{3.5),
(6.1)-(6.2), (7.1)-(7.2) and (8.1)-(8.2) are chosen large enough so that they are the same [or all the

lewe] frotm 0 to £,

Note that a (s, -division of a task of expected size ¢, is nothing but a division of the task (of
expected size 1)) between py consumers in granularity t; /i, defined in Section 1.2; je., Tltim) =
Titiwir) For each () » 1,

T = [Tt iy e} | & division of a task with vy, 0 > 1, 1<y, e € N}
represents an -level divisible task of expected size {). We will refer to
T = {‘Ir"“‘""’"“""5’”""""3lI | a division of a task with t; > 1, wy,. .. e > 1, 1 < Moot € N}
as a family of {-level divisiblc tasks.

Definttion 8.2 Lel 710 meimerd o o (#1531, ... Py )-division of a task of expected size

t1. We define Tl[r::”m}”] by induction on {, the parallel ezeeution time of TR vipiepd by (he

f-level dynamic load balancing scheme, more precisely, the parallel execution time of a task of expecterd
size i1 by Lhe -level dynamic load balancing scheme with (11,....00 ., . .. e J-division.

(i) Vor £ =0, we define it as the task size itsell, T:I'],

. [y - (£, el ty S - 1.

{ii) For f = 1, Tim.-.im} o=, (NiE P]}1{}[P;.-?F:?-ﬁ t }?‘ilrwilmm}}le}? where 75, (-, -, ")

is the fonction defined in Section 7.3, and each T‘*l!""li—f’gr-,hei
[T ) KT

-Pe) by the (£ — 1}level dynamic load balancing scheme. Here 1 15 referred to as

15 the parallel execution time of

T ST SN T T
T

the degree of the root producer.

This definition indicates that the root producer at the top level, pL- - Py—1 subpraducers at j-th
level for each 1 < 7 < ¢, and p, ---p, consumers at the bottom level constitute a tree of PTOCCSS0TS,

We will refer to {p, ... pr) as the processor configuration.
For brevity, we often write T:l_l"" ;"']'“’? = 7}1':]

exceution time by the f-level dynamic load balancing scheme with P consumers, implicitly assuming an

with p = py - ps, and refer to it as the parallel
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expected sizety > land a(py.... . p e, ..o, v )-division. We also define the expected parallel execution

lime: tiﬂ E{Tm] the erpected speed-up: sm = II{'tm and the expected efficiency: = Il,fp.sm.
By definition, a multi-level divisible task cousists of a number of subtasks, each of which again

consists of a number of subtasks, and so on. We will also refer to these descendants as sublasks. More

precisely, we give the following definition.

Definition 8.3 Let T —stpiepe] ha 5 (v4.-- - 01, .. pe)-division of a task of expected size
t1. We write Egﬂ =1y /(py o) for 1 < § < £4 1, and define a subtask at the J-th level by induction
oLl j.

(i} For j =0, we define the subtask at the O-th level by the task itself: T{0#2 v bt npe)

(i1} For 1 <7 < £, we write, for each ny,... 0,4,

?f,«ﬂu} _____ Py i) “g.{;,_ i) T{ei:ﬂa:p_,u,...,ur;::;ﬂ1----Pr]'}n:_h_{yfﬂ .n«,.m}n,_l}

Tl geanibly = AL peen Py ,1

R 11?*1}:1&- FET T Py
and refer 1o cach T o

we refer to the £-th level as the leaf level.

as the (ny,...,n;)-sublask at the j-th lev elln particular,

Note that each subtask at the j-th level is itself a (f — F)-level divisible task, more precisely, a
(Vjatse s ¥ Pistae - - pe-division of a task of expected size tm Therefore its notation is consistent
with Definition 8.1. Moreover, since (n,.. ., n;)-subtask at the j-th level is probabilistically equivalent
ter each other for aJi fy,...omy (of. Definition 8.7 (i) 2.), we will often write T swistbemsia )

and similarly i) We will constantly use the following notations:

(4 25 pha! ] . :
Aj = A T = L/E(U %)y . production rate of a producer at the 7-th level

)
pi= !,-"L{J"{I“ll :;’J:'; "”]j ¢ consumption rate of a “consumer”™ at the j-th level

Pi=Aslpips ¢ ratio of production/consurnption rate at the j-th level
My = -1ty fpipi o efficiency at the j-th level

where T[fF;ﬂ r‘,;:]lml#d is the parallel execution time of i 14 e VB 110 ) by the (£ — j)-level
dynamic load balancing scheme. Note that ,v;vJ a.nd 7; are consistent with the definitions in Section 3.3.

In fact, for any fixed ny,...,n;_;, regard TJ,, v 7ePree) 4o a “task”, whik consists of “subtasks”:

tJ* rJ-' s o * - . "
.E';[I _____ At LeettiPiL i) with m; = 1,2,.... And eonsider the parallel execution by the single-level

dynamic load balancing scheme with p; “consumers”, cach ol which is equivalent to the Disr - P
consumers with the (£ — y)-level dynamic load balancing scheme. Then the mean “subtask” size is
1/u;, the mean “task™ size is v;/u;, the mean parallel execution time with p; “consumers” is 1/u;_q.
Hence we obtain the above expressions for @; and 7;. Finally, note that:

1 Iy e b N U ERRRY V) _
83) = p=" oy, B iy
Hiy I £

8.2 Iscefficiency Analysis

In this section, we show that the scalability of the multi-level dvnamie load balancing scheme is
improved by increasing the number of levels. in particular, better than that of the single-leve] scheme.
For this purpose, we investigate the isoefficiency function [9] - - how much the task size should be
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increased with the number of consumer processors so as to maintain a constant efficiency. However,
as one can see in (8.3), in order to achieve a good efficiency 7, we should properly tune the processor
configuration and the granularity of the subtasks at each level s0 as to have n; large for all . We will
tune these from the leaves to the root.

Let 7 be a family of £-level divisible tasks with 1 < £ ¢ N and k > £+ 1, where k is the constant
appeared in (3.3). In order to avoid being annoyed with pathological cases, we assume thal, at each
fevel j, the production rate, J;;“ “F) s monotone decreasing with t;, v and p; and rather smoothly
depends on them, i.e.,

[t} 0’6}
AL oy g
3 N —t i a0 - L
(8.4} ) 1 as Iy, v, p— 400 with PR 1

Take 0 <« < 1 and p, > 1 arbitrarily. For any 1'{“ ) = = 1pe > 2p.a {]orrTI" the average subtask size
at the leaf level, we define v;,p;, ¢V ) pi;_1 for each 1 < § < £ by induetion on 7 according to the next
temma. Here o' and k' are the constants appeared in (3.4).

Lemma B.l Let | < 7 < { and assume that w,p,, !I ibicy for ench 1 = 74 1,7+ 2,...,6 have
been chasen according lo this lemma wilh larger §. If !':-'_ ) is large enough, there exis! constants,

cj.e5.¢; > 1 such that the following hold. Tuke the lurgest 1 < . p; & N satisfying
8.5) _ *J"_t . il A= A':‘l:;”l".r*?-':]' t':'ﬂ _ _‘.'.-H-l] B | 1) o
(& P = P Pu WRCTE Ay = A; B =G, M= ?{ og(p; + 1) 1 £f}
and define p, | = UEIT:[[I: H"' 'w'l_’,l. Then we have n; = pioyvifup, 2 (1= 2)/(1 - 5“:—.5+2J and
} 1 {42
A .\ {Iu'iv ..... wy) 1!'”;#_,....11.-;] \II . 1 £ [+
[¥.6 F.-(T" ! —x | T =x)oe T —— (Vr =10
] el (Pret) TS e Ui Hogpegal :
o : i
. {!E‘:';J-J,....rf'i P [!';IJ:';:.-J,_...,L.-f_:l i L
(8.7) E { (Tm o) [T e ez )

