ICOT Technical Report: TR-0775

TR-0775
Parallel Inference Machine PIM

by
K. Taki

May, 1992

1992, 10T

Mita Kokusai Rldg. 21F (313456-3191—5

| (, C] | 4-28 Mila 1-Chome Telex ICOT 132064
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel Inference Machine PIM

Kazuo Tald

First Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, JAPAN
taki@icot.or jp

Abstract

The parallel inference machine, PIM, is the prototype
hardware syetem i the Fiith Generation Computer Sve-
termns (FGCS) project. The PLM system aims at estab.
lishing the basic technologies for large-scale paraliel ma-
chine architecture, efficient kernel language implementa-
tion and many aspects of parallel software, that must
be required for high perfformance knowledge information
processing in the 21st century, The PIM system alse
supports an L & D environment for parallel software,
which must extract the {ull power of the PIM hardware.

The parallel inference machine PIM is a lerge-scale
parellel machine with a distributed memory structure.
The PIM is designed to execute o concurrent logic pro.
gramming language very efficiently. The features of the
concurrent logic language, its implementation, and the
machine architecture are suitable not only for knowl-
edge processing, bul also for more general large prob-
lems that arise dynamic and non-uniform computation.
Those problems have not been coversd by commercial
parallel machines and their software systems targeting
scientific computation. The PIM system focuses on this
new domain of paralle] processing,

There are two purposes to this paper. One is to report
an averview of the research and r]tw:]up:m:uL of the PIM
hardware and its language svstem. The other is to clarify
and itemize the features and advantages of the language,
its implementation and the hardware structure with the
view thal the features are strong and indispensable for
eflicient parallel processing of large problems with dy-
namic and nen-uniform computation.

1 Introduction

The Fifth Generation Computer Systems (FGCS)
project atms at establishing basie software and hardware
technologies that will be needed for high-performance
knowledge information processing in the 21st century.
The parallel inference machine PIM is the prototype
hardware system and offers gigantic computation power

{ Interfaces)

PIMOS
Protocol

Application
Programs

i —
PIMOS
— KL1 Language — —ee— K| 1
il ——

KL1 Parallel

Implementation Machine

Language
or
Microprogram

PIM Hardware

Figure 1: Overview of the PIM System

Lo the k::LrWI::'L‘Et' mformation prut‘using. The PIM sys-
tem includes an efficient languege implementation of
KL, which is the kerne! language and a unigque inter-
face between hardware and software.

Logic programming was chosen as the common basis of
research and development for the project. The primary
working hypothesis was as follows. “Many problems of
future computing, such as execution efficiency (of paral-
lel processing), descriptive power of languages, software
productivity, etc., will be solved drammatically with the
total reconstruction of those technologies based on logic
PTOTaTATIN.

Following the working hypothesis, R & TV on the PIM
svatem started from serateh with the construction of
hardware, & systemn software, a language system, appli-
cation software and programming paradigms, all based
an logic programming. Figure | gives an overview of the
gystem structure.

The kernel language KL1 was firstly designed for ef-
ficient concurrent programming and parallel execution
of knowledge processing problems. Then, R & D) on the
PIM bardware with distributed-memory MIMED architec-
ture and the KLI language implementation on it were
carried out, both aiming at efficient KL1 execufion in

parallel. A machine roughly with 1000 processors was
primarily targeted. Each of these processors was to be a
high-speed processor with hardware support for symbelic
processing. The PIM system also focused on realizing a
useful R & D environment for parallel software which
could extract the real computing power of the PIM. The
nreparation of a good R & D environment was an im-
portant project policy.

KLl i a eoncurrent logic programming language pri-
marily targeting knowledge processing. Since the lan-
guage had to he a commeon basis for various types of
knowledge processing, it became a general-purpese con-
current language suitable for symbelic processing, with-
out shifting to a specific reasoning mechanism ot a cer-
tain knowledge representation paradigm.

Our R & D led to the language features of KL1 being
very suitable for covering the dynamic and non-uniform
farge problems that are not covered by commercial par-
allel computers and their software systems for sclentific
computation. Most knowledge processing problems are
included in the problem domain of dynemic and nen-
yniferm computation. The PIM hardware and the KL1
language implementation support the efficiency of the
language features. Thus, the PIM system covers this
new domain of paralle]l processing.

