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SUMMARY: This paper describes MENDELS ZONE, a Petri-net-based
concurrent programming environment, which is especially suitable for
cooperating discrete event systems. MENDELS ZONE adopts MENDEL net,
which is a type of high level (hierarchical colored) Petri net. One of the
characteristics of the MENDEL nets is a process-oriented hierarchy like CCS,
which is different from the subnet-oriented hierarchy in the Jensen's
hierarchical colored Petri net. In a process-oriented hierarchy, a hierarchical
unit is a process, which is more natural for cooperating and decentralized
discrete event control systems. This paper also proposes a design methodology
for MENDEL nets. Although many Petri net tocls have been proposed, most
tools support only drawing, simulation, and analysis of Petri nets; few tools
support the design methodology for Petri nets. While Petri nets are good final
design documents easy to understand, analyzable, and executable, It is often
difficult to write Petri nets directly in an earlier design phase when the system
structure is obscure. A proposed design methodology makes a designer to
construct MENDEL nets systematically using causality matrices and temporal
logic. Furthermore, constructed MENDEL nets can be automatically compiled
into a concurrent programming language and executed on a parallel computer.



1. INTRODUCTION

There is an increasing demand for programmers who can design concurrent
programs, as the use of practical parallel and distributed computer systems
gradually spread in the industry. Since it is not easy for ordinary programmers
to produce correct and efficient concurrent programs, several kinds of CASE
(Computer-Aided Software Engineering) tools are necessary. Some exampies
include tools for verification, debugging, performance evaluafion, and synthesis
of correct and efficient programs. MENDELS ZONE (1)(2)(3) is a CASE
environment which has been under development since 1986. It facilitates the
difficult task of concurrent programming for cooperating discrete event systems.
A cooperating discrete event system (CDES) means a discrete event system
that consists of several cooperating subsystems and coordinators, such as
distributed manufacturing systems and communication network systems. We
distinguish CDESs from sequential discrete event systems which are easier to
design and for which practical CASE tools have already been developed (e.g.,
SFC tools (4)). The difficulties in designing CDES are mainly caused by the fact
that its global behaviors become compiex with the combinatorial state
explosion and can not be fully grasped and expected by the designer. Petri net
is one of the most hopetul tools, whose graphical representation of concurrency
and various analysis methods can remedy the difficulties. MENDELS ZONE
provides computer-aided concurrent program construction tool which uses high
level Petri nets. Our approach has two appealing features described below:

First, a new high level Petri net is proposed. Up to now, several high-level Petn
nets and tools have been proposed, which include Colored Petri Nets (CPN)
and its too! (DESIGN/CPN) (8), Predicate/Transition Nets (6), and Algebraic
Petri Nets (7). CPN (i.e., DESIGN/CPN) introduces hierarchy constructs into

nets to enable a large-scale system description (8). These hierarchy constructs
are subnet-oriented: that is, a part of the net (subnet) is regarded as a
hierarchical unit and reduced 1o one node. This subnet-oriented hierarchy is
inadequate 1o represent the compositional structure of concurrent processes.
For example, DESIGN/CPN cannot directly specify the process composition of
Process Theory (e.g., CCS (9)). The CCS-like compositional structure is
necessary to represent interactions of cooperating processes in CDES.
Therefore, we propose a process-oriented hierarchy, which allows the
processes, process composition, and synchronous/asynchronous
communication between them to be explicitly represented. MENDEL net is a
high-level Petri net adopting the process-oriented hierarchy. MENDELS ZONE
supports a designer in the compositional construction of CDES using MENDEL
nets. Furthermore, constructed MENDEL nets can be compiled into a
concurrent programming language KL1 and be executed on a parallel
computer Multi-PSI.

Second, a Petri-net-based design methodology for CDES is proposed. Most
tools that have been proposed so far support only the drawing {graphic editor),
simulation, and analysis (reachability and invariant analysis) of Petri nets
(10)(11). While Petri nets are good final design documents that are easy to
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understand, analyzable, and executable, it is often difficult to write Petri nets
directly in an earlier design phase when the system structure is obscure. In the
design methodology we propose, a designer can construct MENDEL nets
systematically through all design phases using wide-spectrum causality
matrices and temporal logic. MENDELS ZONE provides not only a MENDEL
net editor, verification and adjustment tools, and a compiler to the concurrent
programming language but also provides a computer-aided design
methodology.

