ICOT Technical Report: TR-0782

TR-O7R2

Drit Parser: A Generalized LR Parsing
Algorithm Using Dot Reverse Item

by

H. Tanaka, K. G. Suresh & H. Numazaki
(Tokyo Institute of Technology)

June, 1992

e, IO

Mita Kokusai Bldg. 21F (03)3456-3191 5

" :D I 4.2% Mit 1-Chome Telex 1COT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Drit Parser : A Generalized LR Parsing
Algorithm Using Dot Reverse Item'

Hozumi TANAKA K. G. SURESH Hiroaki NUMAZAKI
Department of Computer Science, Tokyo Institute of Technology

2.12-1 Ookayama Meguro-ku Tokyo 152, Japan
Email : {tanaka, suresh, numazaki}@cs.titech.ac.jp

Abstract

We have developed & new generalived LR parser called Drit parser. The
parsing algorithm is based on Kipps recognition algorithm but it creates the
parsing results as a set of dot reverse items (dris). The structure of drits is
symmetric to the one of Barley's items. Tt is possible to form parsing trees
from a set of drits created after the completion of parsing. This makes Kipps
recognition algorithm a practical CFG parser. In order to build a Drit parser,
some modifications in the original version of Kipps recognilion algurithm are
required. The time and space complexity of Drit parser is in the order of n® and
n? respectively, since Drit parser is based on Kipps recognition algorithm. We
will conclude that Drit parser has both the advantages of Earley’s and Tomita’s
parsing algorithm.

1 Introduction

Some compilers of programming languages have made use of the LR{k) parsing algo-
rithm devised by Kunth [6] which enables us to parse an input sentence deterministi-
cally and efficiently. llowever the grammars used in this algorithm are limited to LR(k)
grammars so that Context-Free Grammars (CFG) in general can not be handled.
Tamita extended the LR(k) parsing algorithm to handle CFG [11,12]. The ex-
tended algorithm is oue of the generalized LR parsing algorithms. Empirical results of
Tomita's and Earley’s algorithm reveal that the Earley/Tomita ratio of parsing time
is larger when the length of an input sentence is shorter or when an inputl sentence
is less ambiguous [11]. In [5] the time and space complexity of Tomita’s algorithm is
proved to be in the order of n'*# and n? respectively for general CFG. llere p is the
maximum length on right hand side (rhs) of the production rules used. Thus if p >
2, Tomita’s algorithm dose not fare well theoretically compared to Earley’s algorithm.

YThis paper has becn submitted to the Journal of Computational Linguistics

1

Kipps gave a modified version of Tomita's algorithim, which works with the time and
space complexity in the order of n* and n® for any CFG. However, Kipps algorithm is
only a recognition algorithm and is not a practical parsing algorithm becaunse, it can
not generate syntactic structures [8).

Tomita's algorithm creates partially parsed trees during parsing process. For a CFG
with dense ambiguities, exceeding more than n*, Tomita’s algorithm makes the parsing
time theoretically worse than Earley's algorithm. On the other hand the Earley’s
algorithim creates items which can be shared by many parsing trees. This is the reason
why Earley’s algorithm performs theoretically better than Tomita’s in case of densely
ambiguous gramimnars.

The fact suggests that it seems to be possible to create the Earley’s items during
the recognition process in Kipps recognizer. In this paper we will show that it is not
appropriate to create Earley's items. However fortunately we can civate another form
of items called dot reverse items (drit), which are in symmetrically different form from
Earley’s items. ‘The data structure called drit has been introduced in [10] and [9)
showed the effectiveness of a parser based on drit formation. It is possible to form
parsing trees from a set of drits created after the completion of parsing. This makes
Kipps recognition algorithm a practical CFG parser, which in this paper we call as Drit
parser. In order to build a Drit parser, some modifications in the original version of
Kipps recognizer are required. The time and space complexity of Drit parser, as Kipps
recognizer, is in the order of n’ and n? respectively. We will conclude that Drit parser
has both the advantages of Earley’s and Tomita’s parsing algorithms.

