ICOT Technical Report: TR-0778

TR-OT78

An Efficient Message Transfer Mechanism

Bypassing Transit Processors

by
H. Nakashima (Mitsubishi) & Y. Inanura

June, 1992

1992, 1COT

Mita Kokusai Bldg. 21F (3)3456-3191 5
I(:DT 4.28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology

An Efficient Message Transfer Mechanism
Bypassing Transit Processors

Hiroshi Nakashima Yii Inamura
(Mitsubishi Electric Corp.) (ICOT Research Center)

Abstract
This paper describes an efficient mechanism of inter-processor message transfer on
lovsely-coupled /message-base parallel processing systems. This mechanisim eliminates fran-
sil processors, which merely relay miessages transferred between other processors, using
onic-tway conpunication with three additional physical messages.

AL, BSEoTLFSOEy BT, BTy HEO A - SdfER R
PR A2 Ao Far e eaAf AT AR R v TG0 THD, ANNTHRIER
O A s = VRV, BRSO Ly F oS AR RS - FMEEEEAL T
g

1 Introduction

For large scale parallel processing, it is desirable that programming languages have capability
to represent parallelism in problems naturally. In various programming languages proposed
for parallel processing, paraliel logic programming languages, such as GHC [Ueda 23], and
parallel object-oriented programming languages, such as ABCL [Yonezawa 8], will be hopeful
candidates because concurrent processes communicaling messages each other are easily and
naturally described in them, It is also natural to map these processes onto loosely-coupled/
messapge-base parallel processing systems [Nakajima 89, Takada 29

Fram the viewpoint of efficiency, however, the implementation of those languages on such
systems is not so easy, because the cost of communication between processor nodes is often
much higher than that of computation, Therefore, the numhber of physical inter-processor
messages for a lngical inter-process message should be minimized for efficient implementation.

In arder to minimize the number of messages, fransit processors, which merely relay mes.
sages transferred between other processors, have to be bypassed. For example, when a process
F migrates from a processor node Ny to Ny, it is expected that messages directed to I* will not
pass through A but reach Ny directly. This hypassing is casily implemented using fwo-way
communication in which one logical message transmission takes two physical messages, for-
ward and backward. In one-way communication systems which is more efficient than Ltwo-way
systems, however, hypassing scems difficult because the sender is usually ignorant of receiver’s
activity.

In this paper, we propose an inter-processor one-way message passing mechanism which is
capable of hypassing transit processors with a backward message telling the sender that the
receiver migrated. This mechanism also has capability to preserve the order of messages using
a forward and a backward message, assuming FIFO property of physical network.

This paper is organized as follows: Section 2 shows how a processor is made transit, and
Lew conventional schemes deal with transit processors; section 3 presents the basic scheme and
mechanism to bypass transit processors; seclion 4 discusses implementation details comparing
related works with ours; and section 5 gives the conclusion.

it SOy H R AT L Ay - YRR
hE % (SEWME, hiroshifisl.melco.co.jp) . KE#T @ (1COT)

N N, Ns N Ne--. | [M
i h
Pp - P Pp L) ; e Fe
[a.l] (a.2)
{a) Process Migration
Jnl'r‘l ..!"lr(g/..-\ J"I-ra Nl N%_-‘\ J"'lra.
(b.1] (b.2)

{h) Short Circuit Termination

Figure 1: Transit Processors

2 Problems and Conventional Schemes

2.1 Transilt Processors
Figure 1 shows typical situations in which a processor is made transit. That is;

{a) The process P on the processor node Ny is the consumer of the producer Pp on Ny
(a.1). Il Po igrates from Ny to N3, Ny becomes a transit processor (a.2). Similarly, if
Pp migrates from N to other processor, say Ng, Ny becomes transit.

{(b) The process Pr on the processor node Ny is the filter between Pp on Ny and Peoon Na
(b.1). If Pr terminates connecting its input and output, Ny becomes a transit processor
{b.2).