The remainder of the paper is organized as follows. Section 2 defines a
MENDEL net, a type of high-level Petri net. The design methodology for
MENDEL nets is described in Section 3. A brief overview of MENDELS ZONE
is given; we explain its supporting tools for the design methodology. Section 5
describes a MENDEL net design example for a lift system, followed by a
conclusion and related works in Section 6.

2. MENDEL NET

A MENDEL net is a high level Petri net in addition to ordinary Petri nets that has
the following propenrties:

- three types of places (state, slot, and port),

- logic program description of transition conditions and actions,

- priority of transitions,

- process-oriented net hierarchy,

- two types of communication mechanisms (synchronous and asynchronous)
between processes, and

- Array representation.

The above properties not only make MENDEL nets powerful enough to
describe most cooperating discrete event systems but also make it possible to
retract automatically a skeleton of the MENDEL nets to be used for a
subsequent net analysis phase (verification and adjustment). MENDEL nets are
designed to handle detailed descriptions as well as skeleton-level analysis.
The following subsections will explain the above properties in detail and also
mention concurrent program code generation from MENDEL nets.

2.1 Place

The places and transitions of ordinary Petri nets are very general and can have
a wide variety of meanings. From the viewpoint of concurrent programs, places
are classified into three types (state elements, slots, and pors) (see Fig. 1):

- state element: a place which represents the local state of a system. This type
of place has at most one token (i.e. it is safe). If the place has one token, it
means that the system stays in the local state (called "the state element is ON").
Otherwise, it means that the system does not stay in the local state (called "the
state element is OFF"). The state elements are graphically represented by
circles.



— slot: a place that represents data and database on a static storage. This type
of place has constantly one token. The slots are graphically represented by
harizontal bars similar to the Data Flow Diagram of Structured Analysis.

— port: a place that represents an infinite buffer necessary for modeling data
flow and asynchronous communication. The ports are graphically represented

by sllipses.

This classification produces informative structures utilized in Petri net design,
analysis, understanding, and code generation.

2.2 Transition

In MENDEL net, the transition of Petri net is called a method. A method is
graphically represented by a rectangle. The method's firing conditions and
actions are described in detail by the concurrent logic programming language
KL1 (12). Therefore, a MENDEL net is a kind of colored Petri net, where the
colors of tokens are represented in logic programming terms (atom, integer,
logical variable, and list), and the conditions and actions are described with
guards and bodies of KL1 clauses, respectively. The textual form of a method
follows:
method(method_name, exchange_lerm,
input_state_list, output_state_list,
input_slot_list, output_slot_list,
input_port_list, output_port_list, priority) -
KL1_guard | KL1_body ;
The exchange termis used for synchronous communication which is
described later, The slot and port are textually described in the form:
slot_name(KL1_term) and port_name(KL1_term). There are two levels of
method priority: normal and express. A methed will be briefly explained by the
following example (Fig.2). (Refer to the MENDEL language manual (13) for the
detailed syntax and semantics of the textual form of a MENDEL net).
Method Example:
methed (move,
{ready], [busy],
[x(N1), y(ML)], [x(NZ), y(M2}],
(type(T)), lack(A)], normal) :-
N1>0, M1>0, T=iob(ID) | N2:=N1+1, M2:=Ml+1l, A=ok(ID) ;
In this example, the method "move” is enabled if (C1) the state element “ready”
is ON, (C2) there exists at least cne token in the port "type” whose color can be
unified with T, (C3) the KL1 guard (N1>0 and M1>0 and T=job(ID)) is true
where terms N1 and M1 are read from the slots "x" and "y", and (C4) there are
no other enabled methods with an "express"” priority. When the method "move”
is fired, (A1) the KL1 body (N2:=N1+1, M2:=M1+1, A=0k(ID)) is evaluated, (A2)
the state element "ready” becomes OFF and the state element "busy” becomes
ON, (A3) the evaluated terms N2 and M2 are written in the slots "x" and "y", and
(A4) the token is removed from the port "type” and a token whose color is
ok(lD) is pushed intoc the port "ack”.



