ICOT Technical Report: TR-0779

TR-O779

Parallel and Distributed Implementation of

Concurrent Logic Programming Language KL

by
K. Hirata, R. Yamamoto, A. Imai, H. Kawai,
K. Hirano, T, Takagi, K. Taki,
A. Nakae & K. Rokusawa

@992, 1COT

Mitx Kokusai Bldg. 21F (03)3456-3191 5
1ICO1 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel and Distributed Implementation of Concurrent Logic
Programming Language KL1

Keiji HIRATA
Kivoshi HIRANO

Reki YAMAMOTO
Tsunevashi TANAGI

Hideo KAWAL
IKazuo TAKI

Akira IMAI

Institute for New Generation Computer Technology
4-28 Mita 1 chome, Minato-ku, Tokyo 108 JAPAN

Akihiko NAKKASE

TOSHIBA Corporation

Abstract

This paper focuses on a paralle]l and distributed imple-
mentation method for 2 concurrent logic programming
language, KLL, on a parallel inference machine, I'IM.
The KL1 language processor is systematically designed
and implemented. First, the language specification of
L1 is deliberately analyzed and properly decomposed.
As a result, the language functions are categorized into
unification, intep-cluster processing, memory manage-
ment, goal scheduling, meta control facilities, and an
mtermediate instruction set. Nex!, the algorithms and
program modules for rv.‘-Ji?,inE the decomposed require-
ments are developed by considering the features of PIM
architecture on which the algorithms weork. The fea
tures of FIM architecture include a loosalv-coupled net-
work with messages possibly overbaken, and a cluster
structure, i.e, & shared-memory multiprocessor portion,
Lastly, the program modules arc combined to construct
the language processer. For each implementation issue,
the design and implementation methods are discossel,
with proper assumptions given.

This paper concentrates on several implementation is-
sues thal have been the subjects of intense ICOT re
search since 1988,

1 Introduction

In the Fifth Ceneration Computer S}l‘s-
tems Project, [COT has been, simultanesusly, develop-
ing a large-scale parallel machine PIM [Goto ef al. 1988]
[Imai ef al. 1991], designing a concurrent logic programe-
ming language KL1 {Ueda and Chikayama 1990], and in-
vestigating the efficient parallel implementation of KL1
on PIM [ICOT 1st Res. Lab. 1991}, These subjects are
closely related and have been evolving together.

Kazuaki ROKUSAWA

OTI Electric Industry Co,, Ltd.

The KL1 language has several good features: a deciar-
ative description, simple representation of synchroniza-
tion and communication, svmbol manipulation, paral-
lelism control, and portability. Similacly, PIM architec-
ture, also, has a number of good features: high scalablity,
_ga-enﬁ::d THITHOSE a.]}p“t.h.bﬂit}'. and efficient symbolic com-

puting.

When implementing KL1 on PIM, various difficulties
appear. However, the parallel and distributed imple-
mentation of L1 must bridge the semantic gap be-
tween PIM and KLI1 so that programmers can enjoy the
el language ae an interface for general-purpose con-
current fparaliel processing [Taki 1992].

ICoT has implemented KLl on
Multi-PSI (& distributed-memory MIMD machine) and
has been accumulating experience in KL1 implementa-
tion [Nakajima et ol 193%9). The implementation of KL1
on Multi-P5] was a preliminary experiment for our im-
plementation.

This paper primarily focuses on a parallel and dis-
tributed implementation method for the concurrent logic
programumung language KL1 on a paraliel inference ma-
chine PIM. Section 2 gives readers some brief background
knowledge on PIM and KL1. Section 3 systematically
investigates the complex connections of what part of
the language specification is supported by what com-
ponent(s) of the KL1 language processor. Among these
components, Section 4 focuses on and discusses several
key implementation issues: efficient parallel implementa-
tion within a shared-memory portion, inter-cluster pro-
cessing, a parallel copying garbage collector, meta con-
trol facilities, and & KL1 compiler. Section 5 concludes
this paper,

(Inter-Cluster Network)

:

Shared Memory

Shared h'fFan}r}-'

Cluster, Cluster,

Figure 1: PIM Architecture

2 Owverviews of PIM and KLI1

PIM

Figure 1 shows the PIM architecture [Goto ef al. 1985]
{Imai et al. 1991]. PIM architecture assumptions and
features are described below,

One of the features of PIM architeciure is its hieras-
chy. Up to about ten processing elements (FPEs) are in-
terconnected by a single bus to form a structure called a
“ecluster” in which main memory is shared. Here, the
bus can be regarded as a local network. Many clus-
ters can be intereonnected by 2 global netwark. Within
a cluster, inter-PE communication can be realized by
short-delay high-throughput data transfer via the bus
and the shared memory. Thus, PEs within a eluster share
their address spaces, and ezch PE has its own snooping
cache. The instruction set of a PE includes lock&read,
vritefunlock, and unleck as basic memory operations.

Inter-cluster communication, though, may pass nes-
sages through some relay nodes and over long distances.
Thus, inter-cluster communication increases the time de-
lay and decreases the throughput. The address spaces of
distinct clusters are separated, of course. The network
delivers message packets to destinations while reading
their header end tailer information.

PIM architecture assumes the following propecty for
the inter-cluster loosely-counled netwock., If PEs send
and for other PEs receive message packets, the arder of
packets does not obey the FIFO rule. Even in one-PE-
to-one-PE communication, the FIFO rule is not oheyed.
This assumption comes from the following hardware
characteristics of PIM architecture. The reasons for this
assumplion are as follows, Ooeis that there may be more
than one path between two clusters . The other is that
when more than one PE within a eluster simultaneously
sends message packets, it is not determined that which
packet will be launched first into Lthe network. In this
sense, in the loosely-coupled network of PIM, messages

2.1

THawever, the routing of the PIM network is not adaptive.

Processing Element

Current Goal

Creation by
goal rewriting

Suspension by
|passive unification

L

—_—
Resumption by
active unification

@
© ©

Ready Goals

@
© ©

Suspended Goals

Figure 2: KL1 Execution Image
are possibly overfaken in the network.

2.2 K1

KLL is a kernel language for the PIM based
on the GHC (Guarded Horm Clauses) language
[Ueda and Chikayama 1990]. Figure 2 shows our KLI
execution image. A clause of a KL} program can be
viewed as a rewrite rule, which rewrites to the body goals
& goal that succeeds the guard wnification and satisfies
the condition {guard), and hes a form as follows:

E: =F1y e fim | iy -1 Gn-

gward part fody pari

Where p, gi, and g; stand for predicates. This rewriting of
a goal is also called reduction. The execution model has
a goal pool which holds the goals to be rewritten. Goals
arc regarded as lightweight processes. Basically, guard
goals gy, ..., fm 2nd body goals are reduced concurrently,
thus yielding parallelism.

Goal (process) communication is realized as follows.
Suppose that more than oune goal shares a variable.
When agoal binds & value to the shared vasiable, a clause
for rewriting the other goal thal shares the variable may
be determined. The value which iz instantiated to the
shared variable controls the clavse selection; this is the
eommunication between KL1 goals.

Synchronization is realized as follows. When a goal is
going to determine which clause can be used for rewrit-
ing, and the variables included in the goal are uninstan-
tiated, the unification and the guard execution may be
deferred since there is not enough information for the
clauge selection. The uninstantiated variables are sup-
posed to be shared and the other goal is expected to bind

a value to the variable afterwards. Consequently, the sus-
pended goal reduction waits for variable binding for the
clause selection. That is, variable instantiation realizes
data-flow synchronization. Actually, the KL1 language
processar must deal efficiently with frequent suspension
and resumption.

Fven if meve than one elause can be used far rewriting,
just ene clause is selected indeterminately. A vertical bar
between the guard part and the body part '], called &
commit operator, designates indeterminacy. Since it is
sufficient to held a single environment for each variable,
efficient implementation is expected.

Chne of features of the KL1 language is the provision
of sitnple yet powerful meta control facilities as follows:
goal execution control, computation resource manage-
ment, and exception handling. These are essenuial for
designing efficient parallel algerithms and enabling flex-
ible parallel programming. Usually, operating systems
perform meta-control on & process basts. However, Lhe
L1 language aims at fine-grain parallelism, and the KL1
language processor reduces a large number af goals in
paralel. Therefore, it is inefficient and impossibie for a
programmer or the runtime system ° to contral the ex-
ecution of each goal, Consequently, KT.1 introduces the
concept of a shoen ¥ [Chikayama et al. 1988]. A shoen
is regarded as & goal group or a task with meta-control
facilities. An initial goal is given as an argument to the
built-in predicate shoen; descendanl goals belonging to
the shoen are controlled as a whole. Descendant goals
inherit the shoen of the parent goal, Shoens are possibly
nested as well; the structure connecting shoens is a tree

Maoreover, to realize sophisticated mapping of pasal-
lel computation, priovity and location specificntion are
introduced; that jg, they can be used for programming
speculative compuiation and lead balancing, If a pro-
grammer attaches an annotation to a body goal eg
plpriority (K}, this tells the runtime system to execute
goal p at priority N. Morcover, a goal can have a loca-
Lion specification eg. pBcluster (M); this designates the
runtime svstem to execute the goal pin the ¥ th cluster.
These two specifications are called pragmas. These prag-
mas never change the correctness of & program although
they change the performance drasticaliy.

3 Systematic Design of KLI1
Language Processor

When implementing KL1 on PIM, various kinds of dif-
ficulties appear. Firstly, although the PIM architecture

The saftware modules of the KLI language processor exscuted
al run time are called a runtime syslem as & wheole. For instance,
the runtime system may include an interpreter, ficmware in mi-
crocode, and libraties. On the contraey, compilers, assemblers and
optimizers are 120t imncluded in & cuntime system

IShaen i pronouncd, ‘skow' ¥

adopts a hicrarchical configuration, the KL1 implemen-
tation has to provide a uniform view of the machine
to programmers. Secondly, it 15 difficult to determine
to what extent a runtime system should support the
functions of KL1 and which functions it should sup-
port within the specification of KLI. Fer instance, since
the L1 language does not specify the goal-scheduling
strategy. a runtime system can employ any schedul-
ing algorithm. However, both the general-purpose and
the efficient algorithm are generally difficult to develop.
Thirdly, for efficient implementation, it is important to
employ algorithms which include fewer hottlenecks in
terms of parallel execution. Lastly, the KLl language
processer is complex and of a large scale.

Thereiore, it is 2 promising idea to be able to overcome
these difficultics by systematically designing a language
processor as follows. Firstly, the given language speci-
fieation must be deliberately analyzed and properly de-
composed. Then, the algorithms and the program mod-
ules for realizing the decomposed reguirerments must be
developed hy considering the machine architecture on
which the algerithms work. Lastly, the designer must
construct the language processor by combining the pro
gram modules. A good combination of these modules will
vield an efficient implementation, We designed the KLL
language processor on a loosely-coupled shared-memory
multiprocessor systein {PIM) by following these guide
lines,

3.1

At first, we summarize the required functions of the KL1
language processor into the four items in the leftrnost
colurmn of Table 1. These items are the result of analy-
sis and decomposition of the RL1 language specification.
The KL1 language processor may look like the kernel of
an operating syatem,

MNext, mechanisms which satisfy these requirements are
divided into those supported by a compiler and those
supported by a runtime system. Furthermere, mecha-
nisms by the runtime system are divided into two levels
acconding to the machine configuration of PIM: shaced-
memory level and distributed-memary level (the topmest
row of Table 1].

Some of the technelogies used for KL1 implementation
on single-processor syslems may be expanded to shared-
memory multiprocessor systems. Thal is because both
systems suppose a linear memory address space. How-
ever, it may not be straightforward to expand the single-
processor technologies to distributed-memory multipre-
cessor systems in general, Of cource, that is mainly be-
cause distributed-memory systems provide a non-linear
memory address space. Thus, the techniques used for
distributed-memory systems are possibly quite different
from those for a single-processor system.

The contents of Table 1 show our solutions; that is,

Requirements

Table 1: Implementation Issues of this Maper

Co mpiier

Runtime System

Shared-memory Level

Dustributed-memory Level

I\-imEE.EI: Protocol

Unification Decompesition || Suspension and Resumption
Memory Management Reuse msi. Local GO Export and Import Tables
Weighted Export Count
T Geal Sl:hedl.fﬁﬁg THO Automatic Load Balancing i

Meta-control

Execution Control

Termination Detection

Foster-parent

Resource Management

Resource Caching

Weighted Throw Count

Exception Hand linE

!‘rfcmge Protocol

what techniques are used for parallel and distributed
KLI implementation. Each item in the leftmost column
of the table 15 mentioned helow.