This paper focuses on two subjects. Oneis the B & D
report of the PIM hasdware and the KL language imple-
mentation on it. The other is to clarify and itemuze the
fratures and advantages of the language, ite implementa-
tion and the hardware structure with the view that the
features are strong and indispensable for efficient paral-
lel processing of large problems with dynamic and non-
eniferm computelion. Any parallel processing system
targeting this problem domain must consider those fea-
tures.

Section 2 scans the R & D history of parallel process-
ing systems in the FOOS project, with explanation of
some of the keywords. Section 3 charactenzes the PIM
gystem. Many advantageous features of the language, its
parallel implementation and hardware structure are de-
scribed with the view that the features are strong and
indispensable for efficient PTOZramming and execution of
the dynamic and non-uniform large problems Section
4 presents the machine architecture of PIM. Five differ-
ent models have been developed for both research use
and actual software development. Some hardware spec-
ifications are also reported. Section 5 briefly describes
the lanpuage implementation methods and techniques,
to give a concrete image of several key features of the
KLl implementation. Section 6 reporfs some measure-
ments and evaluation mainly focusing on a low-cost im-
plementation of small-grain concurrent processes and re-
mote synchronization, which support the advantageous
features of KL1. Qverall efficiency, as demonstrated by
a few benchmark pregrams, is shown, including the most
recent measurements on PIM/m. Then, section 7 con-

cludes this paper.

Several important research tssues of parallel software
are reported in other papers: the parallel operating sys-
tern PIMOS is reported in [Chikayama 1992) and the
load balancing techniques controlied by software are re-
ported in [Nitta ef al. 1992].

2 R & D History

This section shows the R & D history of parallel pro-
cessing systems in the FGCS project. Important re-
search items and products of the B & D are described
briefly, with explanations of several keywords. There
are related reports for fusrther information [Uchide 14992]
[Uchida et al. 1983].

2.1 Start of the Mainstream of R & D

Mainstream of B & D of the parallel processing systems
started at the beginning of the intermediate stage of the
FGOS project, in 1983, Just before that time, a concur-
rent logic language GHC [Ueda 1986] had been designed,
which was chosen as the kernel language of the R & D.
Language features will be described in section 3.4.

Development of small hardware and software systems
wes started based on the kernel language GHC as & hard-
ware and software interface. The hardware system was
used as a testhed of parallel software research, Experi-
ences and evaluation rosulis was fed back to the next B
& D of larger hardware and software system, which was
the bootstrapping of i & D

It was started from development of the Multi-PS1
{Taki 19858]. Purpose of the hardware development was
not only the architectural research of a knowledge pro-
cessing hardware, but also a preparation of a testhed for
efficient language implementation of the kernel language.
The Multi-P5I also focused to be a useful tool and envi-
ronment of parallel software research and development.
That is, the hardware was not just an experimental ma-
chine, but a reliable system being developed in short
peried, with measurements and debugging facilities for
software development. After construction of the Mult:-
PSI/V1 and /V2 with language implementatione, various
parallel programs and technology and knowhow of par-
alle] software have been accumulated |Nitta et al. 1992
[Chikayama 1992]. The systems have been used for the
advanced software development environment for the par-
allel inference machines.

2.2 Multi-PSI/V1

The first hardware was the Multi-PSI/V1 [Taki 1988]
[Masuda et al. 1988], started in operstion in spring
1986. The personal sequential inference machine PSI
[Taki et al. 1984] was used for processing elements. It
was & development result of the initial stage of the

praject. Six P51 machines were connected by a mesh net-
work, which supported so called wormbole routing, The
first distributed implementation of GHC was built on
it [Ichivoshi ef ol 1937]. (Distributed implementation
means a paraliel implementation en a distributed mem-
orv hardware), Execution speed was slow (1K LIPS =
logical inference per second) because an nterpreter sys-
tem was writlen in ESP (the system descrption langnage
of the P51} However, basic algorithms and techniques of
distributed implementation of GHO was investigaled in
it. Several small parallel programs were written and exe-
cuted en it for evaluation. and primary experimen bations
aof lead balancing were also carried out,

2.3 From GHC To KI1

Singe GHC had ooly basic functions that the kernel
COnCUTrent :.Dr_‘;:i’l'_ la_ﬁgua,,ge had bt SLI'PPUTT..| :a.nguage ex-
tensions were needed for the next more practical sys.
tem. Kernel language KL1 was desipned with considera
tions of execolion efficiency, operating system supports,
and some built-in functions [Ueda and Chikayama 1930]
[Chikayama 1992]. An intermediate language KLI-B,
which was the target language of KL1 compiler, was also
desigied [Kimura and Chikayama 1987]. In the Mult:-
PSI/V2 and a PIM model, binary code of KLI-B is di-
rectly interpreted by micropregram: that i, KL1I-BH s
machine languege itsell, In the other PIM models, K0L1-
B code 15 converted to lower-level machine instroction
sequences and executed by hardware.