2.3 Hierarchy

The hierarchical unit of MENDEL nets is a process. A process may consist of
several subprocesses. The interaction between hierarchical units is modeled as
synchronous and asynchronous communication between processes. The
process interface is a set of external ports and external methods. A process can
push/pop tokens to/from external ports of subprocesses. Since ports are infinite
butfers, this interaction realizes asynchronous communication. On the other
hand, a process can synchronize its own methods with the external methods of
subprocesses (i.e., fire these methods simultanecusly only if they are all
enabled). Since data exchange is available using the exchange_term, this
interaction realizes synchronous communication.

Figure 3(a) illustrates a simple MENDEL net example including a process-
oriented hierarchy. The external ports and external methods are represented by
double ellipses and double rectangles, respectively. From the viewpoint of the
parent process, a subprocess is graphically represented by a large circle (don't
confuse it with a state element), and the external ports and methods of the
subprocess are represented by bars (P-plug) and dots (M-plug) attached to the
large circle. A bar represents a postbox for asynchronous communication, and
a dot represents an outlet for synchronous communication. Asynchronous
communication is represented by an arrow between a methed and a P-plug,
and synchrenous communication is represented by a dotted line between a
method and an M-plug.

We emphasize that this process-oriented hierarchy can directly specify a
compositional structure of well-researched concurrent process theories, such
as CCS, ACP, CSP, and LOTOS. For example, the CCS expression (P =

Q[med/out] | Q[med/in], Q = in.t.out.(), where a process P is defined as
composition of two processes (, can be directly represented by a MENDEL net
as shown in Fig. 4(b). It cannot be done by a subnet-oriented hierarchy which
supprts no synchronous communication. G-LOTOS (14), a graphical
representation with a process-oriented hierarchy of LOTOS, is similar to
MENDEL net. However, G-LOTOS supports no asynchronous communication.

2.4 Array Representation

Occasionally, a CDES contains several subprocesses having the same
structure. For example, a lift system may have several request buttons
corresponding to floors. It is tedious to individually write all button processes. To
overcome this problem, colored Petri nets represent these subprocesses as
separate colored tokens on a single net structure. However, this approach is not
suitable for the process-oriented hierarchy, because a process is a hierarchical
unit and tokens should not be a process. Therefore, a MENDEL net provides an
alternative: an array to represent several subprocesses with the same structure,
in the same manner as a CSP-based concurrent programming language

Occam (15), Each of arrayed processes can be explicitly treated as a separate
computing unit that can run on a separate CPU. Figure 4 shows a graphical



array representation of N identical processes, whose textual form follows (Refer

to MENDEL manual (13));
process {I}(m_{I}}(in_{I}) (out_{I})*I1:{l..N}

2.5 Concurrent Program Generation

In Most Petri net tacls used for the system design, target programs have to be
manually coded from designed Petri nets. Our aim is to automatically generate
target programs directly from MENDEL nets where generated programs run
efficiently in the real environment. Design/CPN provides the automatic
generation of SML (Standard ML) codes (5). However, SML is not a
concurrent programming language. MENDEL nets can be compiled into
concurrent programs (KL1 codes) and executed efficiently on a parallel
computer, which will be also described in the explanation of MENDELS ZONE

(Section 4).

3. DESIGN METHODOLOGY

This section proposes a new design methodology for MENDEL nets using
causality matrices and temporal logic.

3.1 Design Principle

As mentioned in Section 1, Petri nets are often inadequate in an early design
phase when some parts of the system structure may be obscure. In particular,
the structures of a coordinator (task scheduler, synchronizer) in a CDES are
often obscure at first, while the structures of individual local DESs (local tasks)
can be well defined. Since a Petri net is a formal language and does not permit
vagueness, it is difficult to design systems from beginning to end using only
Petri net.

This paper proposes a design methodology for CDES utilizing MENDEL net
and additional complementary formalisms (causality matrix and temporal logic).
The causality matrix allows vagueness (abstract level description), so a
designer can stepwise refine the causality matrix from an abstract level to a
concrete level. Furthermore, draft Petri nets which are synthesized from the
causality matrix are verified and adjusted (tuned up) to satisfy given temporal
logic constraints. By doing these stepwise refinements, the designer can
construct a correct MENDEL net systematically.