In section 2 we will give a formal definition of a drit. Tn section 3, we will describe
the algorithm of Kipps recognizer which is based on Tomita’s algorithm. In section 4,
we will explain Drit parser and give the algorithm based on Kipps recognizer. We will
also discuss the reasons for creating drits instead of Earley's items. Finally we give our
conclusion in section 5.

2 Dot Reverse Item

In this section® we will give a formal definition of a drit, the intuitive meaning and the
purpose of which will be explained in detail in section 4.1.1.

Let G = (N, T, P, §) be a CFG and let w = w; wy ... w, € T* be an input
sentence in T" which is a set of a sequence of terminal symbols. For a CFG rule X
= Y1 Ypand 0 <7 <n X =Y, Y. Yo Yoo Yo, j]is called a drit
for w. The dot between Y, and Y, 18 a metasymbol not in N and T. The suffix i in
the input sentence is called the position number in the following sections. The special
paosition number ‘0" and ‘n” represents the left and right hand side position of w,; and
1w, respectively.

#The reader can skip this section in the first reading

R, a set of drit is defined as follows. For i and j (0< i < 7 < n), X = a- 4,7
c R, iff 5% 4 X 6, 3 = wiwiga...w,, and there exists f (0 < h < i) such that
5 = wyws ... wy and & = Wh i Waiz .. W

The difference of a drit with an Earley’s item lies in the interpretation of j. It is
evident from the above definition that, in the drit, the analysis has been completed
for which is on the right hand side of the dot symbol. On the contrary, in case of
Earley's item, the analysis has been completed for o which is on the left hand side of
the dot symbol. In other words, in case of drit, the position immediately after 7 is
given as j in drit’s dala structure, and the portion of the input sentence between j and
i {7 > 1) is accepted as 0.

3 An Overlook of Tomita and Kipps Recognition
Algorithms

In this section after a brief explanation of Tomita's algorithm as a recognizer, we
will explain Kipps recognizer. We assume the familiarity of generalized LR parsing
algorithm. Because of the simplicity we will not consider the ¢ rule until 4.1.2

3.1 Tomita's Algorithm As a Recognizer

Following the notation given by Kipps, a graph-structured stack (GSS) is a single
directed acyclic graph. Each stack element corresponds to a vertex of a graph which
may have more than vne parent. The root of the graph is a common bottom-of-stack.
Fach leaf of the graph represents a distinct top-of-stack. The leaves of the graph grow
in stages. BEach stage U; corresponds to the i-th word w; of the input sentence. Upon
scanning wis;, the recognizer carries out mainly the following two actions in stage |35
(1) add an additional leaf to U, {reduce action) or (2) add a leaf to U, (shift action).
What kinds of actions are carried out is determined by the leaves in U,, LR table, and
the preterminal of scanning word w1, Only after all the leaves in the stage U, has
been processed, the recognizer proceeds to'the stage U,.y scanning the next word ;| 2.

Each vertex of the G55 in U, is a triple < {, s, L >, where ¢ is an integer denoting the
i-th word scanned, s is the parse state and L is a set of parent vertices. The recognizer
works as follows. A (55 is initialized by pushing < 0,s0,{} >, which becomes the
root of the (388 with w, as a look-ahead word (scanning word), whose preterminal will
be used to determine the parsing actions in the LR table.

A LR table consists of two fields, an ACTTON field and a GOTO field. The parsing
actions are determined by state (the row of the table) and a look-ahead preterminal
{the column of the table) of an input sentence. End of the sentence is represented by
“.|". There are four types of actions: shift, reduce, accept and error. Some entries in
the LR table contain more than two actions and are thus in conflict. In such cases, a

recognizer must conduct more than two actions in parallel.

1. Reduce : The recognizer pops the number of vertices (corresponding to the rhs
of the production rule specified by the reduce action) from the top of the stack
and then creates a new leaf in U; which becomes active and the state of which

will be determined by the GOTO field.