2.4 Multi-PSI/V2

The second hardware systemm was the Multi-PSI/V2
|Tekeda et al. 1988] [Nakajima 1992), which was im-
praved in performance and functions enough 1o be called
as the first experimental parallel inference machine. Tt
started 1o operation in 1988 and was demonstrated in
the FGUS'8E international conference,

The Multi-PSI/V2 included 64 processors, each
of which were equvalent to the CPU of PSI-
[T [Nakashimsa and Nakajima 1987), smaller and faster
madel of the P51 Processors were connected with two
dimensional mesk network with improved speed (10M
Bytes/s, full duplex in each channel). KL1-B was the
machine language of the system, executed by micropro-
gram. Almost all the runtime functions of KLl was
implemented in microprogram. The KL1 implemen-
tation was improved much in execution efficiency, re-
during inter-processor communication messages, efficient
garbage collections, etc. compared with Multi-PSI/VI.
It atiained 130K LIPS [in KL1 append) in single pro-
ceszor speed. Table 1 to 4 include specifications of the
Multi-PSI/VY. Since 1983, more than 15 systems, large
system with 64 processors and smmall with 32 or 16 pro-
cessors, have been in operation for parallel software R &

D in ICOT and in cooperating companies.

A strong simulater of the Multi-PSI/V2 was also de-
veloped for software development ervironment. Tt was
called the pseudo Multi-P5I, available on the Prolog
workstation, PSL-[[. A very special feature was cauvsed
by similarity of the PSI-IT CPU and processing element
of the Mu!ti-FSTI.'"H'Q. Usual]}', PSI-I execuied ESP lan-
guage with dedicated mi:mp-mgra.m. Howewver, it loaded
KL microprogram dynamically at the activation of the
simulator evstem. The simulator executed KL1 programs
&5 similar speed as that of the Muit-PSI/V2 single pro-
cessor. Gince the PIMOS could be alse executed on the
simulator, programmers could use the simulator as sim-
ilar environment as the real Multi-PSI/V2, except for
speecup with multiple processors and process schedul-
ing. The pzeudo Multi-PSI was the valuable system for
mitial debugring of KI.1 programs.

2.5 Software Development on the

Multi-PSI/V2

Paraliel operating system PIMOS {the first version) and
four smell application programs (benchmark programs)
[lehiyosh: 1989 had been developed uatil FGOS'ES.
Much efforts was paid in PIMOS development to real-
ize a good environment of programming, debupgging, ex-
ecution and measurernents of parallel programs. In the
dcvclupnm‘n; 'D:-. smal'n B.FFII!GE.LSDI'.I 'Prl'lE:l'E..."l'IE.| EE"\-‘EIE-I ilT.I.-
poriant research topics of parallel software were inwves-
tigated, such as concurrent algorithms with large con-
currency without increase of complexity, programming
paradigms and techniques of efficient KL1 programs, and
dynamic and siatic load balaneing schemes for dynamie
and non-uniform computation.

The PIMOS has heen improved in several versions,
and ported to the PIM until 1992, The small apph-
cation programs, pentomine [Faruichi ef al. 1990], best-
path [Wada and Ichivoshi 1850], PAX (natural language
parser] and tsume-go (a board game) were improved,
measured and analyzed until 1989, They are still used
as test and benchmark programs on the PIM.

These development gave observations that the KL1
system on the Muolti-PSI/V2 with PIMOS has reached
sufficient performance level for practical usage, and has
realized sufficient functions for describing complex con-
current programs and for experimentations of software.
controlled load balancing,

Several large-scale parallel application programs have
been developed from late 1989 [Nitta ef al. 1992] and
still continuing. Some of them have been ported to the
PIn.

2.6 Parallel Inference Machine PIM

2.68.1 Five PIM Models

Design of the parallel inference machine PIM was started
in concurrent with manufacturing of the Multi-PSI/VZ.
Some research items in hardware architecture were omit-
ted in the development of the Multi-P5I/VI, because of
short development time needed for starting the parallel
software development. So, PIM took & greedy R & D
plan, focusing both the architectural sesearch and real-
ization of sofiware development environmest.