3.2 Causality Matrix

The causality matrix, C=[cjj], is a type of an exiended incidence matrix of a Petri
net (Fig. 5), where each entry, cijj, represents a causality relation between an i-
th operatior (i.e., method) and a j-th operand (i.e., state element, slot, port, or
external method (M-plug)). One of unique features of the causality matrix is its
wide-spectrum property that the causality relation of each entry can range from
an abstract level to a concrete level (we call this a wide-spectrum causality



relation). Table 1 shows wide-spectrum causality relations. For example,
c11="+" of Fig. 5 is an abstract level relation representing only existence of
relation between the operator opr! and the operand opnl; the details of the
relation are not given at this level. On the other hand, c23="pop:X" is a concrete
level relation in which the operator opr2 pops a token from the operand opd3
and unifies the color of the token with X (i.e., X is assigned the color of the
token). A designer stepwise refines operators, operands, and causality relations
from an abstract level to a concrete level, which is regarded as a design
process. The wide-spectrum causality matrix has the following advantages
compared with graphical Petri net representations.

(1) The binary relation in the matrix is more adequate for system element
analysis in the earlier design phase. It is much easier for a designer to decide
what is a local abstract relation between every two elements than to directly
draw a rigid Petri net.

(2) A spread-sheet editor for the matrix can provide powerful editing abilities.
Copying, eliminating, decomposing, browsing, focusing, and checking can be
implemented more easily than by a graphical cne. Furthermore, graphical
representations are difficult to perceive without good topological arrangement.
Current automatic topological arrangements in Petri net tools are not yet good
enough.

(3) The wide-spectrum property makes backtracking easier. Backtracking is
inevitable in a design process. However, the wide-spectrum property enables
the designer to manipulate only common and consistent design documents
(causality matrices) throughout the design process, which minimizes the
modification etforts in backtracking.

A concrete causality matrix can be transformed straightforward into a process of
MENDEL nets. In other words, a causality matrix is a matrix-based
representation of MENDEL nets which allows vagueness and informality.
Figure 6 shows an example of straightforward transformation from a matrix to
a process of MENDEL nets. Remark that each matrix corresponds to one
process and does not have a hierarchical structure in itself, which should be
represented by MENDEL nets.

3.3 Temporal Logic

Linear time Propositional Temporal Logic (LPTL) is a propositional logic
(—: NOT, a: AND, v: OR, and =: IMPLY) that is extended with several
temporal operators (F f: "f will be eventually true” and G f: "f is always true”). To
combine a Petri net with LPTL, it is assumed that an atomic proposition
corresponds to method firing (i.e., an atomic propesition m is true if and only if a
method m fires). We can declaratively specify the following properties of Petri
nets by LPTL:

(1) mutual exclusion,

(2) partial ordering among methed firing,

(3) firing prohibition of methods, and

(4) deadlock inevitability.

Refer to our previous paper (22) for the syntax and semantics of LPTL and the
detail theory of verification and synthesis using Petri nets and LPTL.



3.4 Design Methodology

The proposed design methodology consists of five phases:
Phase 1: Design of elementary processes

Phase 2: Process interconnection and coordinator creation
Phase 3: Design of coordinators

Phase 4: Veritication and adjustment

Phase 5: Code generation, execution and confirmation

First, Phase 1 and Phase 2 are carried out using directly MENDEL net because
elementary processes are not so obscure. Then, the design of the coordinator
whose structure may be obscure is done by stepwise refinement using the
wide-spectrum causality matrix. A procedure of the matrix refinement is
summarized as (step 1) method recognition; (step 2) port and slot
recognition; (step 3) state recognition. Finally, MENDEL nets are verified
and adjusted using LPTL, and executed visually. Figure 7 outlines the flow
chart of the following design methodology.

[Phase 1]

(Step 1) Find elementary processes:

Find all elementary processes whose structure is well defined, and enumerate
the methods, slots, and ports for each process. Most hardware-constrained
processes are elementary. For example, "cage” is one of the elementary
processes in a lift system, and its methods include "move_up”, "move_down",
"open_door", and "close_door".

