ICOT Technical Report: TR-0804

TR-D&E

Magic Sets and Bottom-Up Evaluation
of Stable Model

by
M. Fujita, N. Iwayama & R. Hasegawa

Seplember, 1992

o 1992, 1COT

Mita Kokusai Bldg. 21k (03)3456-3191 ~35

I I :O I 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ke Tokyo 108 Japan

Institute for New Generation Computer Technology

Magic Sets and Bottom-Up Evaluation of Stable Model

Mazayuki FUJITA, Noboru I'WAYAMA. and Byuzo HASEGAWA

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokvo 103, Japau
email: mfujitafiicot.or.jp

June 22 1042

Abstract

We provide a query-answering procedure with respect to stable models for general logic
programs. ‘The procedure consists of a model construction parl that computes proof tree
for & query and a model check part that confirms that Brerals in the proof Lree are included
m sotee stalde model. The model construction parrl 15 wseful for rmjuring the number of
irrelevant model generations wo the query.

The most important characteristic of the procedure is that the procedure utilizes magic
sel technique m the model construcsiom part Although the model construction part is
thie topedown computation by nature. the computation is embedded jnto the bottom-up
conppulation by Imagic set t-E'(‘]'HIiLlLll‘. Sinee the eihededed |aul1-::||||—|.|p computation and the
model check part are based on a bottoin-up model generation theorens prover for first order
formmlas, the whole procedure computes in & bottome-up inanuer,

1 Introduction

For general logic programs. the stable model semantics was provided by Gellond and Lifschitz
[Gelfondss]. Stable model semantics is used in various fields such as deductive database and
Al 1o formulate common-sense reasoning. Therefore, efficient procedures for computing stable
todels are ueeded.

There are two types of procedures to compute stable models: bottom-up and top-down.
Bottoni-up procedures construct stable models. Top-down procedures answer whether a goal
is valid in some stable model. Sacca and Zaniolo [Sacca%0] developed a simple bottom-up
procedure. Satoh [Satoh91] and Iwayama [Iwayama91] developed bottom-up procedures, which
were versions of Sacca’s procedure but with some speed-up beuristics, Inoue [Inoued2] showed
that general logic programs are translated into disjunctive logic programs and that minimal
wodels for the disjunctive logic programs correspond to stable models for the original general
logic programs. The minimal models for the disjunctive logic programs are computed by a
model generation theorem prover. Since the model generation theorem prover computes in a
bottom-up manner, Inoue'’s method is a bottom-up method.

Eshghi [Eshghi®9] and Kakas [Kakas90] developed top-down procedures. Their procedures
were not correct for all general logic programs, because the procedures return correct answers
ouly for call-consistent programs. Satoh [Satoh92] developed a procedure which returns answers
correctly for the program with at least one stable model; the procedure computes using both
top-down and bottom-up techniques.

lu this paper, we firstly give a naive query-answering procedure for range-restricted general
bogic programs. The procedure consists of a model construction part and a model check part.

The model construction part computes in a top-down manner from a guery, and construcls a
candidate subset of a stable model relevant to the query. The maodel check part checks that
there is a stable model whicl includes the candidate subset obtained in the model construction
part. Since the check part is based on Inoue’s framework, the part is computed in a bottom-up
manner by a model generation theorem prover.

T'he main point of this paper is that the model construction part in the naive procedure is
embedded into a bottom-up procedure by magic set technique. Magic set technique in deductive
database allows us to incorporate top-down information with bottom-up reasoning. In our case,
magic set technique gives us this similar effect; the model construction part, which is computed
in a top-down manner by nature. is simulated in bottom-up manner computation by means of
magic rules.

Although the above uaive procedure is not complete, the procedure with magic rules is
complete if magic rules are still range-restricted. Since the top-down information by magic sel
technigue cots down the generation of irrelevant models to the query, the procedure with magic
rules answers more efficiently than do bottom-up procedures without top-down information.
Moreover, the procedure is very simple and small; it is written in only one page of Prolog code.