Moreover, €5, ¢;,¢) depend only on £, p. and a,a',u” k, k' b b B b appeared in (3.3)-(3.5), (7.15)-
(T.06) and (7.1)-(7.2). Finally, note that
£5-11 -1 1 v, pipflog(p; + 1) + ¢7} o p 1

£8.8) = = = 2 -
( A Bi—1 nikgp; £ J?JL_,- 2ij

Proor: Since (8.8) is trivial, we will establish the rest of the claims by induction on 5. We first
consider the case with 3 = £ The existence of pe follows from the fact that p; > p. for p; = 2 and
that pr + 0 as pr — oc. Since ft i' = (pepi/ere){logipe + 1) + 5} and 1/), < a'{log pe)*', we have
:m o(pf) and hence (3.3) at the £-th level. Therefore Theorew 7.2 establishes 1/7; < 1 | ¢ and
(BOFBT) with ¢f = e“p2 /(1 — p.)°, £; = ¢, and g = ¢, where ¢ e, ¢" are the constants appeared in
(7.12)-(7.14).

Now we consider a general case with 1 < § < ¢, assuming that the above claims are valid for larger

‘The existence of p; can be similarly established since Jii S g = pg by {(8.8). Since

) Vit ME _ prbe T M pip: o:0 i PP fa
{0 g (80 ) o [ i ()
! g = -'!"-.F =y £A Ay I te = A E}t i'—"g .JI.J +1|+ c;
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by (8.5), (8.8) and 1/4; < a'(logp;)¥', we have t§'! = o(p¥) and hence (3.3) at the j-th level. Induction
hypothesis (8.6)-(8.7) for 7 + 1 implies that a subtask at the j-th level satisfies (7.15)-(7.16) with
£ = (1= 7% /(1 — £). Therefore Corollary 7.1 establishes 1/ < {1 — £2=3%5) /(1 = =} and (8.6)-
(8.7) with €} = max{c?,,.c°p]
in (7.17)-(7.20)). B

J(1-p.*}. ¢; = ¢, and ¢; = ¢', where ¢°, r, ¢’ are the constants appeared

Lemma 8.2 Forany | < j < {,

:

il
=5l A

neeve ,:ﬁm{tagfmmc?}_(mm)*_ [ et flom(p £ 1)+ 1

£ i=1 }lj

In particular,
R 3 (L 2%
v (e cpe)tpE (logpdoca) e
h = = t+] 1
He T (M- M)
where c. is a ronstant depending only on {,p. and a,a',a" kK b & BB appeared in (3.3)-{3.5),

(7.15)-(7.16) end (7.1){7.2).

Proor: Since the second claim immediately follows from the first claim with § = 1, we shall prove
the first claim by induction on j. When j = £, the first claim is trivial by (8.3) and the definition of
p¢. Assume that the first claim holds for some 1 < § < £, We have

‘ a L R IR i f oyl- st
pillog(p; + 1) + 5} (.ﬂjpj)’ P (F_;i—]?-’;—]) “ e loglp + D+ )T
A A ;]_’-}lﬁ.}}

£ - a=1

by (8.8). Hence we obtain the first claim also for j — 1. 8

Theorem 8.1 Let T be a famaly of {-level divisible tasks with 1 < £ € N and bk > { + 1, where k is
the constant appeared in (3.3). Forany 0 < ¢ < 1, p. > 1 and 1 < p, € N, there exit iy > 1 and
A=(wr bGP pe) with ey > 1,1 < € Nop=prpe > po such that the following hold. (1)
When a task of erpected size ty is solved in parallel by the {-level dynamic load balancing scheme with
A-division, the expected efficiency 1 is larger than 1 — . (i) When p grows, 1y increases as slowly as

(pro-pe)ep * (logp+ )%
(/€)Y F (Ay -+ Ag)