2. Shift : A new lcaf corresponding to alook-ahead word w,, is pushed in U,,. The
state of the leaf is determined by the shift action. Note that the newly created
ieaf in U, is not active until there is no active leaf remained unprocessing in U,
and the look-ahead word becomes w;.q.

3. Error : The leaf with error action will be truncated.

4, Accept : Recognition process will end with success.

In case of 1 and 2, a new leaf is added in U, and U, respectively and edges are
tormed from the new leaf to its parents. If there exists a leal with the same state as
that of a newly created leaf in U; in case of 1, or U,,; in case of 2, then they will
be merged into one. The leaf after merge will have several parents. Merging of same
leaves avoids the duplicated processing of input sentence and also it makes sure the
numher of vertices in each stage to be within the number of total states in LR table.
Hence the order of the nuinber of vertices in each stage becomes constant.

Let us [ocus more on reduce action in a stage U;. A reduce action pops the number
of vertices (say q) equal to the number of nonterminal and preterminal symbols in rhs
of the rule used in the reduce action. Then the ancestor vertices al a distance of q
will tentatively become the top of the stack, and using the GOTO field of LR table, a
new leaf is pushed in the stage U, for every ancestors. At the same time new edges are
formed from the leaves to the anceslors and the vertices in the distant stages becomes
the parents of the leaves. In consequence, a vertex < 1,5, . > in U, has at most c#1
parents where c is the number of total states and is constant. We can conclude that
the number of ancestors of each vertex is in the order of i.

The ancestors at a distance of q from a leaf in the stage U, will be obtained by
traversing every path from the leal to them, As the number of parents is in the order
of i, the number of paths between the leaf and the ancestors at a distance of q becomes
at most 7. Therefore, the time of Tomita's recognizer is in the order of n'*® (= i
i# , where p i the number of nonterminal and preterminal symbols in the rhs of the
longest production}. If p > 2, the order crosses over n. For the grammars in Chomsky

normal form p = 2 and hence the order of recognition time becomes n®.

3.2 Kipps Recognizer

The reason for Tomita's recognizer crossing over n® order of parsing time is due to
the time consumed in getting the ancestors. Although the number of ancestors at a

4

distance of g from a leaf in the stage U; is in the order of i, the time needed to extract
them is in the order of i7. The reason is that, to get the ancestors, an edge once
traversed can be again traversed repeatedly. If the duplicated traversal of the edge is
prevented, the time of getting the ancestors can be reduced.

In order-to prevent the duplicated traversal of edges, Kipps changed the data struc-
ture of the vertex as < i, s, A >. Here i represents the position number of the shifted
word, & the state and A is the ancestors table which is a set of tuples such that
{< k,Ly » |k = 1,2,---,p} where Ly is a set of ancestors at a distance of k from
the vertex < i,s, A >. For example, the set of parents L in section 4.1 equals to L.
From the above discussion, we know that the ancestors table is formed by at most p
tuples and the number of ancestors in L is in the order of 1. Once an entry in an
ancestors table is filled, the time to reget that entry is constant thereafter. In other
words, time to get the ancestors becomes constant. The ancestors table can be formed
in a constructive way using the ancestors tables formed in the past.

Following is the definition of a function ANCESTORS, which is a table lock-up
function that generates table entries the first time they are requested [3].

ANCESTORS(v= <i, 5 A>, k)
if k=40
return [{ v })
(1) else if 3 <k, Ly > € A
return(Ly)
(2) else
let Lpi= Uwper, |<1,1, »ca ANCESTORS(v, k-1)
let A:= AU { <k L >}

return { Li)

The L, in the element < 1,L; > of the ancestors table A of the vertex is a set of
parent vertices and note that L, is filled up when the vertex is formed. The portion
of (1) and (2) in the body of ANCESTORS function have the following roles. (1): If
< k,Ly > (k > 0)isin A then those vertices are returned. (2): Otherwise for all parent
vertices v in Ly, ANCESTORS(v, k-1) is called recursively to generate all the vertices
at a distance of k from v. Before returning those vertices they are recorded in the
ancestors table of v. Once the ancestors table is filled then the vertices at a distance
of k from v can be obtained directly from the ancestors table in a constant time since
all the vertices have been recorded in A, and is not needed to call ANCESTORS
recursively. In order to make effective computation during reduce action, we modify
this ANCESTORS function to be just a table look-up function as shown in section
41.2.