The rest of the paper is organized as follows: In section 2 we present our definitions and nota-
ticu, and introduce the problem to be resolved. In section 3, we present a naive query-answering
procedure which combines a hottom-up model check procedure with the Prolog interpreter. The
naive procedure s rewritten to a bottom-up procedure with magic rules in sectinn 1. In section
3, we conclude the paper and show many future directions for our work. In the appendixes, we
show the Prolog codes of all the procedures as well as twn examples.

2 General Logic Programs and Their Disjunctive Representa-
tions

We detine general logic programs and their semantics. Then we show what we want to compute.

2.1 Basic Definitions

We give a definition of general logic programs. Later, general logic programs are trausformed
into disjunctive forms. Borl original and transformed forms of general logic programs are used
by the naive query-answering procedure in the next section.

Definition 2.1 Let A, be wloms. A general logic program is a sct which consists of the following
rules:

Ap = Ao g weldg oy, e ot Ay,
or integrity constraints of Mo fore:
— .-'1.1 vieen Ayt :1-m.|. Toveen 0T AL.

where n 2 o 2 00 Lo dthe cose of v = o0 = U, we coll the rule a fact.

In the definition, a rule (or an integrity constraint) is range-restricted, if every variable in the
rule {or integrity constraint) has at least one ocenrrence in the positive part of its body. If all
rules and integrity constraints in a general logic program are range-restricted, we also say that
the program is range-restricted.

Next, we gives the semantics of general logic programs, which is based on [Gelfond88).

Definition 2.2 A stable model M for K is a Herbrand model satisfying the following conditions:

1. M is equal to the minimel Herbrand model for the ground Horn program W'Y where
KM = {dg — Ay, A [Ag = Ay Ay ot Ay gy s ot Ay, is a rule in ground (K) and
A @M Joreachi=m+1...,n}.

2. For every ground integrity constraint O € ground(K}, M | C.

Our objective is the query-answering problem, as follows. For a general logic program and
agoal ! {an atom), we want to find a stable model for the program such that the stable modei
satisfies the goal: if there exists such a stable model. then the stable model provides us with an
answer substitution for the guery.

2.2 Disjunctive Representations of General Logic Programs

The naive procedure for query-answering proposed in the next section uses lwo representation
forms of rules. The forms of rules defined above are used for the (top-down) model construc-
tion. ‘Transformed rules are used for the (bottom-up) model check. Original forms of integrity
constraints are used only in the model check part.

Transformed rules for rules tn a general logic program A are the following positive disjunctive

clauses:
Apviydm — Ay, ""Am+1~ S -‘1u| o Ay o] rome A

In the above furins of rules. all negation-as-failure formula are removed. ~~ A expresses that
there is no proof for ~ 4. In fact, ~~ A expresses that 4 should be proven, because ~ A means
negation as failure. We call the transformed rules of A and integrity constrainis in A as a
disjunclive progoon TH{K).

A original fonns of general logic programs, the range-restrictedness of disjunnetive programs
should be considered. A disjunctive rule is range-restricted if every variable in the rule has at
least oue occurrence in its antecedents, If all rules and integrity constraints in o disjunctive
program are range-restricted, we say that the program is range-restricted. If a general logic
program is range-restricted. then the disjunctive program is also range-restricted.

To compute stable models for the original form of a general logic program &', we compute
minimal models for TR{N) which satisfy the next two conditions related to the symbol ~ -

* For a minimal model Af fur TRIK), A € M implies ~ 4 & AL]
o For a minimal model A, ~~ 4 & M implies A & M, 12

The above transformation and the correspondence between stable models of gegeral logie
progras and minimal models of disjunctive programs are first considered in Inoue [Inoued?2).
~ A and ~~ A in our transformation correspond Lo =KA and KA respectively in lnoue's trans
formation.