(Step 2) Construct a MENDEL net for each elementary process:

Construct a MENDEL net for each elementary process by appending the state
elemeants and arrows to the methods, slots, and ports listed in step 1. Then,
classity each port and method as external one, which becomes a plug and is
accessed from other processes, or internal one.

[Phase 2]

Interconnect elementary processes and create a coordinator:

Create a new process (parent process) that consists of the elementary
processes (subprocesses). Interconnect the plugs of these subprocesses with
asynchronous communication and synchronous communication. Some plugs
which cannot be directly connected may remain; in this case some process is
required to coordinate them. Create a new subprocess (the coordinator) and
connect the remaining plugs to it. Note that an initial coordinator has only
external ports and methods that are connected to the remaining plugs of the
elementary processes. -

[Phase 3]

(Step 1) Create an initial causality matrix and recognize methods:

Create an initial causality matrix of the coordinator, in which only external ports
and methods, listed in phase 1, are filled. Then, recognize all functions (method
candidates) of the coordinator and fill them in the matrix.

(Step 2) Recognize internal ports and slots:



Judge existence of the causality relation between external / internal methods
and external ports, and fill abstract level judgment (+ or blank} in the matrix.
Stepwise refine these causality relations into a less abstract level. This
stepwise refinement helps a designer to recognize additional internal ports and
slots which are necessary to refine the causality relations.

{Step 3) Recognize state elements:

Find logical state elements of the coordinator (e.g., active, sleep, waiting, busy,
etc.), and add them and fill causality relations in the matrix. In the causality
relation, each method should be decided whether it is enabled or not in each
legical state. In addition, consider the partial ordering of method firing, and
introduce dummy control state elements to put method firing in order.

(Step 4) Describe KL1 codes:

Describe the detailed condition and action for each method by KL1. At this
point, the causality matrix reaches its most concrete level.

(Step 5) Generate MENDEL net processes:

Finally, generate MENDEL net processes of coordinators straightforward from
the most concrete-level matrices.

in addition, the following design rules are applicable during Phase 3.

(Rule 1) Cause design backtracking

When any design failures or unexpected functions that require structural
rearrangements are detected, go back to any previous steps in Phase 3.

{Rule 2) Refine methods, slots, and ports:

Decompose and modify methods, ports, and slots if they have compound
functions or meanings.

(Rule 3) Decompose coordinators:

Decompose coordinators if the coordinator becomes too large or too complex.

[Phase 4]

(Step 1) Verification:

Verify and analyze whether the constructed MENDEL net satisfies the given
LPTL constraints (e.g., deadiock-free, interlock, etc.).

(Step 2) Adjustment:

If the MENDEL net does not satisfy all the specified LPFTL constraints, the
designer must adjust the MENDEL net to satisfy them, manually using a
MENDEL net editor or automatically using the theorem proving method of LPTL.

[Phase 5]

Code generation, execution and confirmation:

Finally, compile the MENDEL net into a KL1 program, execute it, and confirm
that it works well (i.e., it satisfies your requirements).

4. MENDELS ZONE

MENDELS ZONE is a CASE too!l kit for concurrent programs. The target

concurrent programming language is MENDEL (13), which is a textual form of a
MENDEL net. Furthermore, MENDEL programs are compiled into the

concurrent logic programming language KL1 {12} and executed on the parallel



computer Multi-PS1 (16), MENDEL is regarded as a user-friendly macro
language of KL1, whose purpose is similar to A'UM (17) and AYA (18).
However, MENDEL (MENDEL net) is more convenient for programmers to use
in designing cooperating discrete event systems. MENDEL programs can also
be translated into the C language and be executed on a distributed personal
computer system (19). MENDELS ZONE provides the following CASE tools:

— an automatic generation tool of MENDEL processes from algebraic

specification (20),
- a MENDEL-net-based programming environment, and

— a performance evaluation tool (21),

This paper focuses on the MENDEL-net-based programming environment
(Fig.8), which supporis the design methodology described in the previous
section.