The fiest trial to the nove| architecture was the mulii-
ple clusters. A small number of tightly-coupled proces-
sors with shared-memory formed 2 cluster. Many clus-
ters were connected with high speed network to construct
the PIM system with several hundred processors. Bene-
fits of the architeciure will be discussed in section 3.7,

Many component technologies had to be developed
or improved to realize the new sysiem, such 25 parallel
cache memory suitable for frequent imter-processor com-
munications, high speed processors for symbolic process
ing, improvement of the network, ete, For R & D of
better compeonent technologies and their combinations,
the development plan of five PIM models was made, so
that different enmpanent architeeture and their combi-
nations could be investipated with assigning independent
research topics ar roll on each madel.

Two models, PIM /p [Kumon ¢ ol 1992] and PIM fc
[Nakagawa ef al. 1902, took the multi-cluster struscture.
They include several hundreds processors, maximmonn 319
in PIM/p and 256 in PIM/c. They were developed both
for the architectural research and software R & D, Each
investigated different network architecture and processor
slruclure.

The other two models, PIM/k [Sakai e al. 1991] and
PIM/i [Sato ef al. 1992], were developed for the exper-
imental use of intra-cluster arclitecture, Two-layered
coherent cache memory which enabled larger number of
processors in a cluster, broadeast-typed coherent cache
memory, and a processor with LIW-type instruction set
were tested.

The other model, PIM/m {Nakashima e al. 1992], did
not take the multi-cluster structure, but focused the rigid
compatibility with the Multi-P5!1/V2, having improved
Processar ﬁp'El':d. E.I'.H.'l |HI'E;P.I' nmenber of [HOCERENTE. T]'I'C'
maximum number of processors will be 358, The perfor
mance of 2 processor will be four to five times larger at
peek spead, and 1.5 to 2.5 times larger in average than
the Mulii-PSI/ V2. The processor was similar to the CPU
of P5I-UX, the most recent version of the P51 machine.
A simulator, pseudo-PIM /m, was also prepared like the
pseude Multi-PSL The PIM fm targeted the parallel soft-
ware development machine mostly ameng the models.

Architecture and specifications of each model will be
reported in section 4.

Experimental implementations of some LS1s of these

models have started in 1989. The final design was al-
most fixed in 1990, and manufacturing of whole system
was proceeded with in 1941, From 1991 to spring 1992,
assembly and test of the fve models have carried on.

2.6.2 Seoftware Compatibility

KL1 language is commen among all the five PIM maod-
els. Excepl for execution efficiency, any KL1 programs
including PIMOS can run on the all models. Hardware
architecture is different between two groups, Multi-F5I
and PIM/m as the one, and the other PIM models as
the other However, from programmers’ view, abstract
architecture are designed similar as follows.

The load ellocation to processors are fully controlled
by programs on the Multi-PS] and the PIM/m. It is
sometimes written by programmers directly, and some-
fines specified by load allocation libraries. Mrogrammers
are often researchers of load balancing techmiques. On
ihe oiher hand, load balancing in a cluster is completely
controlled by the KL runtime system (not by KL1 pro-
grams| among the PIM medels with the multi-cluster
structure. L'hat is, programmers does not have to think
af multiple processoes o a clusier, but specify load allo-
cation to each cluster in their programs. 1t means that
a processor of the Multi PSTor PIM/m corresponds to a
cluster of the PIM models with the multi-cluster struc-
ture, which simplifies portation of KL1 progratus.

2.7 KL1 Implementation for PIM

KL system must be the first regular system in the world
which can execute large-scale parallel symbolic process-
mg programs very efficiently, Execution mechanisms or
algorithms of KL1 language had been developed for dis-
iributed memory architectures sufficiently on the Mult-
PEI/V2. Some mechanisms and algorithms should be
expanded for the multi-cluster architecture of PIM. Ease
of porting the KL| svstem to four different PIM mod-
els was also considered in the language implementation
melhod. Only the PIM/m inherited the KL1 implemen-
tation method directly from the Multi-PSI/V2.