3 Naive Procedure

In this section, we give a nalve query-answering procedure which we will rewrite to a procedure
using magic rules. We implement the procedire in Prolog and show the entire code.

"In general, a goal can be a conjunction of atoms and for pegated atoms. We ean deal with such a conjuctive
goal Lo, . Lw by adding a new rule A — Ly, ..., L, to the program and regarding a new atom A a= a goal {atom
A eontains all the vanables that secur in the conjunction).

vanilla(G M) := vi{G,[1,.M).

vi{trua, Mi Mi}:- .

vi{(G,GL) ,Mi Mo):- ', wi(G,Mi,M1),vi(GL M1 ,Mc).
vi{{G1;02) ,Mi Ma):~ ¥, vi(G1,Mi Mo);vi(G2,Mi Mo).
vi{"G,Mi Me):- !, (vii(G,[],.) -» fail;Me=["GIMil}.
vi(G,Mi, [GIMo]):- clause(G,5G) ,vi{5G,HMi,Mo).

Figure I: Vanilla interpreter returning model candidate during proofl tree construction

To solve a gquery-answering problem. we can use botlom-up procedures to compute stable
models: the satisfiability of the goal is checked after the generation of stable models. However,
this approach has the possibility of computing models irrelevant 1o the goal. I'n prevent the gen-
cration of irrelevant models, we change the order of the model construction and the satisfiability
check. In the following, we reconsider the query-answering problem.

The main job of the query-answering procedure for general logic programs with respect to
stable model semantics is divided into the following two parts:

ia) Finding candidate sets of literals which derive the query,
(b} Checking whether the candidate sets are included in some stable models,

[n this way. computing answers for a query is quite effivient for applications that involve fpuaery-
answering, because the generation of irrelevant candidate sets to the query are cut down. In
Prolog, the top level of the procedure is for a query G,

e

glp(G):- wvanilla(G,M), assert.models{M), satisfiable, axist_avidenca,—l

The code vanilla(G,4), assert models(M) corresponds to pliase (a) {finding candidale sets).
and the remaining code satisfiable, exist_evidence corresponds o phase (b) (checking
candidate sets). In the following, we show the codes of cacl part and explain them.

FPhase (a) — Finding Candidate Sets

Finding a candidate set deriving query is the same as coustructing a proof tree deriving query.
During the prool tree construction, all positive and negative literals are gathered, though the
validity of literals are not checked; the validity is checked in phase (b). This phase is realized
by a Prolog meta-interpreter with memo function. Fhe Prolug codes are in Figure 1; for query
G. vanilla(G,M) returus model candidate M which derives G. In Figure 1, clause (Head,Body)
is a Prolog code for a rule of a general logic program: a rule

A — Ay, o Ao F:Uf.‘l,,.,+1 T 7 I
is coded in
clause(Ag, (Ay, ... A, Apyg.-.n Bpjh

As a disjunctive rule in section 2.2, this coding for a rule shows thal negative literals are

represented as positive aloms.
The Prolog predicate assertmodalsi(M) asserts sach literal o the candidale set. You can

find the codes for the predicate in appendix A.

satisfiable :- component{X,(Y;Z}} :-

is_violated{C),', ', (=Y ; component(X,Z)).

satisfy{C), component (X, X).

satisfiable. -
satisfiable. on_backtracking(_).

on_backtracking(X) :-

is_vieclated(C) :- X,', fail.

(A-—-2C),

A, not C. casgertal((A, B)):-

!, asserta(A),casserta(B).

satisfy{C) :- cassertalA):- assertali).

component{%,C),

casserta(X), cretract{(A,B)):-

on_backtracking (cretract(X)}, (retract(A),fail:cretract(B)).

not false. cretract{A):=- retract(A).