(8.9 f £

where A; denotes the production rate of a producer at the j-th level, with 1 < 1/A; < a'(log p; W I
denotes the ratio of the production/consumption rate at the J-th level, whick is larger than p. and
approaches to p. as p— oo; and ¢ is a constant depending only on a.a’',a”. EE b6 67 6" appeared
i (3.3)-(3.5), (7.15)-(7.16) and (7.1)-(7.2). (iii) Moreover, the parallel exceulion time T,E;] salisfies
the moderate diversity condition:

) [
£.10 E(1i -z 1 5 2y« 14— Wi >
(3.10) Ut =rihm > ) s g0, +1+1ug§} (Ve > 0)
M ¢ 2 c:tz
(8.11) E{(TI ~ 2| T > 2} < ?l (V> 0)

where e, ¢0 = 1 are alse constants depending only on a.a’,a” k& b 6. 0" 4",
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Proor: TFor arbitrary fif‘“]

by induction on j according to Lemma 8.1 with ¢/{ instead of £, Then we have n = Sy
(1—£/£)' > 1 -2 and (8.10)-(8.11) owing to Lemma &.1. Besides, Lemma 8.2 implies (8.9). By letting
!{l“” = 1/ps = oo, we have p — oo, in particular, p > p.. Finally, = p. a5 p — oo follows from

= 1/pr > 2p.a'{log 2)F, define :;j,pj,:gﬂ',pjd for each 1 < 7 < ¢
:—.

the assumption (8.4]. B

Remark 8.1 In the above proof, we may take any large v; with v; > (p;/e){log(p; + 1) + cl}, as
long as t?} = u,-r!,’“} < up;r is not violated (cf. (3.3)). Then the claims in Lemma £.1 still hold. In
particular, the expected efficiency 5 is larger than 1 —¢ for a subtask of expected size somewhat larger

than 1.

This theorem implies that the multi-level dynamic load balancing scheme is indeed more scalable than
Lhe single-level one in the sense of isocfficiency. The isoefficiency function of the flevel dynamic load
balancing scheme is O(p!™ W/ {log p) #1210}, where A = (A; - -- A0V is the geometric mean of the
production rates through £ levels and 1/A, = O((log p}"‘J) by assumption. Its principal factor pt+1/¢
is decreasing in {. Scalability is thus improved with the number of levels £,

8.3 Asymptotic analysis of the processor configuration

In this subsection, we investigate the processor configuration thai is employed 1o Theorem 8.1, which
makes the multi-level dynamic load balancing scheme fairly scalable as the number of consumer pro
cessors increases. More precisely, we study how fast the degree of ront praducer, 1, should increase
as the number of consumers, p, increases.

Let T be a family of f-level divisible tasks as above, and take arhitrary 0 < ¢ < 1 and p, > 1.
For any large EEE'HJ = 1/, dofine r.a-,pj,tgﬂ,,uj_l for cach 1 < j < £ by induction on j according to
Lequma 8.1, and let p = py---ppand ¢y = oy - ~rgf gy, For brevity, we write:

_ 1 log(p; + 1) + ¢ _ iy _
F= ey Fja= —————4L {14 <) by = S5 {le g
P; . 1 . { i) P J

where ¢} is he constant appeared in Lemma 8.1, and 7; is the efficiency at the j-th level, Note that,
for each 1 < j < £, we have:
(8.12) Pimi = Py & K

In fact, the first incquality immediately follows from (E.E) By (B.5), we also have:

- -1y 1 . - =1t i-17;
I-"_;i—l = 2 = 1=1 = L = Inj '? = fijj',lj?l'j
Aia Felbi—1  PuTifsils  puTlipls
Lemma 8.3 Forcach 1 < § < §, we have
r ¢
_ o ) = _ - i
{8.13) fi; oo iy M EE- 111 < P 141 <P H [:H.?T.Tr 1
t=j+1 =311

Proor: We use induction em j. When j = £, the claim is trivial. Assume that the claim is true
for some 1 < 7 < £ We have ; 1777%1 < ;'Jf:'rl < xj"'”ﬁ:"‘""l-*rfhﬁi by (8.12). Applying the

induction hypothesis to the both ends of this expression. and mulliplying p,_1 to each side, we obtain
the desired result for 7 = 1. 0
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Theorem 8.2 Under the same condition ae in Theorem 8.1, we can take A = (v, ... v pr,. .. py)
such that all the elaims in Theorem 8.1 hold {in particular, n > 1 — ¢ J and

=1

pi{logp) T p . eipt{logp)

N S aSsTSTEr T

(Ar--Agdt A 2T (A Age

(8.14)

as p—*DEI

where T, < yp indicates that: lim SUPpoe Ip/Up < 1.