(1) Graphic Editor (Fig.8 (a))

The designer constructs each process of the MENDEL net using a graphic
editor which provides the creation, deletion, and placement functions for ports,
state elements, methods, arrows, and tokens. This editor also supporis the
expansion and reduction of nets, and the transition over the process-oriented
hierarchy {i.e., from process to subprecess, and vice versa).

(2) Method Editor

The method editor provides several editing functions specific to a high-level
Petri net. Using the method editor, the designer describes methods (their
conditions and actions) in detail using KL1.

(3) Process Library (Fig.8 (b))

Reusable processes are stored in the process library. This library tool supports
browsing and searching.

(4) Causality Matrix Editor

This spread-sheet editor supports stepwise refinement of the causality matrix. It
provides the following functions:

- creation, deletion, and renaming of methods, ports, slots, and state elements,

- dividing methods, ports, slots, and state elements into detailed ones,

- checking whether refined relations are legal, and

- localizing and focusing the view of relations of designer's interest.

(5) Verification and Adjustment Tool (Fig.B (c))

First, only skeletons of MENDEL net structures are automatically retracted
(detailed KL1 codes of methods are ignored) since our implemented verification
and adjustment tools are only applicable to bounded nets. The verification tool
checks whether a MENDEL net satisfies the given LPTL constraints entered by
the designer using the LPTL editor (22). If the net fails to satisfy the constraints,
the adjustment tool can automatically adjust (tune up) the net to satisfy the LPTL
constraints by adding an arbiter process (23). The verification and adjustment
are based on the theorem proving method of LPTL that is efficiently executed
on Multi-PSI.

(8) Program Execution on Multi-PSI

The adjusted MENDEL net is translated into its textual form (MENDEL
program). The MENDEL program is compiled into a KL1 program, which can be
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executed on Multi-PSI. Each Process of the MENDEL program can run on the
different CPU. Several compilation technigques (e.g., separate compilation) are
introduced here to deal with large-scale programs. During execution, firing
methods blink on the graphic editor, and the values (colors) of the tokens are
displayed on the message window (Fig.8 (d)). The designer can visually
check that the program behaves satisfactorily.

5, EXAMPLE: LIFT SYSTEM
5.1 Problem

This problem is a revised version of the popular problem presented for the 4th
International Workshop on Software Specification and Design (24),

Lift System;

One lift is to be installed in a building with "M" floors. The problem concerns the
logic to move cages between floors according to the following constraints:

(1) The cage has a set of buttons, one for each floor. These illuminate when
pressed and cause the cage to visit the corresponding floor. The illumination is
cancelled when the corresponding fleor is visited by the cage, or when the
button is pulled out {canceliing the request).

{2) Each floor has two buttons, one to request an up-lift and another to request a
down-lift. These illuminate when pressed. The illumination is cancelled when a
cage visits the floor and is either moving in the desired direction, or has no out-
standing requests. The illumination may also be cancelled by pulling the button
out (cancelling the request).

5.2 Observation of actual design process

The actual design process of the lift system will be traced using MENDELS
ZONE. Here, "Pi-S):" means "Step j of Phase i"; it is an index for the design
methodology.

(1) P1-81: This lift system has four elementary processes: "cage”, "button”,
"floor_button_panel”, and "cage_button_panel”.

(2) P1-S2: The constructed MENDEL nets of these elementary processes are
shown in Fig. 9. "floor_button_panel”, and "cage_button_panel” are
constructed as parent processes of "buttons”. However, since they are very
physical and require no coordinators, they ware regarded as elementary
processes. Remark, ¢ = cage, f = floor, req = request, can = cancel, vis = visit.

(3) P2: The top level "lift_system" is constructed by interconnecting 3
subprocesses: "cage”, "floor_button_panel” and "cage button_panel”. Here are
all plugs {open, up, down, ¢_req, ¢ can, c_vis, f_req, f_can, f_vis) remain
unconnected. Therefore we create a coordinator process, and connect
remaining plugs to it (Fig. 10}.

(4) P3-S1: The initial causality matrix is created. It has 6 external ports and 3
external methods corresponding to the plugs initially connected in (3). We find
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the following functions (method candidates) of the coordinator and enter them
in the matrix:

- open: open the door of the cage when the cage visits the requested floor.