For ANCESTORS(< i,s, 4 >, k), time bound in the worst case is in the order of
i? [5]. On considering the constant time to call the AN CESTORS once it has been

called, for the inpul sentence length n, Kipps recognition algorithm takes the time in
the order of n®., We suggest our redears to refer [5] for detailed understanding of Kipps
recognition algorithm.

4 Drit Parsing Algorithm

The Drit parsing algorithm is almost the same as Kipps recognition algorithm with
some modifications in shift and reduce actions. The modifications are related to the
formation of drits during shift and reduce actions. The GS88 used in our Drit parser
ts the same as the one used in Kipps recognition algorithmm. In section 4.1, after
discussing the reasons for creating drits instead of Earley’s items, we will modify the
Kipps ANCESTORS function, and then give a complete algorithm of reduce action in
Drit parser. Section 4.2 gives a shift algorithm along with a top level algorithm of Drit
parser.

4.1 Reduce Action

Let us assume that all the production rules in a CFG are numbered. Let the p-th rule
which is used for a reduce action be,

Dy — G Cpz - Cyy
and the stack top (leaf] experiencing this reduce action be < i,s5, 4 >. Then, the leaf
corresponds (', its parents correspond Cp, ; and in the same way, the vertices at a
distance of k from the leaf correspond Cpy_y.

As well as Tomita's algorithm, applying this p-th rule, we can produce the partially
parsed trees corresponding to the p-th rule. Instead of partially parsed trees, Drit
parser creates drits which are parts of the parse trees. The reader may think that at
this time Earley’s items can also be created, but the problems in that are explained in
4.1.1. In 4.1.2 we give the definition of the reduce action performed by Drit parser.

4.1.1 Purpose of Dot Reverse Items

Using the ancestors table in the leaf alone, we can create proper drits during reduce
actions. However sometimes it is not possible to create proper Earely’s items from the
ancestors table of the leaf. We will explain this fact throngh some concrete examples.
The fact that we can create proper drits from the ancestors table of the leaf alone,
plays an important role in computing the complexity of Drit parser. The reason will
be explained in 4.4.

Let the input sentence be wyws - w,. For the clear understanding of the concept
of position number, we first consider the following stack in which we show only the
position numbers and hide other informations such as state and ancestors table.

(a) «--—<d.,.>—<5,.,.>—<6.,.> top reduce by X —+ Y Z

Here, < 6,..,.. > is the top of the stack, which is a leafl. The position number
inside the vertex means that, the input sentence up to that position number has been
processed (shifted). Accordingly, the position number 6, in this case means that the
input sentence up to the word wg has been processed. In a similar way the vertex
< 5,..,.. > indicates the processing of the input sentence up to ws;. From this [act
we can realize that the vertex < 6,..,.. > covers a part of the input sentence wg, the
vertex < 5,..,.. = in between < 3, .., .. > and < 6, ..,.. > covers wy ws.

When applying a rednce action “reduce by X — Y Z" to the stack (a), the vertex
< 6,..,.. > matching to 7 and the vertex < 5,..,.. > matching to Y are popped and
the drits as shown in (b) are created.

(b) Drits Rs2 [X =Y %,6], Ry3[X—-YZG

Tn case of (b}, number G inside each item is the position number appeared in the leaf
of the stack {a). In the first drit, a part of the input sentence from position number
& down to 5 {ws) has been recognized as “Z" and in the second drit, a part of the
input sentence from position 6 down to 3 (wywewe) has been recognized as “Y Z" and
combined as “X" by applying the rule used for the rednee action. The number 6 inside
each item is the position number, starting from which drils are created and ending
with the dot position stated by the suffix of Ry and H;.