ProOF: Take A = (14,.... 0 py,...,pe) 25 in the proof of Theorem £.1. Then Lemma 8.3 with i=1
implies thal
¢ £
precpe [[ i+ < gl < By e [Timimaytr+

i=2 i=2
Since p; — p. as p — oo and 1 < 1/m; < 14 c/f, we have 1< k; 51+ ¢/€ Hence, (8.12) implies
logp;j 1 = logp; since p; = p;p; /A, and 1/4; < a'(log p;)¥'. Here ~ indicates that the ratio of the
both sides converges to one as p — so. Therefore, we have ©; ~ (logp)/e and P; = papyfA; for cach
L'<) % fin the above expression. (Note that we are using £ /£ instead of £ in defining 7i.) Thus this
expression gives the desired estimate. B

Finally, we lutuitively discuss the plausibility of the above processor configuration. In the uniform
tree structure of processors, we would have py = ... = pe = pt'4, However, the number of immediate
descendants a producer can afford (degree of the producer} is clearly proportional to its production
rate. Hence it is natural for pi /A, and p'//(d; .- 1) to appear in the above expression (8.14),
where p'* = (py ... p V% is the geometric mean of the degree of producers through ¢ levels and
(A1 --- A} is the geometric mean of the production rate.

Even if Ay = «+- = Ay, the uniform tree with P1 = --- = pp does not provide us with the best
scalubility. For example, consider the case with two levels: § — La=h=Ap=m= VP We
will use the notations defined in Section 8.2 such as t&".], 45, 1; and p;. According to Theorem 6.1, we
can take tiz} = &(plog p/A.) while maintaining 7, ~ f1). This implies 1/p; = & /Flogp/A.). Note
that this is more than enough to ensnre p; = A, f4/P > 1 and to avoid the root producer bottleneck.
Proceeding as in Section 6.2, we can take iy = O(,/plog p) while maiutaining 5, = Q(1) as well {cf.
(6.20)). Therelore we obtain the isoefficiency function t = .uligz] = O(p*?(log p)*/A.) on the uniform
tree structure. This is worse than ¢ = O(p*?(logp)*/* /A, ) implicd by Theorem 8.1.

In fact, {8.14) shows that the degrec of the root producer has an extra factor of (log p)tt=11/2,
And, in general, the degree of a praducer at a higher level is likewise larger than that at a lower [evel,
which gives a tree bushy near the root. Hence, in terms of the ratio of the production /consumption
rate, the higher the level, the lower the consumption rate, i.e., the larger granularity, This is an
accumulated effect of the fact that, at each level, a sufficient number of “subtasks” are emploved so
a5 to compensate for the load imhalance.

9 Conclusions

We investigated the efliciency of the single-level and multi-level dynamic load balancing schemes for
@ program that requires many independent pieces of computation (subtasks) of non-uniform size.
A queueing model was introduced in order Lo analyze how the efliciency is affected by both the load
imbalance due to the non-uniform subtask sizes and the possible bottleneck at feeding many processars
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with the subtasks, The moderate diversity condition on the non-uniformness was described, which
guarantees a reasonable efficiency of these schemes. Intuitively, it requires that a subtask should
be steadily executed, i.e.. its remaining execution time should not be expected to blow up. Several
bounds of the efficiency were abtained under this condition, which concisely express how the cfficiency
(1) depends on the production rate of the subtasks (A}, the amount of overall computation {1,], the
number of consumer processors (p), and the number of levels (£). In particular, we showed lLow
the multi-level scheme improves the scalability over the single-level scheme in terms of isoefficiency
function [9].