Both situations, process migration and short cirenit termination, will often occur in process-
oriented or objeci-oriented parallel programming. Thus, it is greatly expected to bypass the
transit processor Vg and transmit messages from Ny to Ny directly.

2.2 Two-way Communication

In paralle] logic programming languages, such as GHC or its modified version, KL1 [Chikayama
88), unifications of list cells are usually used for inter-process communication, If the producer
Pp and consumer 1% are allocated on different processor nodes, Ny and Ny, the unification for
a list cell might require two pliysical messages, one of which is forward (producer to consumer)
and the ather is backieard.

For example, [Ichivoshi 87] describes the following mechanism.

{a) Pp and FPr share an uninstantiated logical variable §; on Ny, and Fc has an external
reference f; pointing 5. Pe sends a backward message Fread(S;, I }, which demands
that Ny send the value of 5 to f; if 5 is instantiated.

{b) Pp unifies a list cell whose car is a message M and cdr is a new variable §;. This makes
Ny send a forward message %answer(Ry,[M|Sz]) which carries the answer for Fread.

This {wo-way communication mechanism can easily deal with the problem of transit processors,
hecause Fr always informs Pp of its location. This advantage, however, is not admired, because
it is gained by much overhead, two physical messages for a logical message.

N, AR =, Ny MS
Fput(MS M), > °

-1 L E Fpul{MS M),

-

Figure 2: Ope-way Communication in KLL

2.3 One-way Communication

KL1 has an efficient mechanism, builf-in merger, for inter-process communication [Inamura
89]. This mechanism provides constant time, non-deterministic n-ary merge operation of
strecoms represented as lists. [L might also enable processors to make onc-way communication
through merged streams. because its implementation lets producers know that their outputs
are connected to a special structure for merge,

Figure 2 shows a possible configuration of the one way communication using the merger.
The input of the consumer process P on Ny is connected to the structure representing merger
MS. One of the input streams of the merger is directed by a special external reference MRE
on Ny, When the producer process Pp unifies ME with list cells, one-way forward messages
Spat M5 M) will be transforred to M.

This configuration is very shmilar lo that of inter-processor communication between con-
current ohjects in parallel ahject-oriented languages, such as ABCL [Yonezawa 86]. For exam-
ple, MS and MR are corresponding to internal and external object descriptors described in
[Takada 89].

Note that this ope-way comununication mechanizin stands on FIFO assupmplion that the
physical communication line between Ny amd N3 preserves message order. Also note that
bypassing transit processors is difficult in this mechanism, because a consumer might not have
any information ahout its producers.

3 Bypassing Transit Processors

3.1 Basic Scheme

Figure 3 shows the basic scheme of the proposed mechanism. In Figure 3{a), Pp and P are
producer and consumer processes allocated on processor nodes Ny and Ny respectively. R
and fy are external and internal process pointer for Pe, both of which might have capability
to merge message steeams (not shown in the fimure). These pointers also have queues to keep
postponed messages. In this state, communication between Fp and Pr s perforimed in one-way
manner on the FIFO assumption.

If the process Pe migrates to another processor node Ns, Hy changes its state to external,
and directs a new internal process pointer Mz on Na, as shown in Figure 3(b). That is, N
becomes a transit processor. This stale, however, is temporary and should be changed to the
final state shown in Figure 3ic) in which the pointer K; directly points Hy. Note that the
temporary state (b} will also appear when the process Fp migrates rather than Fo. In both
cases, the state transition from (b) to {(¢) is performed in the same manner,

For the transformation from {b) to (¢), the following physical inter-processor messages are
exchanged.

Sputirome) oo Send a logical message m from an external process pointer s to a
process pointer . W ¢ is an internal process pointer, s is ignored.

Smaoved|s)

%{:uuﬁrm |"?‘,.¢J P

Facknowledge(s,r"] ..

3.2 Mecl

Ny [~ Ny Mo N3
oellEo)- [oefeHao
(a) (b)
N; [)] ."\rj
Ry Ry i
= | (m o | 55 =

Figure 3: Bypassing Transit Processors

Tell s, the sender of Fput, that the real receiver moved somewhere.