Similarly, from (a) we can also create Earley’s items as shown in (c).

(¢) Barey'sitems: E;3 [X =Y 4,3, Ei23[X—=YZ-,3

In each item in (c¢), number 3 inside the item is the position number, starting from
which Earley’s items are created and ending with the dot position stated by the suffix
of I; and lis. This indicates that a part of the lnput sentence from position 3 to 3
(wgws) in the first item has been recognized as “Y". In this way a part of the input
sentence from position 3 to 6 (wswyws) in the second item has been recognized as “Y
7" and combined as “X" by applying the reduction rule.

Next, consider a merged stack as in (d) and using only the ancestors table A of the
leaf, let us create drits and Earley's items.

(d) =<8, —<8,.,. —<fsA> top reduce by X — Y 7%
sl —
here A = {<1, {v5,vf}=, <2, {v802}>, -+ }
where v5 = <3,..,..2>, v§ = <4,..,..7>, vJ = <d,..,..7,
v =<8,..,.>,

We perform the reduce action “reduce by X — Y Z" on (d). Using this rule
for reducing we have to pop two vertices from the leaf «< 6,5,4 > The vertices
at a distance of 1 from the leaf are v5 and v4, whose position numbers are 5 and 4
respectively. Again, the vertices at a distance of 2 from the leaf are v3 and v2, whose
position numbers are 3 and 2 respectively. It is important to note that all the position

numbers of the vertices at distance of 1 and distance of 2 from the leaf can be obtained
by only looking at the ancestors table A in the leaf alone. Thus using the ancestors
table A's information alone we can create drits as shown in (e).
(e} Drits:
Rs3 X —=Y 2,6, Rya|[X—=Y":1Z6,
Rss3[X—-YZ 6, R2a[X— YZ, ¢

These are certainly the same drits created by traversing each path from the leaf
down to root.

Similarly, usiug the ancestors table A's information alone we create Earley’s items
as shown in (f).

(f) Earley’s items:
Bs 3 [X =Y - Z, 3], Ez3[X—-Y: Z 2,
Ess[X—=Y- 2,3, E/3[X=Y-72),
Ec2[X—=YZ-,3, E2>[X—-=YZ., 2

In the Farley's items in (f), when compared to the Earley's items cbiained by
traversing each path from the leaf down to root, we get two additional items as shown.

Esa[X—=Y- 4,2, E>3[X-=Y- Z3

From the information in the ancestors table of the leaf alone, there is no way to
exclude both the combination of the position numbers 2 and 5, and 3 and 4 which are
not allowed in case of creating Earley's items.

In conclusion, by using the information in the ancestors table of the leaf alone,
we are able to create necessary and proper drits, whereas in case of creating Earley’s
itemis unnecessary and unproper items are being created. The reason for this difference
comes from the fact that LR parsing is based on the right-most derivation and drits
reflects this derivation.

Another important purpose in using drits is the localization of duplication checks.
The position number inside the drits in (e) will remain the same throughout the pro-
cessing of the stage Us. This enables us to limit the duplication check of drits created
within the stage U,

4.1.2 Algorithm for Creating drits

In this section, we give an algorithm for creating drits during the reduce action followed
by the definition of reduce action. In the previous section we showed that from the
ancestors table A in the leal alone it is possible to create drits. Now let us consider
the p-th production rule used during the reduce action as
Dp = Cor Cpz -+ Cogk Cpgmirr -~ Gy
In this case, we can create drits from the algorithm given below in stage U,

for & from [to g
for v ;" st < ;' §', A" > € ANCESTORS(v, k)
let Rp:= Ry U{[Dy — Cu Coo oo Crgoe - Cpgnar 0 Crgy 1}

Note that when k = g, the drit such as '[D'P — - Cpy Cpp + - Cq, 1) Will be created.
The definition of the reduce action which includes the abaove algonthm is given after
the introduction of NEW function and modified ANCESTORS function.