On the other hand, these load balancing schemes are not powerful for a program that is too non-
uniform to satisly our condition, as we intuitively discussed earlier. More elaborated load balancing
schemes should be devised in this case. And it would be worthwhile to perform similar probabilistic
analysis of them.

So far, we have not considered inter processor communication latency, speculative computalion
[16], or other overheads associated with parallel execution. How the efficiency suffers from Lhese

factors should be freated in future works.,
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Appendix A. NBU Model

In this paper, we introduced the moderate diversity condition in order to gunarantee & reasonable
eficiency. As mentioned earlier in Section 6, it is closely related to several aging notions in the theory
of reliability engineering, e.g., NBU, IHR. DMRL [13]. In this appendix, we discuss a model of divisible
task bhased on NBU notion, which is in fact subsumed in our earlier model. The inheritance property,
which was crucial for trealing the multi-level schemes {cf. Section 8), can be shown rather easily in
this restricted model. This appendix gives alternative proofs to those in Section 7.

A1 Definition of NBU model

In this subsection, we define a model of divisible task based on NBU notion. NBU is weaker than THR
{IFR) mentioned in Section 6.1. A nonnegative random variable 7' is said to be NI [ new better than
used | if and only if [~ ¢ | 7" > 4] < T forany t 2 0. Here [T~ ¢ | T > t] denotes the distribution
of T~ 1 under the condition T > ¢, and < denoles the stochastic inequality [5). Namely, for any real-
valued random variables X and Y, X is stochastically smaller than ¥ (denoted X <« ¥ or PY « P
if and only if E{f{X)} £ E{f(¥}} for any bounded nondecreasing real-valued function /. Similarly,
we will say that an N-valued random variable N is NBU if and only if [N —n | N > n| < N for any
ne N,

Let 7= {{Nthw) {Rf‘f"”]]ﬁi., {U,i!““‘ﬂ];“‘=1}} be a family of divisible tasks satisfying Assumption
3.1. We define Tl["}, At gltvedi il ang plt) ag in Section 3.2. Instead of the moderate
diversity condition (Assumptions 6.1 and 7.1), we assume the following condition throughout the rest
of this appendix,

=
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Assumption A.1 (NBU model) T satisfies bath of the following conditions.
(i) Nt pli*d ang i e®) e NBU for any l<v<if,l<pcNandne N.
(i) (boundedness of cocficients of variation} There exist constants b and b° such that E{[RH”’]]E} <

B (2 and E{{N®2N2) < 32 hold for any 1< v <ty andn e N,

Note that this assumption is stronger than Assumptions 6.1 and 7.1, In fact, (i) implies {6.1) and
(T.1); and (i} together with (i) implies (6.2} and {7.2). As before, we will often omit the superscripts
for brevity, and write: N = N“""}, iy, = R!fl‘#:', = ;4{‘1'*";' and 5o on. We also define I, t, = E(T,),
Fyo X5 and others as in Section 3.

A.2  Inheritance of NBU by task size

In the NBU model, the task size also satisfies conditions similar to (i) and (i) in Assumption A.1.
Namely, we have the next theorem.

Theorem A.1 Let T be a family of divisible tasks satisfying Assumptions §.1 and A.1. Then
(i) The task size T\ is NBU for any t; > 1.
(i) E{TI)2) < (b4 0 = 1362 for any £y > 1.