2.1.1 TUnification

Goals are distributed all over a s¥stem for load belancing
and may share data (variables and ground data) for com:
munication. Logical variables remain resident at their
origingl location. Cossequently, mot anly intra-clester
but also inter-cluster data-references appear. During
unification, goals have to read and write the shared data
consistently and independently from the timings and lo-
cations of goals and data, Thus, mechanisms for presery.
ing data consistency are needed.

Az described above, goals are rewritten in parallel
and, thus, variable instantiations ocour independentiy
fmm 'Ea.'ch ﬁt.]'l.tf. 51.15 pcnﬁinn H.I'll'l I'I“Rllr'l'l‘l'lt;fll'l |I|'HI_"'1'I,H.-
nisms based on variable bindings control goal execution
and realize data-flow svnchronization.

Henee, our KL implementation must realize the
mechanisms for dala consistency, synchronization, and
unification in a parallel and distributed environment.
Meareover, since a major portion of the CPU time s spent
for unifieation, the algorithm should be concerned with
efficiency.

3.1.2 Memory Management

Logical variables inherently have the single-assignment
property. The single assiznment property is very usefui
to programmers, but gives risc to heavy memory con-
sumption. Since the KL1 language dees not backtrack,
L1 cannot perform memory reclammation during execu-
tion as Prolog does. Thus, an efficient memory manage-
ment mechanism is indispensable for the KLL language
processor. The issues associated with memory manage-
ment are allocation, reclamation, working-set size, and
garbage collection. To achieve high efficiency, not only
must the algorithms and the deia structure of the run-
time system bo improved, but alio & comgiler has 1o gen-
ecate effective eodes by predicting the dvnamic behavier

of & user program as much as possible.

3.1.3 Goal Scheduling

The KL| language defines goal execution as eancurrent.
Thus, the svstem is responsible for the exploitation of
actual parallelism. One implementation issue associated
with goal scheduling is determining which geal schedul-
ing strategies have high data locality, yel keep the num-
ber of idle PE: to a minimuem.

Further, the KL1 language provides the concept of goal
priorily; each KL poal has ibs own priority as exp]icitl_'l.-'
desiznated by a programmer. Then, goals with higher
priorities are likely to be reduced first. Goal prioritiza-
tion im KLIL is weak in some respect. Under the goal
priorily restriction, it is crucial 1o achieve load balanc
ing.

3.1.4 DNeta Control Facilities

The goals of a shoen may actually be distributed over any
clusters, and, thus, poals may be reduced on any PE in
the system. Since the system operates in paraliel, shoens
are loosely managed; it is simply guaranteed that each
operation will finish eventually. That is, it is impossible
to execule a command simullaneausly to all the goals of
a shoen.

A shoen has two streams as argurnents of the sheen
builtein predicate; ooe is for eontrolling shoen execu-
tion, and the other is for reporting the information
ingide the thoen. A shoen comrunicates with out-
side KL! processes through Lhese two streams. Mes
sages, such as start, step, and add.rescurce, enter
the control stream from the outside. Messages, such as
terminated, resource_lov, and exception return to
the report stream from the inside.

It is verv difficult to evaluate the CPU time and mem-
orv space spent for computation when goals are dis-
tributed snd executed in parallel. Therefore, the current
system regards the number of reductions as a measure
of the computing resources consumed within the shoen.

The exceptions reported from a shoen include illegal in-
put data, unification failure!, and perpetual suspension.
Some examples of shoen functions are shown below.

Stop message: When a stop message is issued in
the contral stream of a shoen, the system has to check
whether or not the goals to be reduced belong teo the
shocn, and, if they do, the shoen changes ils status to
stop as soon as possible, The stop message is propa
gated to the nested descendant shoens.

Resource Observation: The system always watches
the consumption of computation resources, that is, the
total number of Limes goals belonging to each shoen
are reduced over the entire system. If the amount
of consumption within o shoen is going to exceed the
initial amount of supplied resources, the system stops
the reduction of shoen goals and, then, issues the
resource low message on the reporl sbream, viz, a sup-
ply request for a new resource.

Exception Handling: When a programmer or the
system crestes an exception during the reduction of a
goal in a shoen, the shoen responsible recognizes the
exception and converts the exception information to a
report stream message *. The exception of the L1 lan-
guage is concerned with illegal arguments, arithmetic,
failure, perpetual suspension and debugging. An ex-
ception message on the report stream indicates which
goal caused what exception and where. Additionally, the
exception message includes variables for & continuation
given from the outside; the other process can designate a
substitute goal to be executed, instead of the goal caus-
ing the exception.

3.2 Overview of Implementation Tech-
nigues

ICOT developed the Multi-P31 system in 1988
[Nakejima et al. 1939]. The KL1 system is running on
the Multi-PSL. The architecture of PIM is very different
from that of Multi-PSI in the following two paints. One
is that PIM has a loosely-coupled network with messages
possibly overtaken. The other is that PIM has cluster
structures that are shared-memory multiprocessors, Tue
to these features, PIM attains high performance, and, at
the same time, the complexity of the KL1 language pro-
CESEOr INCreases.

This section describes many of the implementation
techniques we have becn developing for such an archi-

Inatice that the unification failure of & KLI goal does not in-
fluence the ocutside of & shoen. In this sense, the redurtion of &
KL1 goal never fails, wnlike GHC.

5The mechanizm lor creating and recognizing exceptions is sim-
ilar to catch-and-threw in LISP,

tecture. Among these techniques, the issues which this
paper focuses on are listed in Table 1.

3.2.1 Unification

The synchronization and communication of KL1 are re-
alized by read/write operations to variables and sus-
pension, resumption of goal reduction during unification.
These aperations are described below.

Passive Unification and Suspension: Passive uni-
feation 15 unification issued in the guard part of KLI pro-
grams. The KLI language docs not allow instantiation of
variables in its guard part. The guard part unification is
nonatomic, Since KL1 is a single-assignment language,
once & variable is instantiated, the value never changes.
This means that passive unification is simply the reading
and comparing of two values. From the implementational
point of view, basicelly only read operations to variables
are performed. Thus, no mutual exclusion is needed in
the guard part.

If goal reduction during the guard part is suspended,
the goal it hooked to variables. Here, we have an assump-
tion that almest all goals wait for & single varable to be
instantiated afterwards, Therefore, an optimization may
be taken into account; the operation for the goal sus-
pension is just to link the goal to the original variable.
If multiple uninstantiated variables suspend goal reduc-
tien, however, the goal is linked to the variables through
a apecial structure for multiple suspension. Durning pas-
sive unification, only these suspension operations modify
variables; the operations are realized by the compare &
swap primiti'-'e-

Active Unification and Resumption: Active uni-
fcation is unification issved in the body part of KL1 pro-
grams. The KL variables are allowed to be instantiated
valy in the body part. When an instantiation of a shared
variable oceurs, if goals are already hooked to the vari
able, these goals have to be resumed as well as the value
assignment, When instantiating a variable, since other
PEs might be instantiating the variable simultanecusly,
mutual exclusion is required. We also adopt cempare &
swap as the mutual exclusion primitive.

When unifying 1wo variables, one variable has to be
linked to another to make the two variables identical. At
thiz time, other PEs might be unifving the same two vari-
ables. Therefore, imprudent unification operation might
turn out o generate a loop structure and for dangling ref-
erences. To avoid these, the following linking rule should
be obeved: the variable with the lowest address is linked
tor the one with the highest,

Section 4.1 describes the implementation of unification

m detail,

3.2.2 Inter-cluster Processing

In 2 KL] multi-cluster system, more than ene PE in each
ciuster reduces goals in parallel. If & goal reduction suc-
ceeds, there are twa kinds of new goal destination: the
cluster that the parent goal belongs te and the sther elus.
ter. If the other cluster s designated for load haiancing,
the runtime system throws the new poals to the clusters.
If the arguments of a goal to be thrown are references
tor variabies and structures, the references across clusters
consequently appear, these are called external references.
Here, suppose that a new goal with reference to data in
cluster A is thrown to cluster 8. Then, original clusler A
ezports the reference to the data to cluster B, and foreizn
cluster B imporis the reference to the data from cluster
A, Exportation and importation are also implemented
by message sending. Multiple reference across elusters
inevitably sceurs.

An external reference iz straightforwardly reprezsented
by using the pair <cf, addr® where ¢ is the cluster num-
ber in which the exported data resides, and addr is the
memory address of the exported data. This representa-
tien: of an cxternal reference provides programmers with
2 linear memary space.

However, this implementation causes a crucial prob-
lem; eflicient local garbage collection is impossible. Here,
incal means that garbage collection is performed locally
within & cluster. See Section 4.3 for more details on
garhage collection. Since our local garbage collector
adopts a stop and copy algorithm (Section 4.3), the lo-
cations of data move after garbage collection. At that
time, all of the new addresses of moved date should be
announced to all other clusters, Thus, straightforward
representation would make cluster-local garbage collec-
tienm very inefficient.

Section 4.2 shows our selution to this problem and
discusses more detailed inter-cluster P[ﬂtﬁsi]‘l! subjects.

3.2.3 Memory Management

As described in Section 3.1.2, the implementation of
memory management should pay close attention to al-
lacation, veclamation, working set size, and gerbage col-
lection.

Allocation and Reclamation: A cluster has a set
of free lists for pages and supports any number of con-
tiguous pages . These are called global free lists. The
size of pages is uniform; supposedly Lhe integral power
af two ©. A PE has a set of free lists for data objects,
the sizes of which are less than the page size. These are
called private free lists. Actual object size is rounded up
to the closest integral power of two; the private free lists

#Currently, there are 15 kinds of free lists for supparted pages:
i ~ 15 = and = more.
"The size of a page s eurrently 258 wards.

just support the gquantum sizes of 2°. Moreover, objects
comtained in a page are uniform in size.

A PE allocates an object as follows. When a FPE re-
quires an object which is smaller than a page, the PE
first tries to take an object from an appropriate private
free list, If a PE runs out of a private free list and fails to
take an object, then the PE tries to take a new page from
the global free lists. If it succeeds, the PE partitions the
page arca inte objectz of the size the PE requires, re-
covers the starved free lisl and, then, uses an object.
Otherwise, if a PE cannot take & proper page area from
& global free list, the PE tries to extend the heap to allo-
cate a new page area on demand. When a PE requires an
object which is larger than a page, the PE tries to take
new contiguous pages from global free [ists. Otherwise,
the PE tries to extend a heap to allocate new contiguous
pages as above.

When & PE reclaims 2 large or small object, it is linked
to the proper free list

The features of this scheme zre as follows:

¢ Since a PE has it: own private free lists for small
abjects, the accesy conteontion to global free lists and
the heap is alleviated.

s A PE usually just links garbage objects to and takes
new objects from appropriate free lists; it leads the
small runtime overhead for allocation and reclama-
tion ®.

+ Since every PE handles its private free lists using
push and pop operations (obeying the LIFO rule),
the working set size can be kept small,

Since the size of small abjects is rounded up to the
nearest 27, the number of private free lists to be
managed decreases, and the deviation of private free
list lengths can be alleviated to some extent. Ad-
ditianall}'._ the fr.a.gment.a.tian within a page is pre-
vented, though some objects might contain unused
areas,

» Since this scheme does not join two contiguous ob-
jects, unlike the buddy system, its runtime overhead
of reclamation is kept small.

O othe other hand, when the free list of some size run
out. our KL1 language processor does not partition a
large object inte smaller ones, but allscates a new page.
This is mainly because, due to too much partitioning, it
is li%ely that garbage collection will be invoked even if
only slightly large object is required. The other reasons
are as follows, In general, it is inefficient to ineremen-
tally partition a smell object into even smaller objects.
The overhead for sea.rr.hir.g an nbject. to he pa:tilinnefi
iz needed. Alse, in our KLI language processor, a local
stop-and-copy garbage coliector (described just below,
{2)) collects garbages and rearranges the heap area offi-
ciently.

B4 module of PIM, Pid/p, has dedicated machine instructions
for handling free lists, push and pop.

Furthermore, a KL1 compiler oplimizes memory man:
apement by gencrating codes not only for allocation and
reclamation but alse to reuse data structures wtilizing
the MRB scheme [Chikayama and Kimura 1937 (Sec

tion 4.6.1),

Garbage Collection: Qur KL1 lanzuage processor
performs three kinds of garbage collections

(1)

(2)
(3)

local real-time garbage collection using the MRE
gcheme

logal step-and-copy garbage collector

real-time garbage collection of distributed data
strucbures across clusters.