To expand the execution mechanizms or algorithms
suitable for the multi-cluster architecture, several tech-
nical topics were focused, such as aveiding data up-
date contentions among processors in a cluster, aulo-
matic load balancing in a cluster, expansion of an mter-
cluster message protocol applicable for the message out-
stripping, parallel garbage collection in a cluster, ete,
[Hirata ef al. 1992},

For eagsiness of porting the KLI system to four differ-
ent 'IM models, 2 common specification of KL1 system
“WPIM (virtual PIM)" was written in *C"-like descrip-
tion language “PSL", targeting a common virtual hard-
ware. VPIM was the executable specification of KLI1 ex-
ecution algorithms, which was translated to C language
and executed lo examine the algorithms. VFPIM has been

transiated to lower-level machine languages or micropro-
grrms automatically or by hands according to each PIM
structure,

Preparation of Lhe description language started in
1988, Study of efficient execution mechanisms and al-
gorithms continued until 1991, then, VPIM was com-
pleted. Porting the VPIM w0 four PIM models partially
started 1o antumn 1990, and continued to spring 1992
Now, the KL1 systemn with PIMOS 15 available on each
PIM model. Oun ihe other hand, KL1 svetemn on the
PIM/m, which was implemented in microprogram, was
made from conversion of Multi-PST/V2 microprogram by
hands or pertially in automatic translation. Prior to the
olher PIM models, PIM /in started 1in operation with the
KL1 evstem and PIMOS in summer 1991,

2.8 Performance and System Ewvalua-
tion

Measurernents, analysis, and evaluation should be dooe
on various levels of the system shown below.

1. Hardware architecture and implementations

2. Execution mechanisms or alganthms of KLL imple-
mentation

3. Coneurrenl algorithms of applications {algorithms
for problem solving, mdependent from mapping!
and iheir implementations

4. Mapping (load allocation] algonithms

5. Total syvetem performance of a certain application
PIOETAM OO & CEFLain sysiem

Various works have been
done on the Multi-P51/V2. 1 and 2 were reported in
IMasuda et al. 1988] and [Nakajima 1992]. 3 to 5 were
reported in [Nitta ef all 1992, [Furuichi ef al. 1990},
[Ichiyoshi 1985] and [Wada and Ichiyoshi 19490],

Primary messurements have just started an each PIM
models. Some intermediate resuits are included in
{Makashima et of. 1992] and [Kumon ef afl. 1992],

Tatal evaluation of the PIM system will be done in the
near future, however, some observations and discussions
are included in section G.

3 Characterizing the PIM and
K11 system

PIM and KL system have many advantageous features
for very efficient parallel execution of large-scale knowl-
edge processing which often shows very dynamic runtime
characteristics and non-upiform computation, much dif-
ferent from numerical applications on vector processars

and SIMD machines.

This section clarifies the characteristics of the targeted
problem domain shortly, and deseribes the various ad-
vanlageous features of PIM and KL1 svstem, that are
dedicated for the efficient programming and processing
in the problem domain, They will give the total system
image and help to clarify the difference and similarity
of the system with other large-scale multiprocessors, re-
cently available in the market,

3.1 Summary of Features

The total image of PIM and KL1 svetem arve briefly
scanned as follows, Detailed features and their bene-
fits, and reasons why they were chosen are presented in
the following sections.

Distributed memory MIMD machine:

Global strocture of the PIM s the distributed mem-
ory MIMD machine in which hundreds computation
nodes are conpected by highspeed network. Scala
bility and ease of implementations are focused, Each
computation node includes single processor or sev-
eral tightly-coupled processors, and large memory.
Processors are dedicated for efficient symbelie pro-
CEESTIE.

Logic programming language: The kernel language
KL1 is & concurrent logic programming language,
which is single language for system and application
descriptions. Language implementation and hard-
ware design are besed on the language specification,

KL! i= mot a high-level knowledge representation
1anguagp nor oa]angua.ge for certain type of rea-
soming, but a general-purpose language for eoncur-
rent and parallel programming, especially suitable
for symbolic computations.

KL1 has many beneficial features to write parallel
programs in those application domains, described

below,

Application domain: Primary applications are lacge-
scale knowledge processing and symbolic computa-
tion. However, large numerical computation with
dynamic features, or with non-uniform data and
non-uniform computation (non-data-parallel com-
putation) are alse targeted.

Language implementation: One KL1 system is im-
plemented on a distributed memory hardware,
which 15 not a collection of many KL1 systems
implemented on each processing node. A global
name space is supported for code, logical variakles,
ete. Communication MEEEAREs bt wesn compula-
tion nodes are handled implicitly in KL1 system,
not by KL programs. An efficient implementation
for small-grain concurrent processes is taken,

These implementations focus to realize the benefi-
cial featurss of KL language for the application do-
mains described before.