In order to create all the possible drits, it is necessary to modify Kipps ANCES-
TORS function. If we use Kipps ANCESTORS function, after requesling an entry by
calling ANCESTORS(v,q). only this entry is guaranteed to be filled in and the other
entries between I and g-1 are not always filled in. However as cxplained above, all the
entries up to g are necessary to create drits during reduce actions. Far the purpose of
filling all the entries up to g, we introduce a function NEW and we make the ANCES-
TORS function as just a table look-up function without generating any table cntries
when they arc requested. When a new leaf is created the function NEW is called to
carry over the ancestors table of its parent. The definition of NEW function is shown
below.

NEW(v= <i, s, 4>, u= <j, {, B>} T uis a parent of v.
(1) for & from 2to p

(2} if 3 < k-1,L,, € B
if3 < &k Ly > A
let Ly = Ly U 1_1
else

let A= AU{ <k L, >}
else
return{v)
return(v)

The above NEW function fills all necessary entries of the ancestors table A of the
leaf v by getting the entries of the ancestors table of its parent w. For retting all the
possible drits it is enough to fill p entries of the ancestors table, which are set by the
iteration given in line {1). Here p is the rhs of the longest production rule used. The
line {2) checks whether an entry to be carried exists in the parent’s ancestors table. If
exist, then that entry is carried to the leaf v.

As we defined the NEW function we now give the modified ANCESTORS function,
which becomes just a table look-up function because all the entries of an ancestors
table A have already been filled in when ANCESTORS function is called.

ANCESTORS(v= <i, s, A>, k)
if k=20
return { {v })
else if3 <k Ly>€ A
return(L)

It is clear that the above modifications will not affect the time complexity, since the
modified ANCESTORS function can be performed in a constant time and the NEW
function can be performed at the maximum in the order of i%.

The definition of reduce action is shown below. Here the portion in the hox refers
to the creation of drits and filling of the ancestors table which are different from the

original Kipps recognition algorithm.

REDUCE (w, p)
for £ from J1tog
for ¥ ;' et < ', &', A’ > € ANCESTORS(v, k)
lat ffj;r = H}'r L {[Bp — CI"'l sz F:P']' [CJ"'? kgl vt CP'I'" 'i'.l}
(1) for Vvl'= <7, &, Al' > st vl' € ANCESTORS(v, g)
let 8" = GOTO(s, D)

(2) f3v'= <i-1, " A"> st.v" € U, n <1, L">e A"
{3) if »1" e L"
do nothing {ambiguous)
else
{4) ifJu2 = <, s, AY > st 02 ¢ LY

let we'" = <i=1, 8" A" > st A = {<1, {v1'} =}
let ve" := NEW({ ve", v1')
re plE -

5", w;), REDUCE(v, p)

else
let " := L" U {vl'}, let v" := NEW({ ¢", vl')
(5) ifv" e P
let ve" = <i—1, 8", A" > st A" = {< 1, {vl'} =}
let we” := NEW[vc”,vl"}
for v 're p’ e ACTIONS{ 5", w,), REDUCE(v, p)

{f) else

let v = <i—1, 5" A> st A= {<1, {1} >}
let v := NEW(v" ,v1")

let U,_y:i= U, U {"}

As shown above, Drit parser uses the reduce action almost the same as Kipps.
Following the way of Kipps explanations, (1} iterates through all the ancestor vertices
at a distance of ¢ from v, setting s” to the new state indicated in the GOTO table
under [, given the ancestor’s state s'. (2} checks whether such a vertex v" with the
same state s" already exists then (3] checks that a shift from the current ancestor v1’
has already been made. In this case do nothing. (4) checks whether v1' is a clone
vertex created by a ¢ rule.® If v1' is a clone, v" is again cloned into ve" and all reduce

*On using ¢ rule for reduce action, the ANCESTORS will return a clone vertex as the ancestor of
itself. More detailed discussions on clone vertex is given in [5].