Since (1) can reclaim almest any garbage object, (2]
iz needed, eventually. (1) has & very small overhead
and can defer the invocation of (2). Moreover, in a
shared-memery multiprecessoz, it is nnportant that (1)
does not destroy data on snooping caches and keeps
the working set size of an application program small
[Wishida et ol 1990, unlike (2). Section 4.3 discusses
the parallel copying garbage collector (2} in detail. Sec-
tion 4.2, discusses our method for reclaiming data struc-
tures reforred to by external reference (1) in detail.

3.2.4 Goal Scheduling

The aim of goal scheduling is to finish the execution of
application pregrams cerlicr. It 1s impossible for a pro-
grammer to schedule all goals strictly during exccution,
In particnlar, in the krowledpe processing field, there are
many programs in which the dynamie behavior 15 diff-
cult to predict. The optimum goal scheduling depends
on applications, and, thus, there are no general-purpose
goal scheduling algorithms. Henee, & jrogrammer can-
not avoid leaving part of the goal scheduling to a run-
time system. Then, PEs within o cluster share their
addlress spaces, and the communication between them iz
realized with a relatively low overhead. Optimistically
thinking, the performance will pay for the overhead of
the automated gozl-scheduling within 2 cluster ax the
number of PLs increases. Tlowever, when the automated
goal-scheduling for inter-cluster does pot work well, the
penalty is even greater. Consequently, the KL1 language
processor adopts automated goal scheduling performed
within a cluster and manual goal-scheduling among clus-
ters.

Furthermore, the runtime system should schedule
goals fairly by managing priorities, Section 4.4 discusees
the implementation of goal scheduling.

3,25 DMeta Control Facilitics

The meta control facilities of KL1 are provided by a
shoen, The implementation madel for a shoen on a die
tributed environment introduces 2 fosier-parent to pe-
vent bottlenecks and to realize less communication. A

1

l shoen
fp A o
I I
shoen ‘
< J R B
©@© ©l6
cluster 0 cluster 1 cluster 2
shoen : shoen record G :goal

fp - foster-parent record

Figure 3. Relationship of Sheen and Foster-parents

foster-parent 15 a kind of proxy shoen or a branch of a
shoen; the foster-parents of & shoen are located on clus-
ters where Lhe 54::&]5 ol the shoen are reduced,

A shoen and a foster-parent are realized by record
structures which store their details, such as status, re
sources, and number of goals. Figure 3 shows Ll rela-
tionship between shoens, foster-parents and goals.

As in Figure 3, & shoen controls its goals and the de-
seendant shoens resident in a cluster through a foster-
parent of the cluster. A shoen directly manages its foster-
parents only. Then, a [osterparent manages the descen-
dant shoens and goals.

A shoen is created by the invocation of the shoen pred-
icate. At that time, a shoen record is allocated in the
cluster te which the PE cxecuting the shoen predicate
helongs. Next, when a goal arrives at & cluster but the
faster-parent of ils shoen does not yet exist, a foster
parent is created for the goal execution automatically.
During execution, new goals and new descendant shoens
are repeated]y created and terminated. When all goals
and descendant sheens belonging Lo a foster-parent are
terminated, the foster-parent is terminated, too. Fur-
ther, when all foster-parents belonging to a shosn are
termiinated, the shoen is terminated.

n comparing a shoen record and a foster-parent
record of cur implersentation with those of the Multi-
PSI system, ours must hold more information because
of the PIM petwork with messages pessibly overtaken.
That is, in our KL1 system, the automatons to control a
shoen and a foster-parent require more transition states.

Consequently, in terms of implementing a shoen and
a foster-parent, we have to pay special attention to ef-
ficient protocols between a shoen and its foster-parents

which work on the loosely-coupled network of PIN [mes-
sages are pussibly overtaken in the PIM). Another point
requiring attention is that, since parallel accessing might
become a botileneck, the system should be designed so
that such data do not appear, i.e. less access contention,
Section 4.5 descrilbes the parallel implementation of a
shoen and a foster-parent in more detail.

1.2.68 Intermediate Instruction Set

As described so far, the KLI language processor 15 oo
large and complex to be implemented dizectly in hard-
ware or firmware. To overcome this problem, we adopted
& method suggested by Prolog's Warren Abstract Ma-
chine {WAM) [Warren 1883] where the functions of the
KL1 language processor are performed via an interme-
diate language, KLI-B. The advantages of introduction
of an intermediate language include: code optimization,
ease of svstem design and modification, and high porta-
baley.

The optimization achieved at the WAM level brings
about more benefits than the peep-hole optimization
sinte the intermesdiabe instroction sequence reflects Lhe
meanings of the source Prolog program. Similarly, the
aptimization at the KLI-B level gains more than the
peep-hele optimization. Details on the eptimization are
deseribed in Sections 4.6.4 and 4.6.5,

i the specification of the KL1-B instruction set is
fixed, it is possible to independently develop a compiler
for compiling L] into KL1-B and a runtime system ex-
Eﬂlltillg the KIL1-B instructions. IT a raplime sVELEITL Can
be designed so that it absorbs the differences in hacd-
ware architecture, the machine dependent parts of the
KL1 language processor are made clear, and portability
15 mproves]

3.2.7 Built-in Predicates

This section menlions the optimization technigues on
the implementation of the built-in predicates merge and
set.vector.element, These tu:.hrtiqucs wore urlgmﬂﬂy
invented for the Multi-PS] systern. Our KL1 language
processor basically inherils the technigues.

merge: The merger predicale merges more than one
stream iate another. I is useful for representing inde-
terminacy; actually, the merge predicate is invoked fre-
quently in practical KLl programs, such as the PIMOS
aperating syatem iﬂhikn_‘rmrm el al. 1’9'33]. Alihough a
prograrn for a stream merger can be written in L1, the
delay is large. Thus, it is profitable to implement the
merger function with a constant delay by introducing
the merge built-in predicate.
Let us consider a part of a KL1 program:

oo pEXY, g(Y), mergel(X,Y,Z), ..

When predicate p is to unify X and its output velue,
& system merger i5 inveked automatically within the
unifier of X. The same thing happens as ¥ of g. See
[Inamura et al. 1935] for a more detailed discussion.

sel_vector_element: To write efficient algorithms
without disturbing the single-assignment property of log-
ical variables, the primitive can be used as follows in the

KLI language:

set.vecter.element{Vect, Index, Elenm,
HewElem, NewVect)

When an array Vect, its index value Index, and a new
element value NewElem are given, this predicate binds
Elem to the value at the position of Index and NewVeet
to a new arrav which 18 the same 25 Vect except that
the element at Index is substituted for NewElem. Using
the MRDB scheme, our KL1 language processor detects
a situation that NewVect is obtained in constant time.
That is. the situation is that the reference to Vect is
single, and, thus, destructive updating of the array is
allowed, See [Imamura et al. 1958] for a more detailed
discussion.

4 Implementation Issues

This section focuses on several linportant implementa-
tion issues which ICOT has been working on intensively
for the past four vears,

Qur implementation mainly takes the following into
account:

- Smaller and shorter mufual exclusion within o clus-
ter
If the locking operation is effective over a wide area
or for a long time, svstem performance is seriously
degraded due te serialization, To aveid this, seat.
tered and distributed data structures are designed,
and only the compars & swap operation is adopted
as a low-level primitive for light mutual exclusion ®.

- Less communication; i.¢., fewer messages
Since inter-clusier communication costs more than
inner-cluster communication, mechanism for elimi-
nating redundant messages are effective.

- Main path eptimized while enduring low efficiency
1IN FIre OoSeEs
Sinee the efficiency of rare cases does not affect total
performance, the implementation for handling the
rare cases is simplified and low efficiency is endured.
This is important for reducing code size.

Impartant hardwares restrictions to be taken into account
are:

"ngi.cr_l_e;el software locks contnin this primitive.

- Snooping caches within u cluster; data locality has e
great &ffect
It is important ‘o keep the working set of each PE
size small. This leads to a reduction in the shared
buas traffic and increase in the hit ratio of the snoop-
ing caches.

- Messages are possibly overtaken in the loosely-
coupled netwerk of PIM
The number of shoer states and foster-parent states
to be maintained increases. The message protocol
between clusters should be carefully designed.

4.1 TUnification

The unification of variables shared by goals realizes syn-
chrenization and communrication among goals. Since
more than one PE within & cluster performs unification
in parallel, nutual exclusion is required when writing a
value to & variable

Since nnification 15 & basic operation of the KL sys-
tem, efficiency greatly affects total performance. At first,
this section shows simple and efficient implementation
methods of unification. Next, since problems associated
with the loosely-coupled network of FIM seeur, a dis-
tributed unification algorithm which works consistently
and eMlciently on the network is presented.

4.1.1 Simplification Methods

There are two ways to simplify the unification algorithm
a3 [ollova,

Structure Decompesition: A KLI compiler decom-
poses the unification of & clause head. Far '-‘.'X!l-mPIE. ia)
of the following program is decomposed to (b) at compile
Litre,

plLf(R¥IL]) :- true I qay, p(LY. (a)
plaYy :- A = [YIL], ¥ = £{X} | q(x3, p{L}. (b)

Thus, the compiler can penerate more efficient KL1-B
code correspanding to (b).

Substitution for Svstem Goals: In rare cases, a
runtime system acvtomatically substitutes part of the uni-
fication process with special KL1 goals. This can allevi-
ate the complexity of a unification algorithm; implemen-
tors need not pay attention to mutual exclusion of the
part. For example, let us consider the following two rare
cades,

« A compare & swap failure (another PE has modified
the value); If this happens, thes the following KL1
goal is automatically ercated and scheduled as if it
were delined by a user:

unify_retry(X,¥) :- true | X = Y.

The above & and ¥ are unified to variables one at
least of which has failed compare & swap during
unification.

« Active unification of two structures is invoked; All
elerments of the twe structures should be unified,
however, the operation is rather complex (the or-
dinal implementation uses stacks like Prolog), To
simplify the operation for rare cases, & special KLI
goal is ordinarily created and scheduled. For ex-
ample, if twe active unification arguments are both
lists, the following goal 15 ereated.

list_unifier([Xalx2], (¥11¥2]) :- true |
XLo= Yi, X2 = ¥7.

4.1.2 Distributed Implementation Based on
Message Dassing

The principle of the protocel for distributed unification
is as follows. A readfwrite operation to an external refer-
ence cel! {Section 4.2.1) basically causes a corresponding
request message to be launched to the network. However,
redundant messages are eliminated as much as possible.

Distributed Passive Unification: Fassive unifica-
tion has two phases: reading and comparing. First, to
pxecute the read operation on an external reference cell
iz to send a read message to the foreign exported deta, If
the exported data has become a ground term {an instan-
tiated variable), an answer_value message returns. I
the cxported data is still 2 variable, the request message
is hooked to the variable. If the data is an external ref-
erence cell, the read message ie forwarded to the cluster
to which the cell refers.

Next, the answer_value message arrives al the origi-
nal cluster. Then, the returned valuc is assigned to the
axternal reference cell, and the goal waiting for the reply
message 15 resumed. Eventually, the poal reduction is
going to compare the two values. Moreaver, the iimport
table entry for the cell can be released.

The ellicient implementation of inter-cluster message
passing itself is presented in Section 4.2,

Safe and Unsafe Attributes: If an argument of
active unification is an external reference cell, the ac-
tive unification has to realize the assignment in a remots
cluster. Sending a unify message to the exported data
assigns a value Lo Lhe original exported data. However,
in general, the unification of two variables from distinct
clusters may generate a reference loop across clusters,
In order to aveid creating such reference loop, we in-
troduce the concepl of safe/unsafe exfernal references
[Tchivoshi ef al. 1988]. When there is active unification
Between a variable and an external reference cell, and
the external reference cell is safe, it is possible that the

variable is bound te the external reference cell I the
external reference cell is ansafe, 2 unify messape 15 sent
to the exported data.

4.2 Inter-cluster processing
4.2.1 Export and Import Tables

Export Table: As described in Section 322
straightforward implementation of an external reference
makes clusier-local Earha,gt collection very inefficient.