Proor: Take an arbitrary x > 0 and define K = min{k € N |25 R, > z}. For any & € N and
{Tn}:____l € R:_l With E&-__-.: LE™ i: I, we have

T

M=% |Bo=r, (1€VR<k), K=4k Ty>z]

k-1 N
{Ern+ﬂg+ E B, —x

n=1 n=k4}

n=l]

k|
Ba=r (1<V¥n <k), R;,}J’.—Er,“ NE.&J

It

k=1
[ By — x4 z n
=1

k=1 N
.!igj: I — Z T -| * [ Z RI'I-
=1 J n=k+1 i

N;kJ

where = denotes the convolution of distributions over R. This is stochastically smaller than P 4

kst B IN 2 K < [TV R I N k1 s 0], since Ry is NBU and {R,}>, is i.id. This
is, In turn, stachastically smaller than N Rn =T, because  is NBU and independent of R, > 0.
Therefore,

(Ti—z|Hn=rn (1<V¥R<k), K=k T, >2]<T,

for arbitrary {r, ‘b;{ £ RY7! with *ire < z. Hence (i ~z[K=k T >z]<T. Since 7} > =

implies &' < 400 a.s., we obtain [T — z | Ty > 2] < Ty for any = > 0, which establishes {i). Mareover,
owing to Assumption A.l (ii}, we have

2
E{(T1)* | N = n} = E{(Ry + -+ + Ra)?} = nE{(R))} + (n? — ) E(#))? < " Lbi— 1jn

and E{(T1)*} < {¥'+7 + (b - Vedfp® < (b+ & — 1)t{, which establishes (i) N

A3 Inheritance of NBU by parallel execution time

In the NBU model, the parallel execution time also satisfies conditions similar to {i) and (i1} in
Assumption A.1. Namely, we have the next theorem.
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Theorem A.2 Lel T be a family of divisible tasks satisfying Assumptions 5.1 and A.1. Then
(i) The parallel erecution lime T}:l‘"‘p} s NBU foranyl <v <t andl < pe N,

(11} There exists a constant ¢ > 0 such that E{{T;E”"”‘”}?} Sell+p7 )t  foranyp > 0,1 < v < 1
and 1 < p ¢ N with ty > (pp®/ A log(p + 1).

Froor: Assume that Jy, the information up to time ¢, is given and that T, > and N = n, for some
t > 0and nc N. Define kg, 7, R} and U] (¥i € N) as in the beginning of Section 7.3, Then we have
To—t=rp(n— ko {RL}12,, {U/}{2, ) under the condition: #y, Ty > t, N = n. Since Rys are NBU and

Li.d., we have [R | F,, T, > ¢, N = n] < R,. By definition, 7, is monotone in its components:
nin, S wSu (VieN) = e, {0} (w)2)) € nln’ {752, () 2))
Therefore, we have
L=t Ty >4, N =] < npin— ko {R)ZAUIE) = [To | N = n—ko| < [T, | N = n)

and hence [T, — ¢ | T, > &, N =n] < [T, | N = n]. Since N < 400 as., we have =t 1, =t=T,
for any ¢ > 0, which establishes (i),

Now, we shall prove (ii). Let Xp be the start of the exccution period of the last subtask (ef.
Delfinition 3.1{ii)). Then the total amount of computation time of p consumers up to time Xy is at
most fy -+ Rpoq, and that of idle time is at most p(Uy -+ Uyn). Hence we have Xp < I+ +
Un4(fy4 -1 Rw_y)/p. Therefore, {1,) < 30y 44 Un) +3( By +- -+ Rpyoq)?p* +3(T, — X )?,
and hence

E{{T,)* | N = n} < 3a®n® 4 3(n — 1)?/u’p® + 3E{(T, - Xn)* | N = n}

Since fi;s are NBU and ii.d,, we have T, — Xy = max{Hy....,f,}. Hence, by Proposition 7.2 and

Assumplion A1 (i) (ii), we have E{(T, — Xn)*} < bh(p)/u?, where h{p) is the function defined hy
(7.21). Therefore, E{(T;)* | N = n} < 3a’n® + 3(n = 1)%/u®p? + 3h(p)/u®, aud hence

E{(Te)?} < 3b"? (uﬁ - i) + 2 {loglp+1)+C 4 2)* + i

e - 3 ul . i

again by Assumption A.l (i1). Here we have

£ e a” 1 op i
1< w=piy, =<1, OF 5 =i — ~log(p+ 1)="Sleg(p + 1) € —
o Sl Y " oup Pl =" loglp »

Thus we obtain (i1). B
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