10

actions executed on v” are executed on the new clone ve”. Otherwise (5) checks if
1" has already been processed, if so, then it missed any production through vl', so
o is cloned into ve” and all reduce actions executed on " are now executed on ve'.
Whenever 1’ becomes a parent of v”, the ancestors table in v” will be updated by
using the ancestors tables in v1', which is performed by calling the function NEW. (6)
adds a vertex with state s to the stage U .

4.2 Shift Action

Iet us consider that the parser is going to enter in the stage U; from the stage Ui
by shifting a look-ahead word w;. If we assume C be the preterminal of the word w,,
during the shift action a drit [C — - wy, i] is created in Ry,

Rih =R U {[C — i}

The reason for including the newly created drit in the set R; ; is that, at the time
just before shifting of the word u, the active leaves have the position number i-1. Only
after shifting the word w;, for all the leaves, the top position number will be incremented
by one and the processing entlers the new stage U, We give the definition of the shift
action in Drit parser as shown below. The portion in the box refers to the creation
of drits and filling of the ancestor table which are different from the original Kipps
recognition algorithm.

SHIFT(v, s)
R, 1= Ho_,U{[C = -w, i}
T wl= <i,8 A>stviel A<l L>€ A

let L:= LU {v}

else

let vi:= <i, 5 A> &t A= {1, {v}>}
let vi:= NEW(o1 v
let U, = U; U {vl}
We finally give the top level algorithm of Dnt parser as follows.
PARSE(twy, wa, -, Wyi1)
let w1 = - % end of a sentence
let U;:={} (0=1<n)
let Ug:={ <0, &0, {}=>}
for i from {to n+I
let P:={}
for v= <i-I, s, A> st.ve Ui,
let f:= PU{v}
if 3 %sh s’ e ACTIONS(s, wy), SHIFT(v, &)
for ¥ 're p’e ACTIONS(s, w,), REDUCE(v, p)
if 'ace” € ACTIONS(5, w;), accept
if U; ={}, reject

11

4.3 Computational Complexity of Drit Parser

Let us consider the time complexity in creating drits in the stage U,. This can be found
out by taking into account of, first, the time of the evaluation of ANCESTORS and
NEW functions given in 4.1.2, and secondly, the number of vertices picked out from
the ancestors table. In our Drit parser the ANCESTOHRS and NEW functions jointly
can he performed in the arder of i? since the NEW function can be performed in the
order of i* and ANCESTORS in a constant time. As the number of vertices picked out
from the ancestors table is in the order of i, the time complexity for Drit parser, for an
input sentence of length n is in the order of n®, same as that of Kipps recognizer.

To find the space complexity of Drit parser, we have to consider the memory space
consumed by GSS and by the number of drits created. It is obvious that the space
consumed by GSS is in the order of n?. The number of drits is proportional to the
number of vertices picked out from the ANCESTORS. For the stage U,, this is in the
order of i. This can be repeated for n times and hence the order becomes n?, Thus the
space used by Drit parser is in the order of n®.

4.4 A Comparison With Chart Parser

In this section we correlate drits with the charts of Chart parser [4] as below.

X—m—vo
(Inactive edge) X— o Po

(Active empty edge)

X—® 0=f
{Active edge)

| k I

Usually the chart is read from left to right, but the abeve chart should be read from
right to left. For the active edge, inactive edge and active empty edge of the chart, we
give corresponding drits as follows.

Corresponding drits :

¢ Fur the active edge = Ry 3 [X — o - 4, j] (k < j).
e For the inactive edge =+ R, 3 [X — -ad, j| (i < j).
¢ For the active empty edge =+ R, 3 [X — af, j].

The reader can understand two important advantages of Drit parser compared to
Chart parser.

12

1. Drit parser does not create any active empty edges® which do not contribute to
form parse trees.

9. The parsing process in Drit parser is regulated by LR table and hence unnecessary

patsing operations are avoided.

Due to the above advantages, our Drit parser will make more effective parsing
compared to Chart parser.