In order to overcome this problem. each cluster in-
troduces an export teble Lo register all locations of data
which are referenced from other clusters (Figure 4}, That
iz, exported data should be accessed indirectly via the
export table. Thus, the external reference is represented
by the pair <ol ent> called the exfernal reference IO,
where ené 15 the entry number of the export table, As
the export table is located in the area which is not moved
by local garbage collection, the external reference [is
nat affected by local garbage collection, Changes in the
location of exported data modify only the contents of
export tabie enbries.

Since exported data is identified by its external rel-
erence [D, distinet external reference 1Us are regarded
as distinct data even if they are identical, To eliminate
redundant inter-cluster messages, exported date should
not have mare than one external reference ID, Thus, ev
ery time a system exports an exlernal reference IU, the
system bas to check whether or not the external reference
1D iz already registered on the export table,

Import Table: Inorder to decrease inter-cluster tral-
fic, the same exported data should be accessed as few
times as possible. Hence, each cluster maintaing an im-
port fable to register all imported external reference IDs.
The same external references i a cluster are gathered
into the same internal references of an external reference
cell (EX in Figure 4).

Then, exported data is aceessed indirectly via the ex-
ternal reference cell. the import table, and the export
tahble.

The external reference cell is introduced so that it can
be regarded equally as & variable, Operations to a vari
able are substituted for the operations to the external
TErETEI'I.CE‘ Cf”.

Every time the system imports an external reference
1T}, Lhe sysiem has Lo check whether or not the external
reference 1D is already registered in the import table
Thua, the import table entry and the external reference
cell point to each other.

4.2.2 Reclamation of Table Entries

As described above, the export table is located in the
area which is not moved by local garbage colleetion,

10

Fxport Table

e F REF |

Import Table

| ¢ ey f—t EX
exported - REF |
dala
Cluster A Cluster B

Figure 4: Export and hoport Tables

During local garbage collection, data referred to by
an expaort table entry should be regarded as active data,
because it is difficult to know whether or not the export
table entryv s referred to by other elusters immediately.
Therelore, witheut an efficient garbage collection scheme
for the export tahle, many copies of non-active data
would survive, these reducing the effective heap space
and decreasing garbage collection performance.

One way of managing table entries efficiently 12 for
table entries to be reclaimed inerementally. Below, we
describe a method for reclaming table entries in detail.

Let us consider utilizing local garbage eollection. Ex-
ecution of local garbage collection might release the ex-
ternal reference cells. This leads to the release of import
table eniries and the ssue of release messages to the
carresponding export table entries. When the export
table entry 1s no longer accessed, the entry is released.
However, the reforence count scheme cannot be used to
manage the export table entries. This 15 because the
increase and decrease messages for the reference coun-
ters of the export table entries are transferred through
a network., Then, the arrival erder of the two messages
issued by the two distinct clusters is not determined in
the PIM global network. This destroys the consistency
of reference counters. Additionally, in the PIM network,
messages are possibly overtaken, Although the reference
count scheme has been improved and now requires the
acknowledgment of each increase and decrease message,
this will increase the network traffic.

A maore efficient scheme, the weighted expor! counting
{WEC) scheme has been invented [Ichiyoshi el al. 1988].
This is an extension of the weighted reference count-
ing scheme [Watson and Watson 1987) [Bevan 1989] in
the sense that the messages being transmitted in the
looselyv-coupled network also have weights. With the
WEC scheme, every export table entcy E holds the [ol-
lowing invariant relation (Figure 5):

Weight of £ = Z

= % referencer v B

Weight of z

A waight is an integer. When a new export table entry iz
allorated, the same weight is assigned to both the exporl
table entry and the external reference, When an import
table entry is released, ivs weight is returned to the cor-
responding export table entry by the release mossage.
The weight of the export table entry is decreased by the
returned weight. The export table entry i3 detected as

no longer being accessed when the weight of the entry
becomes zero. Then, the entry is released from the ex-
port table. Sece [lchiyoshi ef al. 1983] for more details on
the operation of the WEC scheme.

Cluster A

| wec = 80

Messa e\
€ W

Cluster B

Cluster ©

100

WEC = 30
Figure 5 WED Inwvariant Relation

It is important that the WEC scheme is not affected by
the order in which messages arrive, and there is no need
to give acknowledgment. Furthermore, the WEC scheme
allevintes the cost of splitting exteornal references.

4.2.3 Supply of Weighted Export Count

In terms of the WEC scheme, the problem of how to
manage WEC when the weight of the import table entry
cannot be split {(when the weight reaches 1) remains.

In order to overcome this problem, we developed
a WEC supply mechanism which is an application of
the bind houk technique. The bind hook technique
suspends and resumes the KL language {Section 2.1}
[thn et al. 1955}.

The WEC supply mechanism works as shown in Figure
6 and 7. The current situation is that the weight of an
import table entry in Cluster B reaches 1, and a goal
in Cluster B issues an access command to ke data in
Cluster A. In this case, the message related to the access
command cannol. be sent, because the weight to be put
on the message command cannot Lie got from the import
table entry.

In the WEC supply mechanism. the lefi WEC {the
weight 35 1), first, is taken from the import table entry,
and the import table entry is reclaimed. After that, in
luster B, an export table entry for the external refer
ence cell iz allocated. This new external reference D is
supposed to be the return address for the reply to the
following WEC supply request. At that time, the goal is
hooked to the external reference cell. Fventually, Clus-
ter B sends the ReguestWED message Lo request 2 new
weight to Cluster A, OF course, the weight taken {rom
the import table entry described above is roturned Lo
the corresponding export table entry by this message.
Figure § shows the situation at that time.

When Cluster A reccives the ReguestWEC message,
(luster A adds a weight, say W, to the cerresponding
export table entry and returns the SupplyWED message
to Cluster B. The SupplyWEC message tells Cluster B Lo

11

add the weight H lo a new import table entry. In Cluster
B, the suspended goal is resumed when the new import
table entry is allocated. Then, the export table entry
for the return address is reclaimed. Figure 7 shows the
situation at that time.

Exporl Tabie Import Table

—— r.‘l RegudatWEC |
Bx par't.t,d . -
data
suspended
goals
Export Table

T
I

Ciuster A Cluster B

Figure 6 WEC Request Phase

Export Table Import Table
d
| Ao
exported] .
data @ :
resurmed |
e Tabi goals
' Lxport Lable !
SupplyWEC P '
I i
[
Cluster A Cluster B

Figure 7- WEC Supply Phase

This mechanism allows the originated goal to be
hooked and resumed inexpensively without additional
data strectures.

The KL1 language processor on Multi-FSI copes with
this situation using fndirect exportefion and rero WEC
message [[chivoshi ef o, 1988]. However, the zero WEC
message is a technique which is applicable o a FIFQ
netwark. As described carlier, the PIM network does not
obey the FIFQ rule, so the zero WEC message cannot be
used in PIM. Therefore, PIM uses indirect exportation
and WELC supply mechanism.

4.2.4 Mutual Exclusion of Table Entries

In order to check whether or not an external reference
i already registered on the export table, a hash table
iz used. When an export table entry is allocated, it is
registered in the hash table When a cluster receives

a release messege, a PE in the cluster decreases the
weight of the corresponding export table entry. I the
weight rerches zero, the export table entry is removed
fram the hash table, Figure § shows the data structure
of the export table and its hash table. Tts hash key is
the address of exported datum.

Since up to about ten PEs within a eluster share these
structures and access them in parallel, efficient mutual
exclusion should be realized.

Hash Tahle
6]

ExpurL Table

() eatry

|—|-—- data pir.

BOLTY

L. WEC__ |
hash chain
1 __date pir |
ex poarLeatl | ___WEC___]
data hash chain

3

Figure 8: Data Structures of Expaort Table

Here, let us consider how to realize efficient mutual
exclusion in the following two cases, which are typical
cases of release message processing.

Case 1: A PE decreases the weight of an export table
entry and the weight docs not reach zero. In this
case, only an export table entrv 1s directly accessed,
The export Lable entry should be locked, when ma-
nipulating its weight. The corvesponding hash table
entry does not need ta be locked, because the hash
chain does not change,

Case 2: A PE decreases the weight of export table en-
try and the weight reaches zero. In this case, the
export table entry 18 released from hash table entrv.
Therefore, the export table entry should be locked
far the same reason as in Oase 1. The hash table
entry should alsa be locked, when the export table
entey t8 released from Lthe hash chain, because other
FEs may access the same hesh chain simultaneousiy.

The problem is how to lock these structures efficiently,
Here, we implemented the following three methods and
evaluated their efficiency.

Methed 1:
table
Whenever a PE accesses the export table, the ex-
port table and the hash table are entirely locked. In

Locking cntire hash table and export

Figure &, location @ is locked.

Since the implementation of this methed is sim-
ple, the total execution time is short, However,
this method cccupies a large locking region for a
long time. Thus, access contention ooeurs very fre-
quently,

Method 2: Leocking one hash table entry

When a PE decreases the weight of an cxport table
entry, the corresponding hash table entry (@ in Fig-
ure §} is locked.

In this methed, the data structure to be locked is
obvieusly smalier than in Method 1. However, this
method has an overhead for Eumputing the hash
value of exported data even when the hash chain
iz not modified.

Method 3: Locking one hash table entry and one
export table entry
When a PE decreases the weight of an export ta-
ble entry, the export table entry (G0 in Figure 8)
is locked. If the weight becomes zero, the corre
sponding hash table entry (@ in Figure 5} is locked.
Then, the export table entry is released from the
hash chain.
In thiz method, the locking of data structures is at
a mnumnum and the frequency of access contention
is low. However, implementation of this methed is
complicated.

In the above two cases, the static execution steps of the
three methods are measured, using & parallel KLL emu-
lator on a Sequent Symmetry, Tables 2 and 3 show the
results, In the tables, Total represents Lhe tots] execu-
tinn steps spent on I\e-:ei.vlr:g aralease message. Lock-
ing region represents locking intervals, that is, how lang
each structure is locked.

Tahle 2: Locking Intervals{static steps) Case 1

Total | Locking region
| &
Method 1 o o l—; —
Method 2§ 37 — | 23 -
hlethodd 3 a2 - | 0 pi

Table 3: Locking Intervala(static steps) Case 2

Total | Locking region

T
Methed 1| 61 |54 |—| —
Method 2 6 — | 4T —
Method 3 T — | 32 27

Before evaluation, we thought that Method 1 took
fewer steps than the other methods. However, there is

actually, no great difference in the total number of exe-
cution steps. This is because the essential part of access-
ing the export table is complicated, and dominates the
steps. In Method 1, as the ratio of the locking region to
the Lotal is relatively high, access contention to the hash
table is supposed by frequent, llence, we do nol adapt
Wlethiod 1.

[Takagi and Nakase 1991] tells us that WEC is effec-
tively divided m actual programs. From this result, we
assume that there are many releagse messages which
just decrease the weight of WEC. That is, Case 1 occurs
wnch more frequently than Case 2. Thus, we mostly
deal with Case 1. The total execution steps of Methods
2 and 3 {37 steps and 32 steps) are almost the same,
The locking intervals of Methods 2 and 3 (23 steps and
96 steps) are almest the same. It is preferable that the
data structure to be locked is small, According to this
discussion, we adopt Method 3 as the mutual exclusion
method for the export table.

For the import table, a similar technique is used to
reclaim the import table entries.

4.3 Parallel Copying Garbage Collec-

tor

Efficient garbage collection (GO} methods are especially
erusial for the L1 language processor on multiprocessor
systems. Since the L1 execution dynamically consumes
data structures, GO 5 necessary for reclaiming storage
during computation. Mereover, GU should be executed
at each cluster independently since it is very expensive
to synchronize all clusters.

As we described briefly in Section 3, an in
cremental GO methed based on the MRB scheme
was alrcady proposed and implemented enn Multi-PS]
[lnamura e! af. 1988], however since it cannot reclaim
all garhage ohiects, it is still important te implement
an efficient GC to supplement MEB GC.

We invented a new parallel execution scheme of stop
and copy garbage collector, based on Baker's sequential
stop-and-copy algorithm|Baker 1975] flor shared memoary
multiprocessors, The algorithm allocates two heaps al-
though only one heap is actively used dunng program
execution. When one heap is exhausted | all of its active
data objects are copied to the ather heap during GC.
Thus, since Raker's algorithm accesses active objects this
algorithm is simple and elicient,

Innovative ideas in our algorithm are the methods
which reduce access contention and distribute work
ameng PFs during cooperative GO. Also no inter-cluster
synchronization is needed since we use the export table
described in Section 4.2. A more detailed algorithm is
described in [Imai and Tick 1991].