Figure 2: SATCHMO interpreter

Phase (b) — Checking Candidate Seis
Vahdity checking of candidate sets, i.e.. checking whether the candidate sets are included in
some stable models, is done by trying to construct a stable model from the candidate sets
as initial models. Since minimal models for disjunctive program T B k') rorfespond to stable
mwdels for general logic program A under iwo conditions described in the previous section, we
constroct minimal models for TR(A') by the model generation theorem prover. Although there
might be many alternative ways of doing this, here, we use a small Prolog prover (Figure 2).
SATCHMO [Bry®8]. SATCHMO generates minimal models for range-restricted first-order for-
tulas. Therefore, we restrict the programs to range-restricted ones.

v onr query-answering procedure, SATCHMO is called by satisfiable after phase (a). In
SATCHMO, an input formmla:

Aprs oAy — A Ay LA Ay,
where m > 12> 00k = 11 < i < 1), is coded in Prolog as a clanse:
Alpgeonhg === Ay, .,..Hj_kl ; ---.'ﬁ1_1.----1°-1.1t] .
For an inlegrity constraint:
Sl § PR ()
the Prolog code for SATCHMO is a clanse:
false := Ay....fy.

To obtain stable models of general logic programs thiough computing minimal models of
the disjunctive programs, the two conditions stated in section 2.2 should be satisfied, Since
SATCHMO asseris facts in a model candidate during model generation, the two conditions are
checked by using asserted facts. Condition (1) is expressed in the following Prolog code:

falze :- "X, X.

ey |

This clause 15 a scheme which expresses integrily constraints for the disjunctive program, and
is checked in the clanse satisfy(C). Condition (2) is checked after all other procedures have
finished. This 15 done by a Prolog clause exist_evidence:

exist _evidence :- not ("X, nmot X).

4 Bottom-Up Procedure with Magic Rules

In the naive procedure in the previous section. the Prolog interpreter computes phase (a) in a
top-down manner. The top-down search of Prolog interpreter is not complete?.

Magic set technigue [Bancilhon®6. Fuchi®®, Brv00] provides us with one of the kevs to over-
coming the funitation. With magic set technique. we incorporate top-down information, binding
information in the query, with bottom-up reasoning so that we can prevent redundant fact gen-
eration and keep the reasoning complete in Horn or stratified cases. In onr case, magic sot
technique allows us to rmbed phase (a) in the naive procedure into the bottom-up procedure.
Therefore, we can prevent redundant model generation and keep the procedure complete in
non-Horn cases”.

4.1 Magic-Sets Transformation for Disjunctive Representations of Rules

Here, we provide magic-sels transformation method from disjunctive representations of general
logic programs: we do not use forms of rules in vur magic interpreter. For Horn or stratified
programs, we use only magic rules 1o answer gqueries. For peneral logic programs, however, botl
magic rules and original disjunctive forms of rules are used in the magic interpreter. This Pt
is different from previous works in that magic set technique is applied to query-answering for
Horn or stratified programs.

For a positive disjunciive clanse,

Ay A = Ape A~ Agl e Aol ~ Ay
where m.n = 1 (the rule is not a fact), magic rules are the following positive disjunctive clauses:

magic-4g = magic-A4,.

miegic-Ay, Ay — madgie-A,.
magic-Ag, Are s Ay — mng{r-_.—*[m.
magie-Ay. Ay Ao A - Ao~ Amgry e~ An| > Apg o] ~~ Apl

where each magic-A is a new predicate symbol which expresses the negation’ of atom .
For a query G, the following wagic rule is nesded:

frie. — magic-{.

This magic rule ignites other magic rules.
In this magic-set transformation, it is possible that the range-restrictedness in magic rules is
broken. Since SATCHMO. which iz the basis of our magic interpreter, requests formulas to be

*The completeness means that. if there is a finite proof tree, then computalion Lerminates, Ordinary Prolog
interpreiers, cven those which use the breadth-first search strategy, are nol complele hecause of negation ax

failure.
* Actually, the completeness of our magie interpreter has not been proved yel.