5 Conclusion

For certain CFG it was found that, the time complexity of Tomita's generalized LIQ
parsing algorithm is more than that of Earley’s algorithm [3, 5. Kipps gave a recogni-
tion algorithm in which he made small modifications in Tomita's algorithm. The time
complexity of the modified recognizer s the same as that of Earley's (n? where n is the
length of the input sentence) for any CFG [5]. However, Kipps algorithm only recog-
nizes the input sentence as grammatically acceptable or not and it does not produce
any parse trees. For this reason, Kipps algorithm can not be taken as a practical parser
(8].

Tn this paper we proposed a new generalized LR parsing algorithm called Drit parser
using a data structure called drit. Drit parser creates drits during the parsing process.
For this purpose we made some modifications in Kipps recognition algorithm, so that
it will become a practical parser by giving all the possible parses. Since Drit patser is
based on Kipps recognition algorithm, the time and the space complexity of Dnit parser
‘< in the order of n® and n? respectively. Thus, Drit parser maintains the advantages
of Farley's and ‘Temita’s algorithms.

We give the followings as our future research works.

¢ The practical evaluation of Irit parser.
¢ Developing a parallel algorithm.
¢ A parallel algorithm for tree generation from drits.

Finally, the authors like to give the correlation with YAGLR, which 1s a new gen-
eralized LR parsing algorithm proposed by the authors [10]. Actually drits were intro-
duced in YAGLR parser. It is evident from [9] that, the experimental time complexity
of YAGLI is in the order of n* and further on using tree-structured stack instead of
(GSS, the merge of tree-structured stack is more deep which makes the memory space
used by YAGLR less. From the empirical rosults it is known that if the ambiguity of
the sentence is extremely high, YAGLR is much faster than the tree-structured stack
version of Tomtia's algorithm. However, for generalized CFG, the time and space

3The active empty edges refers to the predictor items created by Earley’s algorithm [2].

13

complexity of YAGLR are not yet to be proved. In any case, Drit parser should be
practically eveluated with YAGLR.

References

[1] Aho, AV and Ullman, J.D. :
The Theory of Parsing and Compiling, Prentice-Hall, New Jersey (1972).

[2] Earley, 1. :
An Efficient Augmented-Context-Free Parsing Algorithm, Comm. of ACM, 13, 1-2,
95-102 (1970},

I3] Johnson, M. :
The Computational Complezity of Tomita's Algorithm, International parsing
workshop'89, Carnegie-Mellon University, pp.203-208 (1989).

[4] Kay, M. :
Algorithm Schemata und Data Structures in Syntactic Processing, Readings in
Natural Language Processing, Morgan Kaufmann Publishers, Inc. pp.35-70

[5] Kipps, LR. :
Analysis of Tomita's Algorithm for General Context-Free Parsing, International
parsing workshop'89, Carnegie-Mellon University, pp.193-202 (1089).

6] Kunth, D.E. :
On the Translation of Languages Left to Right, Information and control, 8(6),
pp.60T-639 {1965).

[7] Numazaki, H. and Tanaka, I1. :
A New Parallel Algorithm for Generalized LR Parsing, COLING’90 , Val.2,
pp.305-310 (1860).

(8] Schabes, Y. :
Palynomial Time and Space Shift-Reduce Parsing of Arbitrary Context-free
Grammars, Proc. of 20th ACT., 106-115 {18991).

(8] Suresh, K.G. and Tanaka, H. :
Implementation and Evaluation of Yet Another Generalized LIt Parsing Algorithm,
Proc.of the Indian Computing Congress, Tata McGraw-Hill, 506-515 {1901).

[10] Tanaka, H and Suresh, K.G. :
YAGLR : Yet Another Generalized LR Parser, Proceedings of ROCLING IV,
Republic of China, 21-31 (1991).

1] Tomita, M.
Efficient Parsing for Natural Language, Kluwer, Boston, Mass{1086).

[12] Tomita, M. :
An Efficient Augmented-Context-Free Parsing Algorithm, Computational
Linguistics, 13, pp.31-46 [1987).

14