4.3.1 Parallel Algorithm

Parallelization: There is poteatial parallelism inher-
ent in the copying and scanning actions of Baker's algo-
rithm, i.e., accessing 5 and B, Here pointer § represents
the scanning point and B points to the hottom of the new
heap. A naive method of exploiting this parallelism is Lo
atlow multiple PEs to scan successive cells at 5, and copy
them into B. Such a scheme is bottlenecked by the PEs
vying Lo atomically read and increment Sby one cell and
atomically write B by many cells. Such 2 contention is
unacceptable.

Private Heap: One way to alleviate this bot-
tlopeck is to create multiple heaps corresponding
to multiple PEs This is the structure used
in both Concert Multilisp[Halstead 1983] and JAM
Patlog[Cramimond 1938] garbage collectors. Consider a
model where each PE(i) i3 allocated private sections of
the new heap, managed with private 5; and &, pointers.
Copving from the old space could proceed ir: parallel with
each PE copving intoits privale new sections. As long as
the mark operation in the old space is aloanic, there will
be no erroneous duplization of cells. Managing private
heaps during copying, however, presents some siznificant
design problems:

« Allocating multiple heaps within the fixed space
causes fragmentation.

o It is difficult to distribute the work among the FEs
throughout the GC.

Ta efficiently allocate the heaps, each PE extends its
heap incrementally in chunks. A chunk is defined as a
unit of contiguous space, that is 2 constant number of
HEU cells (HEU = Heap Extension Unit). We first con-
sider a simple model, wherein each PE operates on a
single heap, managed by a single pair of 5 and B point-
ers. The By pointer is a state variable pointing to the
global bottom of the new allocated space shared by all
PEs. Allocation of new chunks is always performed at
Birasats

Global Pool for Discontiguous Areas: When 2
chunk has been filled, the B pointer reaches the Lop of
the next chunk {possibly not its ewn!). At this poiat a
new chunk must be allscated to allow copying to con-
tinue. There are two cases where I overflows: either
it overflows from the same chunk as §, or it overflows
from & discontiguous chunk, In both cases, a new chunk
it allocated. In the former case, nothing more needs to
be done because S points inta B's previous chunk, per-
mitting its full scan. However, in the latter case, D'
previous chunk will be lost if it is separated from 5's by
extranenus chunks (of other PEs, for instance).

E

bottom

NN

L

top

NN V{ 4

The shaded porticns of the heap are owned by a PE[{] which manages 5 and B. Qther
portions are owned by any PE{7) where j # i. The two chunks shaded as */" are refer-
enced by PE({) via §and B. The other chunks belonging to PE[f), shaded as "\, are not
referenced. To avoid losing these chunks | they are registered in the global pool,

Figure @ Chunk Management in Simple Heap Model

The problem of how to ‘link' the discontipuous areas,
to allow 5 to freely scan the heap, is solved in the fol-
lowing manner. In fact, the discontiguous areas are not
linked at all. When a new chunk iz allocated, the B's
previous chunk is simply added to a global peol This
pool holds chunks for load distribution, to balance the
garbage collection among the PEs. Unscanned chunks
in the pool are seanned by idle PEs which resume work
{eee Figure 9.

Uniform Objects in Size: We now extend the pre
vious simple model into a more sophisticated scheme
that reduces the fragmentation caused by dividing the
heap into chunks of uniform size. Imprudent packing of
objects which come in various sizes into chunks might
cause fragmentation, leaving ueeless area in the bottom
of chunks. To aveid this problem, each object is alla-
cated the closest quantum of 2% cells (for integer n <
log(HEU)) that will contain it. Larger objects are allo-
cated the smallest minlti |I|.t: ol HE-L.. chunks that can con-
Lain them. When copying objects, smaller than HEL.
inlo the new heap, the following rule is observed: *All
objects in a chunk are always uniform: in size™ I HEU
is an integral power of two, then no portion of any chunk
is wasted. When allocating heap space for objects of size
greater than one HEU, contiguous chunks are used.

In this refined mudel, chunks are categorized by the
size of the objects they contain. To effectivelv man-
age this added complexity, & PE manipulates multiple
{5, B} pairs (called {5, By}, {8, 820, {5 0,1, ..., and
{SHEU Buey)) Initially, each PE aliocates multiple
chunks with & and &) set to the top of each chunk.

Referring back to Figure 9, recall that shaded chunks
of the heep are ewned by PE({) and rou-shaded chunks
are owned by otler PEs. The chunks shaded as /',
in the extended model, contain objecte of some fixed
size k, and are managed with a pointer pair {5, He}.
Chunks shaded as *\" are either directly referenred by
other pointer pairs of PE[i} (if they hold objects of size
m # k), or are kept in the global poal.

Load Balancing: In the previous algorithm, it is &
difficult choice Lo select an optimal TIEL. As HEU iy-

14

creases, My, accesses become less frequent (which is
desirable, since contention is reduced); however, the av-
erage distance between 5 and B (in units of chunks) de-
creases. This means that the chanee of load balancing
decreases with increasing IIEU.

One solution to this dilemma 15 to introduce an in-
dependent, constant size unit for load balancing, The
load distribution unit {LDU) is this predefined constant,
which 15 distinct from [IEU'™ and enables more fre
guent load balancing during GC. In general, the op-
timized alzorithm incorporates a new rule, wherein if
(Be = &5 = LOU), then the region between the two
pointers (e, the region Lo be scanned later) i3 pushed
onto the glebal peel,

4.3.2 Ewvaluation

The parallel GC algorithm was evaluated for a large set
of benchmark programs (from [Tick 1991} etc.) execut
ing on a paraliel KLl emulator on a Sequent Svinme-
try. Statistics in the tables where measured on eight
PEs with HEU=256 words and LDU=32 words, unless
specified atherwise, A more detailed evaluation is given
i [Imai and Tick 1991].

Te evaluate load balancing during GC, we define the
werkload of 2 PE and the speedup of a system as follows:

workload(PE} = number of cells copied +

rumber of cells scanned
T workloads

maz{warkload of PEs)

spesdup =

The workload value approximates the GC time, which
cannaot he accurately measured because it 15 affected by
DY NIX scheduling on Symmetry, Workload is measured
in units of cells referenced. Speedup is caleulated with
the assumption that the PE with the magimum work-
load determines the tnial GC time. Note that speedup
only represents how well load balancing is performed and
does not take inte account any extra overheads of load
Lalaneing (which are tackled separately). We also define
the ideal speedup of o system:

il.'IE?IJ. Epﬂﬂfhlp- =
Y1V assume that HEU = ELDU, for integer & % 0.

avg, Speedup LD {words) .
WL Size of LDU Benchmark a2 [135 1 256

Renchmark | %1000 32w | §4w [128w | 256w | ideal BestPath 4210 [1396 | S¢40 458
BestPath 165 7.15 | 7.06 | 6.46 [6.36 | B.00 Boyer a0a& | 1303 2430 128
Boyer 7| 567 | 583 | 438 | 412 | 800 Cube 6004 | 2416 | 963 | 533
Cube 139 7.74 | THT | T35 | 6BA3 | B.00 Lifa 1455 | 66.5 298 14.8
Life 101 7.10 | 686 | 631 | 620) 8.00 MasterMind 39| 15| 11| 10
tasterMind 4} 250 | 248 2.58 2.48 18T MaxFlow 211.3 75.0 a7.0 16.0
MaxFlow 05| 406 | 384 | 370 | REG | 0D 0

N 945 © 277 | 7.5 Pascal 1.6 1.0 1.0 1o
Fascal . 3| 247 | 291 .4‘ = .25 | Pentoming 1343 | 653 21 0 -
Pentoming I 434 | 334 | 36T | 421 | E0D !

o z . : Puzzle 51.6 | 30.6 10.5 49
Puzzle 17| 263 | 254 | 2,58 | 261 1g2 G L7007 | sios | 4393 00 1
SemiGroup | 406| 7.75 | 7.25 | T.ae | T.02 | 500 SemiGroup ;700 : : :
T 17| 249 | 230 | 243 | 233 279 | [TP 444 198| B8] 46
Turtles eoE| 09 | T4 | 0 | T.22 | BOD Turtles 14270 | 64000 | 314.0 1 136.0
Waltz a2| 438 | 292 [231 | 164 | 500 | [Waltz 76.0| 30| 1150 14
Zebra 167 | 627 | 604 | G642} 628 | S.00 | Zebra 41270 | 4202 | 46T.7 | 2224
Table 4 Average Workload and Speedup (8 PEs, Table 5: Accesses of the Global Pool (8 PEs, HEU=250

HEU=256 words)

) P workloads PE)
e (mn.rl[wu:lr:lm.d for one object} ' #hEs

ldeal speedup is meant to be an approximatbe measure of
the fastest that n PEs can perform GC. Given a perfect
load distribution where 1/n of the sum of the workloads
is performed an each PE, the ideal speedup is n. There
is an obvious case when an ideal speedup of n cannot be
achieved: when & single data object is so large Lhat its
warkload is greater than 1/n of the sum of the workloads.
in this case, GC can complete only after the workload
for this ohject has completed. These intuitions are for-
muiated in the above definition,

Speedup: Table 4 summarizes the average workload
and specdup metrics for the benchmarks. The table
shows that benchmarks with larger workloads display
higher speedups. Thes illustrates that the algorithm is
fuite pra:;t.'lcﬂ.l. It also shows that the smaller the LDU,
the higher the speedup obtained. T'his means there are
the more chances to distribute unscanned regions, as we
hypothesized.

T soneee benchomarks, such as MasterMind, Puzzle and
TP, ideal speedup is limited {2-3Y% This limitation is
due to an inability of PFs to cooperate in accessing a
single large structure. The biggest structure in each of
the benchmack programs is the program module. A pro-
gramn module is actually o fiest-class strocture and there-
fore subject to garbage collection {necessary for a self-
cuntaimed KLE systemn which includes a debugger and in-
cremental compiler), ln practice, application programs
consist of many odeles, apposed to the benchmarks
measured here, with only & single module per program.
Thus the limitation of ideal specdup in MasterMind and
Puzzle is peculiar to these toy programs.

In benchmarks such as Fascal and Waltz, the achieved
speedup is significantly less than the ideal speedup.
These programs create many long, flal lists. When copy-
ing such lists, 5 and B are incremented at the same rate.

words)

The proposed load distribution mechanism does not work
well in these degencrate cases. Our method works best
for deeper structures, so that Bis incremented at a faster
rate than 5. In this case, ample work is uncoevered and
added to the global pool for distribution,

Contention at the Global Heap Bottom: Wean-
alyzed the [requency with which the global heap-bottom
pointer, Dyrar, 15 updated [for allocation of new chunks}.
This action is important because By is shared by all
the PEs, which must lock each other out of the eritical
sections that manage the pointer. For instance, in Zebra
(given [IEU = 256 words and LDU = 32 words), B
is updated 3,885 times by GOs. I Dypse were updated
whenever a single object was copicd to the new heap, the
value would be updated 126,761 times. Thus, the update
frequency is reduced by over 32 times compared Lo this
naive update scheme. [n olher benchmarks, the ratios of
the other programs range from 15 to 114,

Global-Pasl Access Behavior: Table 5 shows the
averaze oumber of global-pool accesses made by the
henchinarks, and the averasze number of cells referenced
{in thousands) by the benchmarks per global-pool ac-
cess. These statistics are shown with varying LDU sizes.
The datz confirms that, except for Pascal and Master
Mind, the smaller the LDU, the more chances these are
to distribute unscanned regions, as we hypothesized. The
amount of distribution overhead is at least two orders of
magritude below the usefu! GC work, and o most cases,
at least three orders of magnitude below,

As described above, to achieve efficient garbage col-
lection on a shared-memory multiprocessor system, load
distribution and the working set size should also be care
fully considercd.

4.4 Goal Scheduling in a Cluster

An efficient goal scheduling algonthm within a cluster
must satisfy the following criteria:

1. no idle processing clements

2. high data locality

3. less access contention

4. no disturbance of busy processing elements

Moreover, since the KL1 language has the concept of
gaal priority (Section 3.1.3), goals with higher priorities
within a cluster are the targets of scheduling. Notice
that Load is the amount of work to be performed by a
PE, eluster or system. Thus, load does not mean the
number of goals.

No Idle Processing Elements: The sim of goal
scheduling is to finish the execution of application pro-
grams earlier. Previous software simulation told us the
following [Seto and Goto 1988

¢ Tokeep all PEs busy is the most effective way of load
balancing since the goals of the KL1 language are,
in general, fine-grained and have rich parallelism.

o Making the numbers of goals of each PE the same
during execution does not lead to good load balanc.

mng.