Policy of load balancing: Load balancing hetween
computation nodes should be controlled by KL1 pro-
grams, not by hardware nor by the language svs
ters antomatically, Language svstem has to support
enough functions and efficiency for the experiments
of various loadbalancing schemes with software.

3.2 Basic Choices

(1) Logic programming: The first choice was to
adopt logic progrannming as the basis of the ker-
nel language. LThe decision 15 mainly due to the
insights of ICOT founders, who expected that logic
programming was suitable for both knowledge pro-
cessing and parallel processing. A history, from
wague expectations on logic programming to the
concrete design of the KL language, is explained
in [Chikeyama 1992].

(2} Middle-cut apprnach: A maddle-out appruar_'}l af
B & Tt was taken, placing the KL1 language as the
central laver. Based on the languape specification,
design of the hardware and the language implemen-
tation started downward, and wiiting the PIMOS
operating systern and parallel software started up-
ward.

(3} MIMD machine: The other cholces concerned
with basic hardware architecture,

Datafiow architecture before mid 1980 was con-
sidered nol providing enough periormance agatnst
hardware costs, according to observations for re-
search results in initial stage of the project.

SIMD architecture seemed inefficient on applica-
tions with dynamic characteristics or low data-
pacallelism that are often seen in knowledge pro-
CESSIg.

MIMD architecture remained without major demer-
its and was most attractive from the viewpoint of
ease of implementation with standard components,

(4) Distributed memory structure: Distributed
memory structure is suitable to construct very large
system, and easy to implement,

Recent large-scale shared memory machines with
directory-based cache coherency mechanisms claims
good scalability. However, when the block size
{the coherency management unit) is large, the inter.
processol communication with frequent small data
transfer seems inefficient. KL1 programs require the
frequent small data transfer. When the block size

becomes small, large directory memory is needed,
which increases the hardware cost,

Single assignment languapes need special memory
management such as dynamic memory allocation
and garbage collection. These management should
be done as locally as possible for the sake of effi-
cieeey. Local garbage collection requires separation
of local and global address spaces with some indirect
referencing mechanism or address translation, even
in & scalable shared memory architecture, Merits of
the low-cost communication in the shared memoary
architecture decrease significantly for such the case,

These are the reasons to choose the distributed
memory structure,

3.3 Characterizing the Applications
(1) Characterization: Characteristics of knowledge

processing and symbolic computation are often
much different from those of numerical computation
on vector processors and SIMD machines. Prob-
lem formalizations for those machines usually based
on data-parallelism, parallelism for regular compu-
tation on uniform data.

However, the charactenstics of knowledge and sym-
bolic computations on parallel machines tend 1o
be very dynamic and non-uniform. Contents and
amount of computation vary dynamically depend-
ing on time and space. For example, when a heuris-
tic search problem is mapped on & parallel machine,
workload of each computation node changes dras-
tically depending on expansion and pruning of the
search tree. Alse, when 2 knowledge processing sys-
tem is comstructed from many heteregeneous ob-
jeets, each object arizes non-uniform computation.
Computation loads of these problems are hardly es-
timated before execution

Some classes of large numerical computation with-
out data-parallelism alse show the dynamic and
non-uniform characteristics,

Those problems which has dynamism and non-
uniformity of compulation are called the dymamie
and non-uniform problems in this paper, implying
nol only the knowledge processing and symbolic
computation but also the large numerical compu-
tation without data-parallelism.

The dynamic and non-uvniform problems tends to
include the programs with more complex program
structure than the data-parallel problems.

{2) Requirements for the system: Most of the soft-

ware systems on recent commercial MIMD ma-
chines with hundreds of processors target the data-
parallel computation, but they alinost don’t care
other paradigms,

The dpramic end non-uniform preblems arise new
reguirerrents matnly on seftware systems and a few
on hardware systems, which are listed below.

1. Descriptive power for complex concurrent pro-
grams
Easy to remove bugs

. Fase of ri:..rnarniv.'. lmad halmcir‘.g

. Flexibility for changing the load allocation and
scheduling schemes to cope with difficulty on

estimating actual computation loads before ex-
eculton

L Rt

3.4 Characterizing the Language

This subsection itemizes several ad vantageons featores of
KL that satisfy the requiremnents listed in the previous
section. Features and characteristics of the concurrent
logic programming language KL are deseribed in detail
in [Chikayama 1952,

The first three {eatures have been in GHC, the basic
specifications of IKLI. These features make descriptive
jrower ol the language large enough to write complex con-
current programs. | hey are the features of concurrent
programmang to describe logical concurzency, indepen-
dent from mapping Lo actual processors,

{1} Dataflow synchronization: Communication and
synchranization between KL! processes are per
formed implicitly at all within a framework of usual
unification. It is based on the dataflow model. Im-
plicitness is available even in 2 remote synchroniza-
tron. The feature drastically reduces bugs of syn-
chronization and communication compared with the
vase of explicit deseription using separate primitives.
The single-assignment property of logic variables
supports the feature.