This message is trausferred as the reply of Hput if the receiver of
Sput 1z an external process puinter.

Request the confirmation that all #pul messages from s preceding

Feonfirm are received by the real receiver. This message is sent by s
and relayed by r to the real recejver.

18NS

The seenario from Figure 3(b) to (c) is as follows {Figure 4},

(51} A message Sput{fty, M, I} is sent from [y on Ny to Ky on Vs,

Heply to s that ¥eonfirm is received by the real receiver o',

(52) As the reply of ¥put, R send Bwmoved(R,) to R,, because H; is an external process

pointer. My also relavs Spuf to its destination Fs.

)
%f#,_u s
A= Rzfz] Raii)
- | |
= ==
My Mz N3
(51)
Franfl
o o
Aylw Ralx Tlaje)
L= { —t={Fr
Ny Ny N3
53]
— Kfé_f_ﬂ:.ﬁ.kdf!
Ky lw Halx Rz
L ARt
.""-'.[N3 N
(55)

i :intemal, £ extemal, weextemal-waiting

% 4 Fpw
= R IRy, M, Ayl
Ryl Halx Rali
N Ny g
[5Z)
Feonfirm _
r;:‘ﬁnﬂl -
Ry Hzlx) Rl
=
Ny Ny Nz
(=4}
Ryl Halx Rafe
s e
Ny My MNa
=

Figure 4: Scenario of Bypassing

Table 1: Actions of Process Pointers

stale

message intermal external external-waiting
Bpul{r.m,y) T eat reply | Hmowedy/) karepy

relay { Hput{d m)

" moved T, . reply (Heonfirm{d z]} | ignore

transform(wating)
Heanfirm|z,y) reply (| Hacknowledge/y.x/) relay i Beonfiemdy)l | keap
Backnowledge/zy) || — — transform | nermoel)
nlernal aal relay(Hputid m r)) keep

(53) R, receives Fmoved, it changes its state to wailing and sends Fconfirm(Ra, By} to Ry
In waiting state, K, postpones sending all messages from Pp (and other processes) until
it receives Hacknowledge. The postponed messages are kept in the guene of R).

(S4) Ry receives Feonfirm and simply relays it to the destination of Ry, because R; is an
external process pointer. That is, ¥eonfirm{ [, B,) is sent to K.

(55) Ry receives Heonfirm and sends Hacknowledge(liy, It3) to K, as the reply, because Rj s
an internal process pointer. The FIFO property of the communication line between Ny
and N; and that between Ny and N; promises that all messages from B; to Ry through
Ry preceding Fconfirm are received by Rz in the same order in which they are sent.

(S6) Ry receives Facknowledge and sends all messages in its queue to Ra. It also changes its
state to normal (non-waiting) and directly points Hg which is specified in Facknowledge.

The actions described above are summarized in Table 1. The columns of the table are
corresponding to the states of process pointer x, internal, external and external-waiting. Each
row shows e action taken when the process pointer receives o physical message from y, or
it is requested to send a logical message by a process allocated on the same node (internal).
The following are the explanatious of the actions,

eat Pass the logical message to the consumer process, or keep it in the
quene if there are postponed messages,

relay(messnge) Relay the reccived message to the destination, d, pointed by the pro
cess poiuter,

keep ..., e Iieep the received moessage in the queue,

reply(message) ... Send message as the reply of the received message.

teansformistate) .. Changes the state of the process pointer to state. The state transition
to normal canses sweeping out the contents of the quene.

iguore cieiceeaess lgnore the received message.,

4 Implementation Issues

4.1 Migration of Producer

In [Kukula 88), Kukula proposed a mechanism to bypass transit processors for an object-
oriented system OX. Kukula's mechanism handles migration of producers and consumers
separately. When a producer migrates, it reports its departure to consumer’s process pointer.