G

naf{G}:- magic_rule_is_vielated(C) :-

on_backtracking(abelish(found,1)), (A----»C),
query(G), &, not C.
satisfiable,) Satchmo's clause

{not not_exist_evidence), false:- (“(X}J, X.

asserta(found(G)).
not_exist_evidence:-
query(G):- goal(G),not found(G). ("7X),not (call(X)),!.
quary(G):=-
magic_rule_is_vielated(C),!,
satisfy(C), ¥} SATCHMO's clause
query(G).

Figure 3: Magic interpreter

rapge-restricted, magic-set transformation cause some troubles. In the last section. we discuss
this point again.
In addition to the above magic rules, the following rule is needed as the special magic rule:

G = goal((7).
The atom goal() terminates the magic part of the procedire.

4.2 Magic Interpreter

The naive procedure in section 3 is rewritten with magic sel technigue in the following magic
nberprefeyr

nag(G):- query(G), =atisfiable, exist_evidence. l

A predicate query(G) consiructs the model candidate in a bottom-up manner, and asserts
literals until goal (G) is asserted: in other words, the predicate does phase (a). query(G) tries to
construct a model iu which magic rules are satisfied. To construct this model, a model generation
theorew prover (SATCHMO, in this case) is used®. Facts and magic rules are referenced in the
predicate query{(GJ). wlile ordinary rules (and also disjunctive representations) and integrity
constraints are not. The entire code is shown in Figure 3. To discriminate a original form and
the magic rule, a magic rule:

.4|!+|, ...11‘1;1.; — A]J-r.--. AL*I!""IAJ:J'!"“ fir‘kr
where m > 0> 0.k = 1] < i <), is coded in Prolog as'a clause:
Aipiehm ====> Ay g Apkyi i A 10, Ay -

Predicates satisfiable, exist.evidence corresponding to phase (b) are the same asin the
naive procedure. In these predicates, facts and original disjunctive forms of rules are referenced
as well as integrity constraints.

‘A complete thevrem prover is need to keep magic interpreter compleie, though SATCHMO shown in this
paper is not com plete.

5 Concluding Remarks

A querv-answering procedure with respect to stable models is provided in this paper. The
procedure is based on a bottom-up model generation theorem prover and utilizes magic set
technique. We have two future directions for this work; one is related to magic set and the other
is related to the theorem prover, N

Future works related to magic set are as follows, Firstly, magic-set transformation may possi-
bly break the range-restrictedness of magic rules. IT an underlying theorem prover (SATCHMO,
in our case) cannot deal with non-range-restricted rules, the procedure will fail. Magic-set trans
formation is originally done to *adorned” rules. The adorument allows us to specify input/output
modes to rules. Although we do not consider adorned rules in this paper, the adornment can
save the range-restrictedness of magic rules if the rules are adorped well,

Secondly, magic-set transformation for integrity constraints provides us with the possibility
to make the magic interpreter more efficient. Iu the magic interpreter, integrity constraints are
checked in the latter part of the interpreter. If the integrity clieck were done by magic rules
for integrity constraints during model construction, that is phase (a), the integrity violation
might be detected in the earlier phase of the magic interpreter. This might allow us to find the
vinlation of constraints as early as possible.

Furthermore. in logic programming, magic set technique has been used not only for Horn
programs but also for stratified programs. It is needed 1o investigate the difference hetween
those related works and our approach. Techniques in first order theorein provers also have some
relationship to our usage of magic set technigue. The comparison will he needed.

As other future works, we will consider the underlying theorem prover of our magic inter-
preter. The MGTP [HFujita9l), a parallel and refined version of SATCHMO, is being developed
i ICOTIF we replace SATCHMO in onr magic interpreter with MGTP, out interpreter works
in parallel and more efficiently as a result,

Acknowledgment

We are grateful to Katsumi Inoue, Ken Satoh and koichi Furukawa for variable discussions. We
also thank Wazuhiro Fuchi for providing us with the chance to do this work and for his earlier
work which showed us the way to this work.