(2} Small-grain concurrent processes: The unit of
concurrent execution in KL 15 each body goal of
clauses, which can be regarded as a process invoca-
tion. KL1 programs can thus invelve a large ameount
of concurrency mplicitly.,

(3) Indcterminacy: A goal (or process) can test and
wait for the instastiation of multiple variables con-
currently. The first instantialion resumes the goal
execution, and when a elause 15 committed (sejected
from clauses that succeed to execute guard goals),
the other wait condilions are Lhrown away. This
Function is valuable to describe “non-rigid" process-
ing within a framework of side-cffect free language.
Speculative computation can be dealt with, amd dy-
namic load distribution can be alss written.

The next features have been included in KL as exten
sions to (GIIC. {4) was introduesd to describe mapping

lload allocation) and scheduling, They are the features
for parallel progremming to control actual parallelism
among processing nodes. (5] is prepared for aperating
sislemm supporis. I:ﬂ:l 15 for the efficiency of practical
pProgTams.

{4) Pragma: Pragma is a notation to specifv goal allo-
calion lo processing nodes or specify execution pri-
erity of goals. Pragma doesn’t affect the semantics
of & program, but controls paralielism and efficieney
of actual parallel execution. Pragmas are usually at-
tached to goals afler making sure that the program
is correct anyway. [t can be changed very ecasily
because it is syntactically separated from the cor-
rectness aspect of 2 PIOETAM.

Frapma lor load allocation: Goal aliocation is
specified with a pragma, @node{®). X can be calcu-
lated in programs. Coupled with (1} and (2}, the
lrad allocation pragma can realige very flexibie load
ellocation. Also coupled with (3) and the pragma,
KLl can describe a dynamic load balancing program
within & framework of the pure lagic programming
language without side-efect. Dvnamic load balane-
ing programns are hard to be written in pure func-
tivnal languages withoutl indeterminacy.

Fragma for execution priority: Execution pri-
arity is specified with a pragma, Qprionty(Y). More
than thousands priority levels are supported to con-
trol goal scheduling in detail, without rigid ordering,

Combination of {3) and the priority pragma realizes
the efficient contrel of speculative computations.
Large number of prionity levels can be utilized in
e, parallel heuristic search to expand good branch
of the search tree at first.

{5) Shoen function (meta-control for goal group)

The shoen funetion it designed to handie & set of
goals as a task, a unit of execution and resource
management. [t is mainly used in PIMOS, Start,
stop and abortion of tasks can be controlled, Limit
of resource consumption can be specified. When er-
rors or exception conditions oecur, the status are
frozen and reporied outside the shosn

{6} Funetions [or efficiency: KL1 has several built-
in functicns or data types whose semantics is un-
derstood within the framework of GHC but which
has heen provided for the sake of efficiency. Those
functions hide demerits of side-effect free languages,
and alee avoid an inerease of computational com-
plexity compared with sequential programs.

1

3.5 Characterizing the Language Im-
plementation

Language features, just described in the previcus section,
satisfy the requirements for a system by the dynamic end
non-uniform preblems discussed in section 3.3, Most of
special features of the language mmplementation focused
to enlarge those advantageous features of KL1 language.

{1) Implicit communication:
Communication and synchronizalion among concir-
rent processes are implicitly done by unifications on
shared logieal variables. They are supported both
in a computation node and between nodes, It is es.
pecially beneficial that a remote syvnchronization s
done implicitly az well as local.

A process (goal) can migrate betwesn computation
nodes only being attached a pragma, Dnode{X).
When the Process has reference pul:llh:r.s, remiote ref-
erences are generated implicitly between the eompu-
tation nodes, The remote references are used for the
remote synchronizations or communications.

These functions lide the distrila ted mernory hird-
ware from the “concurrent programming”. That is,
programmers can design concurrent processes and
their communications, independen: from their al-
iocations o a same m|1-.p-.:r..-=_r.juu node o different
nodes. Oaly the “parallel programming” with prag-
mas, a design of load allecation and schaﬂu]ing, has
Lo concern with hardware struciure and network

topalogy.