- up: move up to the target floor.

- down: move down to the target floor.

- ¢c_req [/ f_req: accept requests from the cage_buiton_panel /
floor_button_panel.

- ¢_can / f_can : delete the cancelled floor from the request queue.

- ¢_vis / f vis : acknowledge the cage_button_panel / floor_button_panel when
the cage arrives at the requested floor.

(5) P3-52: Causality relations are entered at the abstract level. We recognize 3
internal slot candidates (req_que, current_{, target_f) and one additional
method candidate (start), and add them to the matrix (Fig. 11).

- req_que: a reguest queue in which all requests are stored.

- current_f: the number of the current floor that the cage is currently staying.

- target_f: the number of the target floor to which the cage will go.

- start: select a target floor from the request queus.

(6) P3-R2&S3: While refining the causality relations stepwise, we refine the
operators and operands, and recognize new state elements. The following case
shows a fragment of this refinement and state recognition process. When
refining the operator ¢c_can (Fig. 12 (a), that is a local view of the matrix}, we
notice that there are two cases.

Case 1: The cancelled request remains in the req_gue.

Case 2: The cancelled request has already been selected as the target_f.

Here, we divide c_can into c_can_1 (case 1) and c_can_2 (case 2), and try to
refine each operator. Then, we recognize that the states (active and sleep) are
necessary to refine ¢_can_2, and introduce them. Finally, the matrix shown in
Fig. 12 (b} is derived.

(7) P3-R1: We notice that we have missed the fact that the cage should stop
and open the door at the floor that is stored in the req_que even if it is not a
current target. Consequently, we must backtrack and modify the design; we
must modify the method "open”.

(8) P3-R3: The coordinator is divided into 2 coordinators ("cage_ controller”
and "request_controller”), because the matrix becomes somewhat complex; so
it is natural to divide its functions into the cage controller and the request
controlier. During this dividing, the following interface piugs (external ports) are
introduced. ,

- star: acknowledge that the cage has started.

- end: acknowledge that the cage has visited the target fioor.

- exit: acknowledge that the request has been cancelled.

- current: inferm the current fioor that the cage is staying.

- command: command that the cage opens the door or not.

Divide the matrix into new two matrices which corresponds to generated
coordinator processes (cage_controller and request_controlier).

{9) P3-83 (for cage_controller): After checking for any method conflicts, we
introduce 9 dummy control state elements (active, sleep, etc.) to serialize the
methods {current, command, open, pass, up, and down) to avoid the conflicts.
(10) P3-S5: We implement KL1 predicates used in the methods (e.g.,
cancel_rfl of Fig. 12) which compietes the stepwise refinement of the matrix.



The final causality matrix of the cage controlier is shown in Fig.13. From this
matrix, MENDEL nets of the lift system can be generated automatically. Fig. 14
shows the top level process ((a) lift_system) and one of the subprocesses {(b)
cage_controller). In (b), slots are hided in the display for simplification, and a
triangle represents OR-connection of synchronous communication.

(11) We can verify at its skeleton level whether or not this system satisfies the
following constraints.

- Deadlock freedom of a cage:

LPTL formula = GF{open v up v down)
- Once a k-th floor is requested, the cage eventually visits the floor and opens
the door unless the request is not cancelled:

LPTL formula = G({(c_req(k) v f_req(k)} ~

G{=c_can(k) »~ —f_can(k))) = F open(k))
In this case MENDELS ZONE fortunately assures that this system satisfies
these constraints in the skeleton level, so no adjustments are necessary.
(12) Finally, the KL1 program is generated from the MENDEL net and executed
on Multi-PSI. We can confirm that the lift system works well.

5.3 Evaluation

We briefly evaluate our computer-supported methodology from our design
experiencas of the lift system. When we designed it using only a Petri net editor
and with no methodology in the past days, we abandoned the use of the editor
and did paper works in the earlier design phase because backiracking caused
tedious editing and rearrangement. We used a Petri net editor only for a fair
copy of the paper works. Experimental comparisons with other methodoelogies
in case of using supporting environments will be future work, while paper-level
comparisons will be done in the next section.