References

[Bancilhons6] Bancilhon, F., Ramakrishuan, R.. An Amatenr’s Introduction to Recursive Query
Provessing Strategies, SIGMOLVSG, pp. 16 - 52, 1086,

[Bryss} Bry. F.. SATCHMO: a theorem prover implemented in Prolog, Proc. CADE-9, pp.
115434, 19585,

(Brv90] Bry, F., Upside-down Deduction, Prec. 6ih PODS, 1990,

[Eshghisg] Eshghi, K., Kowalski, B. A., Abduction Compared with Negation by Failure, Proc.
of ICLP'89, pp. 234 254 1984,

[Fuchi88] Fuchi, K., Logical Source of Magic Set. unpublished manuseript for ICOT meeting (in
Japanese), 1088,

[Gelfond88] Gelnfond, M., Lifschitz, V., The Stable Model Semantics for Logic Programming,
FProc. of ICLPES, pp. 1070 — 1080, 1958,

{HFujita91] Fujita, H., and Hasegawa, R., A Model Generation Theorem Prover in KL1 Using
Ramified-Stack Algoritlun, Proe. of ICLF'91, pp. 535 — 562, 1991.

[Inoued2] Inoue, K., Koshimura, M., llasegawa, R., Embedding negation as failure into a model
generation theorem prover, to appear Mroc. of CADE- 11, 1992,

[Iwayama91] Iwayama N.. Satoh. K., A Bottom-up Procedure with Top-down Expectation lor
General Logic Programs with Integrity Constraints, JCOT-TR 625, 1991,

[Kakast()] Kakas, A. ., Mancarella. P., On the Relation between Truth Maintenance and Ab-
duction, Proe, of PRICAT'90. pp. 438 - 143 (1990).

[Sacca®)] Sacea, 1., Zaniolo, C.. Stable Models and Non-Deterniinism in Logic Programs with
Negalion, Proc. of PODS90. pp. 205 -217, 1990,

[Satoh91] Satoh, K., Iwayama. N.. Computing Abduction hy Using the TMS, Proc. of ICLP 91,
pp. 505 HIK. 1991,

[Satoh92] Satoh. K., Iwayama. N., A Correct Top-Down Proof Procedure for a General Logic
Program with Integrity Constraimts. Proc. of dnd Inl. Workshop on Frtensions af Lowie
Progromming, pp. 19 - 34, 1992,

Appendix
A Prolog Codes of The Naive Procedure

LUALY Stable Model Proleg Interpreter WLULULNLLUYLYL
naf (G):- vanilla(G,M),exist_stable_model(M).
% prolog meta interpreter with memoization of lemmas
vanilla(G,M):= vi(G,[1,M).
vi(true Mi Mi):- 1,
vi({G,GL) ,Mi Mo):= 1, wifG,M1,M1),vi{CL M1 JMo).
vi((G1;G2) ,Mi Med:- ', vi(G1,Mi,Mo);vi(G2,Mi Mo).
vi{"G, M1, Mo):= v, (wilG,[1,) -» fail Mo=["GIMi]l).
vi{G,Mi,[GIM2]):- clause{G,5G),vi{5G,Mi Mo).
% axiom
false:- call{"X)},call(X),.
% integrity checker based on satchmo
exist_stable_model(M):-

assert_naf (M),

satisfiable, ¥ Satchmo's clause

\+not_exist_evidence, !,
¥ evidence check
net_exist_evidence:- call(™"X) ,\+(call{X}),!.
§ assert proof tree
assert_naf{[G|GL]):= 1,

{call(G) -» true;assert(G)),% with subsumption test
on_backtracking (retract(G)),

aggert_naf(GL).
aszert_naf{[]).