Then it moves to another processor node and informs the consumer of its arrival®. In order to
keep message order, the consumer must make a sidetrack queue for messages from new location
received before it catches the departure message from old location. Note that multiple sidetrack
quenes are necessary in case that the producer rapidly repeats migration.

In contrast with OX. our mechanism easily handles producer’s migration in the way exactly
same as consumer’s migration. When a producer migrates, it makes a external process pointer
it,, on the new processor node to direct process pointer I, on the old node. If R, is internal,
the producer can start message transmission immediately. Otherwise, the situation is same
as that shown in Figure 3(b), and successive transmission of Sput will trigger the procedure
deseribed in 3.2

In latter case, of course, exchanging % put and Fmoved in step (S1) and (S2) can be omitted.
That is, the procedure can be started from step (53) by selting the state of Hy to waiting and
sending Fconfirrn immediately. Ilowever, this optimization is optional and requires that the
producer remembers the state of R.. There is the other alternative in which the procedure
starls from step (S3) regardless the state of H#,. This method brings unnecessary message
exchange in case that £, is internal, but will be appropriate for beckward pointer method as
discussed later.

4.2 Migration of Consumer

When a consumer migrates, the internal process pointer K, for the consumer should change
its state to external. It is also necessary to keep messages for the consumer in the queue of Ky,
until the consumer arrives new processor node. This queneing is casily performed by setting
the state of B, to external-waiting. When the eonsumer arrives new processor node, it makes
a internal process pointer 1, and send Facknowledge to B, This message will sweep out
the contents of the quene, and change the state of B, to external. This mechanism is much
simpler than that for OX which needs an additional message and state

It is easy to change the state of R, if the consumer process has a reference to R,. For
example, Takada proposcd a distributed hoplementation of ABCL in which an object has self
pointer ta its descriptor [Takada 89]. On the other hand, & KL1 process consuming a merged
stream ouly Las the reference to the queune (list) top [Inamura 89]. The merger structure (or
process poiuter), has the reference to the queune tail which is an uninstantiated variable. In
this configuration, the consumer cannot reporl its migration lo the merger structure. Thus
the consumer silently migrates with the reference to the quene top, and it will fetch elements
in the queae in two-way manner described in 2.2,

This probiem can be solved if quene elements are represented as a special data tvpe, say
stream, other than but unifiable with list, The message Fread to stream dala causes a special
reply, %merged, which orders the consumer to make a merger structure (internal process
painter) an its processor node. Then the conswner will send Facknowledge to the stream data
to sweep out the quene and change the state of the merger structure. In case of quene empty,
Sread is hooked to an uninstantiated variable. After that, when a producer puts an element
to the queue, %mermged is sent to the consnmer by the unification of the element with the

variable,

4.3 Backward Pointer

The message Fput has a backward pointer to its sender, £. Since s is usually ignored by the
receiver, it seems a good idea to remove s from the message and altach it to receiver process

*The arrival message contains new location of the external pointer associated (o the prodocer, as discossed
later,

rz ;: if)
1

£ I Ny —
{a)

— Heonfirm
r Hy HAelose{ryp) = r]._EZ (rag. Ryl = T
=1
N a Na — Ny

b

ETTI L [if} Tajy Ha

il

Figure 5: Backward Pointer

pointer, as Kukula does in OX implementation. llowever, this optimization makes it greatly
difficult to merge multiple streams at a process pointer.

In contrast with OX, our mechanizm casily handles stream merge because a consumer can
be ignorant of locations and population of producers, owing to the backward pointer in Zpnut.
Thus, a producer can duplicate its message stream arbitrarily, and distribute them to other
processes which may be on other processor nodes.

On the other hand, if duplication and addition of streams are distingunished, the iinplemen-
tation of backward pointer method becomes [uirly casy. In KL1, for example, the duplication
of @ stream makes an erroneous multiple writer stream, and putting an element to the stream
usnally canses unification [ailure. For eddition, a producer unifies a vector, whose elements
are streams Lo be merged, instead of usual cons cell. This operation will let consumer’s process
pointer kuow where producers are.