6. CONCLUSION AND RELATED WORKS

it has been shown that MENDELS ZONE is a Petri-net-based concurrent
programming environment. MENDELS ZONE has several unique features: (1) a
colored Petri net with a process-oriented hierarchy (MENDEL net), (2)
compilation of the MENDEL net to a concurrent pregramming language and
execution on a parallel computer, and (3) a design methodology for MENDEL
nets and methodology support tools.

Using MENDELS ZONE, we have already constructed several small-scale
discrete event systems, such as a machine control system for processing (i.e.,
etching) printed circuit boards (25). In addition, we are just constructing and
evaluating a large-scale control system for a power plant (about 4300 steps)
(26). For future work, we will extend the verification and adjustment abilities to
manipulate detailed KL1 codes that are ignored in the current skeleton-level
verification and adjustment.
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We believe that existing competitors to MENDEL net and its design
methodology are Real-Time Structured Analysis (27), PAISLey (28), Statemate
(29), and G-LOTOS (14). We have also proposed another design methodology
using structured analysis (2). All support data flow, state machine, and
hierarchy. The most obvious difference from our approach is that these are not
directly based on Petri nets. Each approach has similar abilities in general and
distinct merits and demaerits in detail. Nevertheless, we favor the Petri-net-based
approach, because this approach can take advantage of graphical repre-
sentations and a variety of analysis methods which have been and will be
provided by many Petri net researchers.

Recently, other Petri-net-based design methodologies have been reported.
Pinci and Shapiro proposed a methodology in which CPN are integrated with
SADT (Structured Analysis and Design Technique) (30). SADT is a
sophisticated and well-used methodology for requirement analysis. However, it
is based on data flow diagrams and lacks the state transition feature, while our
methodology supports both data flow and state transition features. Etessami's
rule-based design methodology (31) is another Petri-net-based approach
which uses Abstract Petri Net (APN). A unique feature of APN is the
combination of timed and colored Petri net. According to the rule-based design
methodology, a designer first formalizes the specification by means of a set of
rules and lists attributes representing the status of a target system. Then, he
retracts places from the attributes and transitions from the rules, and finally
describes APN. Etessami's approach seems to be in the same research
direction as our approach. However, Etessami's methodology is less systematic
(therefore, has no computer support) and is weaker in design backtracking. In
addition, APN is not hierarchical.
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Abstract level +

blank no relation/undefined

some relation

Intermediate level (1) <
-
Intermediate levei (2) syne
rw

pp
frans

insync
outsync
read
write
pop
push

in

from

14]
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Intermediate level (3)

input/cause
output/effect

synchronization

read or write from/to slot
pop or push from/Ato port
state transition

synchronization with input data
synchronization with output data
read from slot

write to slot

pop from port

push to port

reference of state

transition from state

transition to state

-------------------

Concrete level KL1

KL1 code

Table 1 Wide-spectrum causality relations
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Fig. 1 Three types of places: state element, slot, and port
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Fig. 2 Method example
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Fig. 3 Process-oriented hierarchy
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Fig. 4 Array representation
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Fig. 5 Causality matrix
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Fig. 6 Transformation from a matrix to a net
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Fig. 7 Design methodology
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Fig.9 Elementary processes of a lift system



open up down c_req lc_can o wis f reg f can
method lmeth method |port port port port port
xternallexternallexternal jextérnal lex nal ernallexterpallexternal
lopen *
up +
L] +
C_reg t
C_Ccan t
o wis +
f_req +
|f can +
f vis
start
f vis regq que |current fltarget f
port slot slot slot quard body
exterpal
+ +
D :
" + +
continue " .
+
+ +
+ + +
+ +

Fig.11 Causality matrix (abstract level)




(a) Original matrix

c_can req que | target_f
port slot slot guard | body
c _can | POp w read
(b) Refined matrix £:‘
I ¢_can |req gue | target { | active |Sleep
port slot slot state |stale | guard body
¢_can_1 read:Q1 , i X¥=Y |eancel_i(X.01,02)
1 pop:X |write:q2| resdiy n -
¢ _can_2§ POPX rad:¥ from | 10 X=Y true

Fig. 12 Causality matrix
(refinement example)
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Fig.14 Constructed MENDEL net