B DProlog Codes of Magic Interpreter

WARAYA Stable Model Prolog Interpreter by Magic Set %AWLL
naf{G):-
on_backtracking(abelish(found, 1)),
quary (G},
satisfiable,) Satchmo's clause
{not not_exist_evidenca),
asserta(found(G)).
% revised SATCHMO
query(G}:- goal(G),not found(G).
query(G):-
magic_rule_is_viclated(C),!,
satisfy(C), ¥ SATCHMOD's clause
query (G) .
magic_rule_is_vioclated(C) :-
(A----3C),
A, not C.
% axiom
false:- call{"X),call(X).
% evidence check
not_exist_evidence:- call(”"X), not call(X),!.

C Examples

* Example |

LALUY Result WYYUY
T- nafip{X}).

=1,

¥=3:

X=2;

X=4,;

ne

THAUEY A Famous Problem %WWYLY

Yplid:- "p(2).
wpl2):- "p(3).
bpl3h:- “plal.

fpl4a):- "pl1).

WALEY Bottom Up Rule UUYKY

true ---> ((p{1}, ("p(2)));(" ~pl23)).
true ===> ({p{2), (Tpl3)d); (" “pl(2))).
true ---» ((p(3), ("pl4))); ("~ "pi4))).
true ---> ((p(4), (Tp(1i)); (" “p(1d)).

10

WINLY Magic Set WUNKY

plX) ==--> goal(p(X)).

true ----> gp(X).

gpl1) ====> ((p(1), ("p(2))); (" “p(2))).
gp(2) —===> ((p(2), ("p(3))):(~ “p(3))).
gp(3) =-==> ((p(3), ("p(4)));{~ “p(a))).
gpld) ----> ((pla), Cp(1)));{" "pl1))).

» Example 2 (reservation problem)®
This example is computed by the naive procedure in section 3, in about 850 mser under
Sistus Prolog on ST N3/ 260.

WRULY Result YLYLY

i query

7= naf(holdmeeting(V1,V2,V3,V4)}.
Vi=mon,

Va=213,

Vi=zelf,

Vd=gelf 7;

o

ARALY Sample of Room Reservation YA AN
L facts

peraon{mark) .
person(donald).

day (mon) .

day{tua).

room(212).

room(213).
reserved(212 ,mon) .
reserved(213,tue).
husy (mark,agent ,mon} .
busy{donald,selfl,tue).

% rules
cand(¥,self ,Y) :=
person(X},
day(Y),
“busy(X,self,Y).
person(X), day(¥) ---> cand(X,self,Y), (busy(X,self,¥)):
“{"{busy(X,self,¥))).
cand(X,agent,¥Y) :-
busy(X,self,Y),
“busy(X,agent,Y).
busy(X,self,¥) ---> “(busy(X,agent,Y)),cand(X,agent,Y);

*This problem is provided by Katumi Inoue.

11

“{"(busy(X,agent,Y))}.

openrcom{Room,Day) :-
day(Day),
room(Room) ,
“reserved (Room,Day) .
day{Day), room(Room) ---» “(reserved(Room,Day)},openroom(Room,Day);
“{"(reserved(Rocem,Day))).
galves _meeting :-
holdmesting(Day,Room,self,self).
holdmeeting(Day,Room,self,self) ==-=> selves_meeting).
holdmeeting(Day ,Hoom,self ,self) :-
cand{mark,self Day),
cand{deonald,self ,Day),
openreom(Room,Day) .
cand(a,self,Day), cand(b,self,Day), openrcom(Room,Day)
-=--» holdmeeting{Day,Room,self,self).
holdmeeting (Day,Room, Ida,Idb) :-
cand(mark,Ida,Day),
cand(donald,Idb,Day),
openrcom{Room,Day) ,
“selves meeting.
cand(a,Ida,Day), cand(b,Idb,Day), openroom(Room,Day)
---» "(selves_meeting),holdmeeting(Day,Room,Ida,Idb);
“("(selves_meeting)))).

12