Figure 5 shows an examnple configuration with backward pointers. Additional indirection
cells r,y; are receiver cells each of which has the pointer to process pointer f; to forward mes-
sages. A receiver cells also lius a backward pointer to the external process pointer, if it referred
from other processor node. When the producer Py migrales, it sends }Emnﬁmn{rﬂ.,m) to
the receiver regardless the state of the process pointer as deseribed in 4.1 {Figure 5(b)). When
the message reaches the receiver connected to an internal process pointer, a new receiver eell
rasz is created with the backward pointer to By (Figure 5{c}).

Garbage collection for receiver cells and process pointers is also pussible. A producer may
elose the stream W ils consumer, and send a message Fclose(r) il the receiver r is external.
Closing a stream will reclaim the receiver cell. If the receiveris the last one, the process pointer
will be reclaimed too, closing its output stream. The message Felose is also sent directly
following Feonfirm from the external process pointer which like to confirm (Fignre 5(b.c}).

5 Conclusion

An efficient message transfer mechanism which is capable to bypass transit processors has been
presented. This mechanismn requires only three additional physical messages to preserve the
order of logical messages transmitted through non-byvpassed and hypassed routes. The action
of the receiver of these messages is simple and well defined.

When a producer and/or its consnmer migrates, messages for hypassing are also used to es-
tablish the connection between them. This makes the implementation of our mechanism much
easier than previous works, Language specific implementation details, such as the detection
of consumer’s migration and the management of merged streams, are also discussed.

We are now precisely designing the implementation of the proposed mechanism for KL1.
As for other languages, such as object-oriented languages, we have started basic studies about
efficient inter-processor communication scheme including our mechanism. These work will
greatly contribute to research activities ou paralle]l processing, especially for parallel program-
ming language design and dynamic load balancing.

Acknowledgments

We would like to thank Takashi Chikayama, Kazuo Taki, Katsuto Nakajima, and all those
who contributed to the distributed implementation of KL1.

References

{Chikayama 8%] T. Chikayama, H. Sato, and T. Mivazaki. Overview of the Parallel Inference
Machine Operating System (PIMOS). In Proe. Intl. Conf on Fifth Generation Computer
Systems 1088, pp. 230-251, 1088,

[lehiyoshi 87] M. Tchiyoshi, T. Mivazaki, and K. Taki. A Distributed Tmplementation of Flat
GHC on the Multi-PSL In Proc. 4th Intl. Conf. on Logic Programming, pp. 257-275, 1987.

[fnamura 89] Y. Inamura, N. Ichivoshi, K. Rokusawa, and K. Nakajima. Optimization Tech-
nique Using the MRB and Their Evaluation on the Multi-PSI/V2. In Proc. North American
Conf. on Logic Programming 1989, pp. 907-921, 1989,

[Kukula 88] J. 1L Kukula. Object Relocation in OX. In Proc. 1988 Intl. Conf. on Computer
Design, pp. 8-10, Sept. 148H,

[Nakajima 8] K. Nakajima, Y. Inamura, N. Ichivoshi, k. Rokusawa, and T. Chikayama.
Distributed Implementation of KL1 on the Multi- PSI/V2. In Proc. 6ith Intl. Conf, and
Symp. on Logic Programming, 1989,

[Takada 89] T. Takada and A. Yonezawa. The Implementation of an Objeet-Oriented Con
carrent Programming Langnage on Distributed Environments. Computer Software, Vol. 6,
No. 1, pp. 17-29, Jan. 1989, (in Japanese).

[Ueda 85] K. Ueda. Guarded Horn Clauses. Technical Report 103, ICOT, 1985, (Also in
Concurrent Vrolog - Collected Papers, The MIT Press, 1987).

(Yonezawa 86] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-Oriented Concurrent
Programming in ABCL/1. In Proc. Object-Odented Programming Systems, Languages
and Applications, pp. 258-268. ACM, Sept. 19%6.