Here, an idle PE means one that docs not have any goals
to be reduced, or one that reduces goals with lower pri-
orities.

High Data Locality: Since a cluster iz viewed as a
shared-memory multipracessor, it is important to keep
the data locality high to achieve high performance. This
means keeping the hit ratio of snooping caches high. In
our KLl runtime system, once argument data are allo-
caled to a memory, the locations ere not moved (onlv a
garbage collector can move them). Hence, it is desiralile
that a goal that inclodes references to the sargument data
is reduced by a PE in which the cache already contains
the data. Furthermore, in terms of KLL goai reduction,
suspension and resumption during unification give risc
to expensive context switching. If context switching oc-
curs {requently, the hit ratio of snooping caches decreases
and, consequently, the total performance is seriously de-
graded.

Less Access Contention: To schedule goals prop-
erly, each PE has to access shared resources in parallel,
For instance, there is a goal pool thet stores goals to
be reduced and priority information that must be ex
changed among PEs. Since expensive mutual exclusion
15 required when PEs within a cluster access these shared
respurces, access sonflicts should be decreased as much
as possible.

16

Mo Disturbance of Busy Processing Elements:
From the load balancing point of view, it is better to have
as many idle PEs as possible involved in work associated
with goal scheduling. Moreover, when an idle PE iries
o finel & new goal, it is desirable that the idle PE should
neither interrupt nor disturb the execution of busy PEs.

Consequently, well-distributed data structures and al-
gorithms should be designed so that these criteria are
satisfied as much as possible.

4.4.1 Goal Pool

Let us consider two ways of implementing 2 goal pool:
centralized implementation and distributed implementa-
tion. That is, one queue in a cluster or one queue for
every PE. If centralized implementation is used, prior-
ity is strictly managed. However, every time a goal is
picked up and new goals are stored, the access contention
may cecur. Thus, our KLl implementation adopts the
distributed implementation method. It turns out that
transmission of goals between PLs for load balancing is
required and priority is loosely managed. On the con-
trary, however, distributed queue management iz neces-
sarily loose for priority,

The distributed goal queues are managed using a
depth-first rule to keep the data locality high. Under
depth-first {LIFO) management, it is presumed that the
same PE will often write and read the same data and that
the number of suspensions and resumptions invoked will
be less. Therefore, the cache hit ratio increases.

Further, when a PE resumes goal unification, the PE
sends the goal to the queue of the PE which suspended
the goal previously. This alse contributes to keeping the
data lacality high.

As described above, since goals are accompanied with
priorities, in our KL implementation, a PE has its own
goal queues for each priority. Figure 10 shows the goal

CJLIELLES with prrioriLies,

high ﬁ

5 A, 0066
o .

$ OOOO®
Tow pricrity-wise stacks

Figure 10: Goa! Queve with Priorities

4.4.2 Transmission of Goals

As soon as a PE becomes or may become idle, it must
take a new goal with higher priority from the queue of
a PE with a small overhead to avoid geing into an idle
state. Anidie PE triggers the transmission of a new goal.

Here, two design decisions are needed. One decision 13
deciding whether the PE that transmits a new goa! with
high priority is a request sender (idle PE} or a request
receiver (busy PE). Another decision is deciding whether
a new goal is to be picked from the top of a queue or the
end. If an idle PE has the initiative, access contention
misy occur in the queue of a busy PE. If a busy PE has
the initiative, the CPU time of the busy PE must be con-
sumed. 17 a new goal is picked from the top of a queue,
it may destroy the dala locality of the busy FE's cache,
Il a new goal is at the end, it will afien happes that the
goal reduction of an idle PE is immediately suspended;
the potential load of the goal may be small under LIFQ
management. Thus, this method may frequentiy trigger
transimission.

The current implementalion uses dedicated PIM hard-
ware which broadcasts requests to all PEs within a clus-
ter, in order to issue a request for a new goal to the other
PFs. Fach busy PE executes an event handler once a re
duction and the event handler may catch the request.
Then, the busy PE which catches the request first picks
up the goal with the highest priority from the top of its
goal queue. Our implementation should be evaluated for
COTTIPELTT S,

4.4.3 Priority Balancing

A PE always reduces goals which belong to ite local
gueue and have the highest priority. There are bwo prob-
lemns; one iz how to detect the pricrity imbalance, and
the other ia how to correct the imbalance by cooperating
with the other PEs. Qur priority balancing scheme was
designed so that fewer shared resources are required awl
busy PEs do less work concerned with priority balancing
{Figure 11}. Our scheme requires only onc shared vari-

priority

i

Pi

ey
| Fa
L -
. Time
integral
)
11T T P
I
=" =, -—
Time

0 \l
1115 2 T . . JURUR P

Figure 11: Priority Balancing Scheme

able P, to record an average priority, and the same num-

17

ber of variables Iy ~ I, as the number of PEs to record a
current integral value for each PE. A current prionity of
each P is represented by F,. There are two constants,
maz (= 0) and mun (< 0). Every PE will always calcu-
late the integral [, of F;— I, along time. When [; > marz,
the PE(i) adjusts F, to the current F; and resets [; to
zera, When I, < min, the PE(i) issues & goal request,
adjusts P, to the priority of a transmitted goal, and re-
sets 4, to zere, The mechanism of the goal transmission
described above is used as well, since the goal with the
highest PE priority is picked up. More details on this
algorithm are described in [Nakagawa et ol 1589].

The features of this scheme are as follows. The cal-
culation of the integral reduces the frequency of shared
resource £, updating and busy PEs do some work only
whesn { > mar.

The disadvantages are as follows. It may happen that
the priority of a transmitted goal is even lower, that £
decreases unreasonally, and that the frequency of the
high-priority goal transmission decreases. Our priority
balancing scheme utilizes the goal transmission mecha.
nism {Section €.4.2), which does not always transfer the
goal with the most appropriate priority. Accordingly, 2
load imbalance may be sustained for a while, How well
this method warks depends on the priority of the goals
tranemitted upon requests. In other words, there is a
tradeoff botween loose priority management and the fre-
quency of high-pricrity goal transmission. Further, in
this scheme, 2 busy PF {a PE satisfying /; > maz) has
to write its current pricrity F; to the shared variable F.
This may cause access conflict and disturb the busy FE.

A new schieme which we will design should evercome
these problems. However, we think that calculation of
the integral along time is essential even in new schemes.

4.5 Meta Control Facilities

When designing the implementation for a shoen, we as.
sume Lhat the following dyvnamic bebavior applics in the
KLI system:

+ Shoen statuses change infrequently.

¢ Shoen operations are not execubed immediately but
within & finite time.

» Messages transferred are possibly overtaken in the
inter-cluster network,

Under these assumplions, our implementation must sat-
iefy the following requirements:

« The less inter-cluster messages the better,

« No botlleneck appears; algerithms and protocols
that do not frequently access shoen records and
foster-parent records are desirable.

» The processing associated with meta control should
not degrade the performance of reduction.

Many techniques realizing a shoen have been devel-
oped to achieve high efliciency. This section concenirates
on execution control and resource management.

From now on, stream messages on Lhe control and
report streams fer communication te the ocutside are
represented in a typewriter tvpeface, such as start,
add_reseurce, and ask_statistics.

4.53.1 Execution Control

This section describes schemes for implementing the
[unctions for execution control. Schemes {1) ~ (2] are ef-
fective in a shared-memory environment (intra-cluster),
Schemes (3) ~ (5) are effective in 2 distributed-memory
environment (inter-cluster).

{1) Change of Foster-parent Status: Since goal
reduction cannot be started when the status of foster-
parent which the goal belongs to is not staried, nnpru-
dent implementation needs to check the status of a foster-
parcnt before every goal reduction. To avoid such fre-
quent checking, a status change of the foster-parent is
notified by the interruption mechanism. When a cluster
receives & mnessage that changes a foster-parent’s status
to mon-executable, an interruption is issued to every PE
in the cluster, When a PE catches the interruption, the
PE checks to see if the current goal belongs to the tar-
get foster-parent. If so, then the foster-parent is to be
stopped and the PE suspends execution of the current
goal and starts to reduce the goal of the ether active
foster-parent. Otherwise, the PE continues the reduc
tion. Since the newly scheduled goal is supposed to be-
long to the other [oster-parent, the context of the goal
reduction ' must he switched, too,

The assumption that the status of a foster-parent is
switched infrequently implies that interruptions happen
rarely. Thus, an advantage of the scheme is that the or-
dinary reduction process rarcly suffers from foster- parent
checking.

{2) Foster-parent Termination Detection: To
detect the termination of & [oster parent efficiently, a
counter called ehildcouni is introduced. The childcount
represents the sum of both the number of goals and
the number of shoens which delong to the foster-parent.
When the childeount of a foster-parent reaches zern, all
goals of the foster-parent are finished.

The childeount area is allocated in a foster-parent
record, and all PEs in a cluster must access the area.
Since this counter must be updated whenever a goal
is created or terminated, frequent exclusive updating of
this counter might become a bottleneck. To reduce such
an access contention, the cache area of the childoount
i+ allocated on each PE. The operations go as follows.
Al first, a counter is allocated on the childcount cache

A childesunt eache and a resoures cache,

13

of each PE, initialized with a value zero, Ewvery time a
new goal is spawn, the counter is incremented, and the
counter is decremented upon the end of goal reduction.
When the reduction of a new goal whose foster-parent
differs from the previous one begins, the current foster-
parent should be switched. That is, the value of the
counter on the childeount eache is brought back to the
previous foster-parent record, and the counter i= reini-
tialized. The {oster-parent terminates when it detects
thet the counter on the foster-parent record is zero.

This scheme is expected to work efficiently if foster-
parents are not changed often.

{3) Point-to-point Message Protocol: Ba-
sically, message protocals based on point-to-point
communication between a shoen and a foster-parent
arc mot designed on the basis of broadeasting
[Rokusawa et el. 1988]. If alimost all clusters always con-
tain foster-parents of a shoen, protocels based on broad-
cast are taken into account. However, the current im-
plemetation does not assume this, although it depends
on applications. Therelore, it is inefficient to broadcast
messages to all clusters in the system every time. Then,
a shoen provides a table that indicates whether or not its
foster-parent exists in a cluster corresponding Lo Lhe ta-
hle position, The table is maintained by receiving foster-
parent creation and termination messages from the other
clusters. Accordingly, a shoen can send messages enly to
the elusters where its foster-parents reside.

(4) Lazy Management of Foster-parent: A
shoen controls its foster-parents by exchanging messapes,
such as start/stop messages. However, these messages
may overtake, and, thus, & foster-parent may go into the
incorrect states. For the stats to be correct and to mini-
mize the inainlenance cost, received start/stop messages
are managed by a counter. If a start message arrives, the
foster-parent inerements the counter. If a stop message
arrives, the fester-parent decrements the counter, Then,
when the counter value crosses zero, the foster-parent
changes the execution status properly.

(5) Shoen Termination Detection: To detect
the termi-
nation of & shoen efficiently, a Weighted Throw Count
(WTC) scheme was introduced [Rokusawa ef al. 1988]
[Rokusawa and Ichiyoshi 1992). This scheme is also
an application of the weighted reference count scheme
'Watson and Watson 1987][Devan 1989]. Logically, a
shoen is terminated when there are no foster-parents.
Howewer, this is not correct enough to maintain the num-
ber of foster-parents, since goals thrown by a foster-
parent may be transferred in the network, Thus, a
fester-pasent lets both all goals io be thrown and all
messages between a shoen and foster-parents te have a
portion of the foster-parent’s weight. On terminating

a foster-parent, all foster-parent weights are returned to
the shoen. 1f the foster-parent terminated at message ar.
rival, the messages from the shoen are also sent back to
the shoen to keep its weight. Then, when all weights are
returned to the sheen, the shoen terminates itself, An
advantage of this scheme is that it is free from sending
acknowledgerment messages.

Thus, since a shosn must not continue to lock shared
rosources in this scheme until an acknowledgement re-
turns, the seheme can reduce not only the network traffic
but can also alleviate mutual exclusion.

4.5.2 HResource NManagement

As described sbove, a shoen is also used as a unit for
resource management. o the KL language, the reduc
tion time is regarded as the computation resource. The
shoen cousumes the supplied resources while shifting the
resources. Maoreover, since a shoen works o paralled, lazy
resource management is inevitable, like in the shoen ex-
ecution control (Section 4.5.1).

A shoen has a limited amount of resources which it
can consume. Upon cxceeding the limit, goals in the
shoen cannot be reduced. When 2 runtime system de-
tects that the total amount of consumed resources so far
is approaching the limil, a ressurce_low message is au-
tomatically izsued on the shoen's report stream. The
ghoen stops its execution with its resources exhausted.
On the other hand, the add.rescurce message on Lhe
contrel stream raises the limit and the shoen can wtilize
the resource up to the new limit. Furthermore, a shoen
which accepis the ask statistics message reports the
eurrent resources consuimed so far

This seclion describes our resource management im-
plementation schemes,

(1) Distributed Management: The scheme is
briefly described below. Figure 12 shows the resource
flow belween a shoen and its fostec-parents.

A shoen has a limit value, which indicates that the
shoen can consume rescurces up to the limit, Initially,
the resource limit is zero. Unly the add_resource mes
sige can raise the limit., When a shoen receives the
add_reseurce message, the shoen requesls new resources
to the above foster-parent by a value within the limit
value designated by the mdd resource message. Here,
we also call this foster parent the parent foster-parent.
Wotice that a shoen end its parent foster-parenl resile
in the same cluster, and, thus, the operation for the re-
gource request is implemented by resd and write opera-
tions on & shared memory.

After a shoen has gol new resources from its par-
ent foster-parent, the shoen further supplies resources
to its foster-parents which requested resources by the
supply.resource message across clusters. Moreover the
supplied resources may be supplied to the descendant

pa/r;:.\nt
P\

shoan shoen |-— add resource
H Firmift
mr;gr ——T resource_low
;
: | supply/ $ 1 \su ly/return
i return g1 W PRlY

/o\

©

P Nip

fp : foster-parent G Goal

Fignre 12: Resource Flow Between a Shoen and its
Faster-parents

sheens and foster-parents. Then, those [usterparents
consume the supplied resources. The shoen has a buffer
for the resources; the excessive resources returned from
terminated foster- pasents are stored in the shoen bufter.
When the remaining resources of a foster-parent zre go-
ing Lo run out, a resource request message is sent to the
abawver shoen, T the shoen cannot afford to supply the
requested resources, the shoen issues the rescurce low
message on its report stream. Otherwise, i the shoen
can afford and has sufficient resources in the buffer, the
resources are supplied to the foster-parent immediately.
If there are insufficient. resources, the shoen requests new
resources within the current limet value from its parent
foster-parent. As described here, the resource buffer of
a shoen can prevent the message from being issued more
frequently than necessary,

If the reseurces of the foster- parent are exhausted, goal
reduction stops. Then, the scheduled goals are hooked
on to the foster-parent record, in preparation for e
scheduling when new resources are supplied from the
shoen,

Furthermore, each PE has a resource cache area for the
{oster-parent, and, hence, a counter is actually decre-
mented every Yime a goal is reduced, This mechanism
is similar to the childeount mechanism (Section 4.5.1).
Hawever, when the foster-parent of a goal to be reduced
alters, Llie caches on PEe must be brought back to the
foster-parent record.

{2) Resource Statistics: While the system en-
jovs lazy resource management, it gets harder to collect
resouree information over the entire system. A shoen re-
ceives the ask statistics message, which reports the

current total consumed resources.

The ascheme used to collect the information 1s de-
seribed. A shoen issues inguiry messages to cach foster-
parent. When an inquiry message arrives at a foster-
parent, the foster-parent informs each PE of this using
the intersuption mechanisin. This portion is similar to
the mechanism of Section 4.5.1 (1). The PEs which catch
the interruption check if the currenl goals belong to the
target foster-parent. If so, the PE puts the resource on
the cache back to the foster-parent record. When all
carresponding P Es have been put back, the subtotal re-
sotrce on the fostes-parent appears. If not, the PEs da
nothing and reduction continues. Then, the foster-parent
reports the subtotal to the shoen and re-distributes some
resources back to the 'Es. As a resalt, the PEs resume
zoal reduction,

We assume that the ask_statistics message is issued
infrequently, This scheme works well,

(3) Point-to-point Resource Delivery: The
destination of new resources when a shoen receives re-
source requesl messages from its fDGtEI-pa.Ti:nt.s 15 a de-
sign decision. It must be decided whether the shoen
delivers the new resources oniy to the foster-parents
which have requested them, or delivers them ta all foster-
parents. A protocol based on broadcast may be prefer-
able when the foster-parents in nearly all clusters always
poszess the same amount of resources and consere them
at Lthe same speed. The current method is similar to one
in Section 4.5.1 (3).

Cur assumptions we based on an experience of the
Muti-PSI svstem. Goal sched uling within a cluster, how-
ever, differs and there is no guarantee that every cluster
lias the foster-parent of the shoen. Therefore, in the
current implementation method the shoen sends the re-
source supply message just to the clusters which have
sent resource requeslt messages.

4.6 Intermediate Instruction Set

The KLI1 compiler for PIM has two phases. The first
phase compiles a KL1 program into an intermediate in-
struction code; the instruction set is called KL1-B. The
second phase translates the intermediate code into a
native code. KLI-D is designed for an abséraet KLI
machine [Kimura and Chikavama 1937), interfacing be-
tween the L1 language and PIM hardware, just as in
Warren Absiract Machine [Warren 1933) of Prolog.

EKLL-B for PIM is extended from KL1-B for Multi-P5]
to elficiently exploit the PIM hardware.

4.6.1 Abstract KL1 machine

The abstract KL1 machine is simple virtual hardware to
describe & KL1 execution mechanism. It has a single PE
with a heap memory and basically expresses the inside

20

execution of a ['lk However, every KLI-I instruction
mnplicitly supporls mulli-PE processing, Further, some
KLI-B instructions are added for inter-cluster process-
ing.

A goal is represented by a goal record on a heap. The
goal record consists of arguments and an execution en.
vironment which includes the number of arguments and
the address of the predicate code. A ready goal is man-
aged in the ready gool pool which has entries for each pris
arity, Each entry indicates a linked stack of geal records.
Suspended goals are hooked on the responsible variable.

Fach data word consists of & value part, a type part
and a2 MHE part [Chikayama and Kimura 19587, An
MREB part is valid, il the value parl is a painter, and indi-
cates whether its object is single-referenced ar multiple-
referenced. It is used for incremental garbage collection
and destructive structure updating.

4.6.2 Owverview of KL1-B

The intermediate instruction set KL1-B was designed ac-
cording te the following principles:

* Memory based scheme — goal arguments are basi-
cally kept on a goal record at the beginning of &
reduction, and each of them is read onto a register
explicitly just belore it is demanded. Thus, almest
all registers are used temporarily (Section 4.6.3).

¢ Optimization using the MRB scheme — some in-
structions to reuse structures are supported to alle-
viate execution cost {Section 4.6.4).

¢ Clause indexing — the compiler collects the clauses
which test the same variables, and compiles them
into an instruction module. Then, all guard parts
of & predicate are compiled as one into the code
with branch instructions forming a tree structure
(Section 4.6.5).

* Each body is compiled into a sequence of instruc-
tions which run straight ahead without branching.

The basic KL1-B instruction set is shown in Table 6.

4.8.3 Memory Based Scheme

The Multi-PSI system executes a KL1 program using
the register based scheme — all arpuments of the current
goal are loaded onto argument regisiers before reduction
begins, just as WAM does for Prolog.

Here, let us compare the fallowing two methods in
terms of the argument manipulation cost:

* Inthe memory based scheme, the arguments referred
to in the reduction are loaded and the modified ar-
guments are stored at every reduction. There is no
cost for goal switching.

Table 6: Basic KL1-P Instruction Set

LL1-B Instruction

Specincation

For passive unificalion:
load wart
read_wait
is.atomyintager st/
test_abormfinteger

Rygp, Pos,Rx, Lyus
Ksp. Fos, Fx, Lyus
R Lfal!

R Congi. Lfail

Read a goal argument oate Rx and check binding.
Fead a structure element onto fx and check binding,
Test data tvpe of Rx

Test data valee of Ry

General unifieztion.

equal R Ky, Lsus, Lol
suspend Lpred Arity Suzpend the current goal
For arqumeni /element preparetion:
foad Fge, Pos, Rx Tead a goal argument onto fe
read Fsg. Pos, Bx Teead a structure element onte M
put.atom/integer Const, Rx Put the atomic constant onte A=
afloc_variable Ax Alocate o new variable and put the pointer onte Rx
alloc listfveetar { Arity,)Rx Allocate a new listfvector structiure and put the pointer onto .
wrile For Rsp, Pos Write fx cnto a steucture element.
For ancremental garbage collection:
imrark Rx Mark MRE of fx.
eoflect valse R Collect the structure recursively unless its MRB is marked.
collect Jist/vectar [Arity | R Collect the list structure unless its MEH is marked.
revss_list fvectar [Aty) R collect et frectar + allwetist/vactor.
For active unifics tion:
unify_atomintager Const, Rx Unify Rx with the atomic constant.
wnify Bownd, value Rsp. Rx Unify R with the newly allocated structure.
wrify Rx, Ry General unification.
For goal manipulation and event handling:
collect. goal Arity. Rge Reclaim the goal record.
alioe.goal Arity, Rgp Alloeate a now gool recerd.
store R Rgp, Pax Write fx onto a goa! argument.
get cade CodeSpec, Reade Get the code addross of the predicate onto Resde.
push_goal Agp. Reode. Aclty Push the goal to the current priority eatr¥ of ready goal pool.
push_goalwith grisrity Rgo Roode Rario Aty Push the goal to the specified priority eatry of ready goal poal
throw.gosl Rgp. Reode Rels, Arity Throw the goal to the speeified cluster,
execule Feade Arity Handle the event if it securrs and cxecuts the goal repeatedly,
procesd Handle the event if it occarrs and take a new goal from ready

goa! pool to start the new reduction.

v In the register based scheme, all arguments of the
swapped out goal are stored and all arguments of the
swapped in goal are loaded al every goal switching.
Some arguments may be moved between registers at
every reduction.

Therefore, the memory bazed scheme i3 beiter than the
register based scheme when

v Goal switching oceurs frequently.
¢ A goal has many arguments,

» A goal does not refer to many arguments in a reduc-
tian.

Actually, these cases are expected to be seen aften in
large IKL1 programs. Thus, we have Lo verify the memory
based scheme with many practical KL1 applications.
Additionally, the number of goal arguments 15 limited
to the number of argumeni registers — 32 in the case of

21

Multi-PSL. This limitation is too tight and is not favor-
able to KLI programmers. The memory based scheme
can alleviate this limitation to some extent, On the
other hand, the naive memory based scheme necessar-
ily writes back all arguments to the goal record, even if
tail recursion is emploved. Since this is very wasteful, an
optimization to keep frequently referenced arguments on
registers is mandatery during tail recursion.

4.6.4 Optimization

Two optimization techniques are introduced: tail recur-
sive optimization and the reuse of data structures. We
can describe these using the following sample codes.

& sOUCCE m-de:

app([H|L],T,X) = true | X=[H]Y], app(L,T Y}
app(|] T,X) == true | X=T.

s intermediate code:

app_entry:

load CGP 0, R1 % Load up
load CGF 2 R2 T arguments
app toop:
wait R1, sus_or_fail
is_list F1, next
commit
* read RI1, car, R3 % H
read R1, cdr, K4 % L
rewse_list R1
* Wrile R3 A1, car % H
alloe varable RE Y
write Ra, Ri, cdr
umiy_bowvnd_valve B1, B2
move R4 RI
maove R5 R2
executa_tro app_loop
frext:
1s_atom R1, sus_or_faid
fest_atom [}, RI
commit
load LGP 1, R3 ST
vnily R3, R2
collect_goal 3 CGP
procesd
sus_or.fail:
store Rl, CGE ¢ % Write back
store R2 CGR 2 % argumenis
suspend app.entry, 3

Tail Recursive Optimizatiun: Seme instructions
are added for this optimization. Wait tests if an argu-
ment on a register is instantiated. Mowe prepares ar
guments for the next reduction. Execute_tro exscutes a
goal while some arguments are kept on registers,

In the above source code, the first and thicd arguments
of the first clause are used in tail recursion. These ar
guments are loaded at the beginning of the reduction by
the foad instructions which are placed before the tail re
cursive loop. There is po oeed to write them into the
goal record during tail recursion. However, thev must
be written back to the gool record explicitly before, say,
switching the goal caused by the suspend instruclion,
Since the second argument is not used in tail recursion,
it is kept on the goal record until it is referred to in the
second clause,

In this example, two write instructions and two read
instructions are replaced with iwo meve instructions.
Thus, by assuming & cache hit ratio of 100 %, this opti-
mization can save two steps on each recursion loop.

Reuse of Data Structures: KLI-B for PIM sup-
ports the reuse of data structures. The reuse fist and
repse_vector instructions realize this, Theze instructions
reuse an area in a heap on which the struciure unified
in a guard part was allocated, but, onlv if the MDD of
the reference to the area is nob macked. However, the
area for the element data of the reused structure is not
reused,

In KLI applications, it often happess thal the areas

of reclaimed structures can be reused for successive allo-
cation. This is frequent in programs for list processing
and programs writtcn in message driven programming.
In the sample codes in Section 4.6.3, element I of the
passive-unified list [H|L] is used as element H of the new
fist [H[Y], and is read and written by the instructions
marked with stars {“+"). However, if the MRE of the
pazsive-unified list is not marked, element H can actu-
ally be used in the new list as is, and, therefore, read
and wrife instructions can be eliminated.

Therefore, the following new optimized instructions
are introduced:

reuse_list_with_alements
reuse_vector_with_elements

RE.E.- [-"-mrFF:db]
Arity Reg.{ Fo.Fi..... Fi}

These instructions do nothing when the MRE of the
skructure pointer on Reg is not marked. If marked, they
allocate & new structure, copy specified elements on the
structure referenced by Reg to the new structure, and
put the pointer to the new structure onto Reg. Thus,
reuse of data structures reduces the number of memory
operations and, accordingly, keeps the size of the working
sct small.
sam'P]E‘ E:}de iS E-I'.]D'\"r'n aah fﬁ“ﬂwﬁ-;

¢ optimized intermediate code;

apploop:
walt R1, sus_cr_fail
is list F1, next
Carrrnl
read RI1, cdr, R4 %L

reuse_list_with_slements R1, [1]0]
alloc_variabie Ra

write K&, R1, edr
unify_bound.value R, R2
move R4, R1
friawve RE RZ
app.loop

execute_tro

In this code, reuss fist and instructions marked with
stars {“*") are replaces! with Lhe revse_list_with_elements
instruction, The second argument [1]|0] specifies that
the head element has to be copied if the MEB of the list
pointer on R is marked. If the MRD is not marked,
it does mothing and is equal to nep. Therelore, only
the following write B85 R1,cdr instruction can allocate the
list structure [H]Y]; the instruction warks like the rplacd
function in LISP. Consequentiy, in this example, reuse
optimization can save one read and one write instructions
and is worth approximately two machine steps.

4.6.5 Clause Indexing

The KLI language neither defines the testing order for
the clause selection nor has the backtracking mechanism.
Thus, to attain quick suspension detection and quick

clause selection, the compiler can arrange the testing or
der of L1 clauses; this is called clause indexing. At first,
the compiler eollects the clauses which Lest the same vari-
able, and compiles the clauses into shared instructions.
Most of these work as test-and-branch instructions with
branch labels occurring in the instruction codes. Alj
guard parts of a predicate are, then, complled into 2
tree structure of instructions.

Our KL1 programming experiences up to now have
told as that a clause is infrequently selected according to
the type of argument but is often selected according to
the value. Further, even if multi-way switching of KL1- i
instructions on data types is introduced, these KL1-B in-
structions are eventually implemented by & combination
of native binary branch instructions, in general. Con-
sequently, we decided that KL1-B does not provide a
multi-way switching instruction on data types, but just
binary-branch KL1-B instructions on 2 data type. Ad-
ditionally, KL1-B provides a multi-way jump instruction
on the value of an instantiated variable.

Two instructions are added for multi-way jump on a
value:

switch.atom Reg, {1 L) (XL} -

XL
switch_integer Reg. [{ X Li}4X Lah o (X

L.}
nln}l
Switch_atom is used for multi-way swilching on an atom
velue, and switch_integer is used for multi-way switching
on an integer value. They test the value on the regis-
ter Reg, and if it is equal to the value X, & branch to
the instruction specified by the label [, occurs. Since the
internal algorithm implementing these switching instruc-
tions is not defined in KL1-B, the translatar to a native
code may choose the most suitable method for switching.

The eurrent KL1-B instruction set was designed under
several assumpticns in terms of KLI programs. Thus, we
have to investigate how correct our assumptions are and
how effective our KL1-B instruction set is.

5 Conclusion
This paper discussed design and implementation issues
of the KL1 language processor. PIM architecture dif-
fers from Multi-PSI architectiure because of its loosely-
coupled network with messages possibly overtaken, and
because of its eluster structure (ie. its shared memory
multiprocessar portion). These differences greatly infu-
ence the KL1 language processor and are essential to
parallel and distributed implementation of the KL1 lan-
guage. Several of the implementation issues focused on
i this paper are more or less associated with these [ca-
tures. Our implementation is a solution to this situation.
[COT has been working on these implementation issues
intensively for the past four vears, since 1938,

In this paper, wo began by making several assump-
tions and, then, tailored our implementation to them.

23

The assumptions came from cur experiences hased on the
Multi- P51 system. Thus, we have to evaluate our imple
rnentation, accumulate experiences O OUT SySLEm, and
verify the appropriateness of the assumptions. Hence,
we will be able to refiect our results in the KL1 language
processar of the nexl generation. In Lhis development
cycle, the systematic design concept is effective, and the
concept vields the high modularity of & language pro-
cessor. It turns owt to be easy Lo improve and highly
testable.

Our KL} language processor is presented on the PIM
systems (PIM/p, PIM/c, PIM /i, PIM/%), which are be-
ing demonstrated at FGUS9L

Acknowledgment

We would like to thank all ICOT researchers and com-
pany researchers who have been involved in the im-
plementation of the KL1 language so far, especially,
Dr. Atsuhire Gote, Mr. Takayuki Nakagawa, and Me.
Masatoshi Sato. We also wish to thank the R&D mem-
bers of Fujitsu Social Seience Laboratory. Through their
valuable contributions, we have achieved a practical KL1
language processor, Thanks also to De. Evan Tick of
University of Oregon, for his great efforts in evaluating
the paralle] garbage collector with us. We would also like
to thank Dr. Kazuhiro Fuchi, Director of [COT Research
Center. and Tir. Shunichi Uchida. Manager of Research
Department ICOT, for giving us the opportunity to de-
velop the KLL language processor.

References

{Baker 1978] H. G. Baker. List Precessing in Real Time
on a Serial Computer. Communications of the ACM,
21(4), 1978, pp.280-294,

fBevan 1989] D. I Bevan. Distributed Carbage Collecs
tion Using Reference Counting. Farallel Computing,
9(2), 1989, pp.179-192.

[Chikayamaz ef al. 1888] T. Chikayama, H. Sato and T.
Miyazaki, Overview of the Parallel Inference Machine
Operating System PIMOS. In Proc. af the Int. Conf.
on Fijth Generation Compnter Systems, 1COT, Tokyo,
1988, pp. 230-251.

[Chikayama and Kimura 1987] T. Chikayams and Y.
Kimmra. Multiple Reference Management in Flat
HC. In Proc. of the Fourth Int. Conf. on Logic Pro-
gramming, 1987, pp.276-293,

[Crammond 1988] J. A. Crammend. A Garbage Col-
lection Algerithm for Shared Memory Parallel Pre-
cessors. [nt. Journal of Parallel Programming, 17(8),
1988, pp.497- 522,

[Goto ¢t al. 1988] A. Gote, M. Sato, K. Nakajima, K.
Taki and &. Matsumoto. Overview of the Paralle] In-
ference Mechine Architecture (PIM). In Proc. of the
Int. ('.-"anj'. on Fz'ﬂﬁ. {Teneralion Cnmpuirr Systfrms,
ICOT, Tokyo, 1988, pp.205-229.

[Halstead 1985] K. H. Halstead Jr. Multilisp: A Lan-
guage for Concurrent Symbelic Computation. ACM
Transuctions on Programming Languages and Sys-
tems, 7(4), 1883, pp.501-535,

[Iehivashi et al. 1988) N. Ichiveshi, K. Rokusawa, K.
Nakajima and Y. Inamura. A New External Ref
erence Management and Distributed Unification for
KL1. New Generation Computing, Ohmsha Ted, 1950,
pr.139-177,

[ICOT lst Ttes. Lab. 1991] ICOT lst Research Labora-
tory. Tutorial on VPIM Implementation. ICOT Tech-
nical Memorandum, TM-1044, 1991 (In Japanese).

[Imai et ol 1991] A. Imai, 1. Hirata and K. Taki. PIM
Architecture and Implementations. In Proc. of Fourth
Franco Japanese Symposium, 100T, Rennes, France,
1991,

[Imai and Tick 1991] A. Imai and E. Tick. Evaluation
of Parallel Copying Garbage Collection on a Shared-
Memory Multiprocessar. JCOT Technical Report, TH-
650, 1991, (To appear in IEEE Transactions on Paral-
lel and Distributed Systems)

(Inamura et al. 1988] Y. Inamura, N. Ichivoshi, K.
Hokusawa and K. Nakajima. Optimization Techniques
Using the MRE and Their Evaluation on the Multi-
PSI/VZ. In Proc. of the North American Conf. on
Logic Programming, 1989, pp. 907-021 (also JCOT
Technical Report, TR-466, 1930).

[Kimura and Chikayama 1957] ¥. Kimura and T.
Chikavama. An Abstract KL1 Machine and its Io-
struction Set. In Proc. of Sympesivm on Logic Pro-
grammang, L1927, pp.468-477.

[Nakagawa et al, 1939] T. Nakagawa, A. Goto and T.
Chikayama. Slit-Check Feature to Speed Up Interpro-
cessor Software Interruption Handling. In [PSJ 513
Reports, 89-ARC-77-3, 1989 (In Japanese).

[Nakajima et al. 1989] K. Nakajima, Y. lnamura, N.
Ichiyoshi, K. Hokusawa and T, Chikayama. Dis-
tributed Implementation of KL1 on the Multi-P51/ V2,
In Proc. of the Sixth Int. Conf. on Logic Programming,
1980, papes 436-451,

[Nishida et al. 1990] K. Nishida, Y. Kimura, A. Mat-
sumoto and A. Gote. Evaluation of MRB Garbage
Collection en Parallel Logic Programming Architec-
tures. In Proc. of the Seventh Int. Conf. on Logic Pro-
gramming, 1990, pages 83-05.

24

[Hokusawa ef al. 1958] K. Rokusawa, N. Ichiyoshi, T.
Chikayama and H. Nakashima. An Efficient Termi-
nation Detection and Abortion Algorithm for Dis-
tributed Processing Systems. In Proc. of the 1988
Int. Cenf. on Parallel Processing, Vol. 1 Architecture,
1988, pp. 18-22.

[Rekusawa and Ichiyoshi 1992] K. Rokusawa and N.
[chiyeshi, A Scheme far State Change in a Distributed
Environment Using Weighted Throw Counting. In
Proe. of Sizth Int. Parallel Processing Symposium,
[EEE, 1992.

[Sato and Coto 1988] M. Sato and A. Goto. Evaluation
of the KL1 Parallel System on a Shared Memory Mul-
tiprocessor. In Proe, of IFIP Working Conf. on Par-
allel Processing, 1988, pp. 305-318.

[Takagi and Nakase 1991] T. Takagi and A. Nakase,
Evaluation of VPIM: A Distributed KL1 Implementa-
tion — Fecusing on Inter-cluster Operations -, In IPSJ
5IG Reports, 01-ARC-88-27, 1991 (In Jopanese).

[Taki 1992] K. Taki. Parallel Inference Machine PIM. In
FProc. of the Int. Conf. on Fifth Generotion Computer
Syatemas, 1992,

[Tick 1991) E. Tick. Parallel Logic Programming. Logic
Programming, MIT Press, 1991

[Ueda and Chikayama 1990] K. Ueda and T. Chike-
yama. Design of the Kernal Language for the Paral-
lel Inference Machine. The Computer Journal, (33)6,
1950, pp.454-500.

[Warren 1983] D. H, D, Warren. An Abstract Prolog In-
struction Set, Technical Note 309, Articial Intelligence
Center, SRI, 1983,

[Watson and Watson 1987) P. Watson and [. Watson.
An Efficient Garbage Collection Scheme for Parallel
Computer Architectures. [n Proc. of Parallel Arechitec-
tures and Languages Furope, LNCS 258, Vol 11, 1987,
ppa432-443,