[mplementation features of those functions are sum-
marized below, including the [eatures for efficiency.

Global name spae oo oa distributed memory
hardware — in which implicit pointer manage-
ment among computation nodes are supported
for legical variables, structured data and pro-
E';IE'I.!'.I.'I [alnlelad

o Implicit data transfer caused by unifications
and goal {process) migration

s [mplicit message sending and receiving invoked
with data transfer and gmd m'.:l:!iﬂg, including
message composition and decomposition

¢ Message protocols able to reduce the number
of messages, and also protocols applicable o
iessage oulst rip pins

{2) Small-grain concurrent processes: Eficient im-
plementation of small grain concurrent processes are
realized, coupled with low-cost communications and
synchronizations ameng them.

Process scheduling with low-cost suspension and re-
sumption, and prierity managemeni are supported.

Efficient implementation allows actual use of a lot
of small-grain processes to realize large concurrency.
A large number of processes also gives Hexibility for
the mapping and load balancing.

Automatic load balancing in a cluster is alse sup-
parted. It i3 a process (goal) scheduling function in
a cluster implemented with priority management.
The feature hides multiprocessors in a eluster from
programmers. They de not have to think about
load allocation in 2 cluster, but only have to pre-
pare enough concurrency.

{3) Memory management: These garbage collection

mechanisms are supported.

s Combination of incremental garbage collection
with subset of reference counting and stop-and-
collect eapying garbage collection

s [ncremental releasing of remote reforence
pointers between computation nodes with
weighted reference counting scheme

Dynamic memory management including garbage
collections looks essential both for symbaolic process-
ing and for parallel processing of the dynamic and
now-uniform problems. Becanse the single assign-
ment feature, strongly needed for the problems, re-
quires dynamic memory alloeation and reclamation.

Efficicncy of garbage collectars s one of key features
for practical language system of parallel symbelic
processing.

[-ﬂ Inlpfenle:llaliun of shoen function: Sheen rep-

rexents a proup of gcra.ls {pruceuea] ax pm.ﬂ:ntt:d i
the previous subsection. Shoen mechanism is im-
plemented not only in a computation nede but also
among nodes. Namely, processes in a task can be
distributed among computation nodes, and still con-
trolled all together with shoen functions.

{5} Built-in funcltions for efficiency: Several built-

in functions and data types are implemented to keep
up with the efficicney of sequential languages.

(8] Including O8 kernel funetions: Figure 2 shows

the relation of KL implementation and operating
system functions. KL1 implementation mcludes so
called OF kernel functions such as memory manage-
mert, process management and scheduling, commu-
nicaticn and synchronization, virtual single name
space, message composition and decomposition, ete.
While, PIMOS includes upper 05 functions like pro-
gramrming environment and vser integface.

The reason why the 5 kernel functions are included
in the KL1 implementation is that the implementa-
tion needs to wae those functions with as light cost
as possible. Cost of those functions affect the actual

Application
Frogramg

———
| pivos

|

= HKL1 Languaga =

KL1 Farallel
Implemantation
[0S Kemel
1 Functions

Pk Harchware

- User task management

Load distribution libraries, etc.

Uity programs { ag. shell)

Programming enviranment (eg. complier, tracer,
performance analizer)

Program code rmanagemant

Reasource management [9. 10 resources }

/

.

-

Memory management

Frocess managemeant

Communication, synchronization, and scheduling
Single name space an a distributed memaory
systam

Network message compaosition and
decompasition

Figure 2: KLl Implementation and OS5 Functions

execution efficiency of Lhe advantageous features of
KL1 language. such as large number of small-grain
cancurrenl processes, implicit synchronization and
communication ameong them (even between remoie
processes), indeterminacy, scheduling contral with
large number of priority levels, process migration
gpocified with pragmas, etc. Those features are
indispensable for concurrent and parallel program-
ming and eflicient parallel execution of large-scale
symbolic computation with dynamic characteristics,
or large-scale non data parallel numerical computa-
C1Gms,

Considering & construction of similar purpose par-
allel processing system on 2 standard operating eys-
tern. interface level to the U5 kernel may be too high
(or mnay arise Loo muech overhead). Soome reconstroe-
tion of 05 implementation layers maght be needed
for the standard paraliel operating systems for those
large-scale computation with dvnamic characteris-
tics.

3.6 Policy of Load Balancing

Such & basic policy has been taken that load balancing
between computation nodes should be completely con-
trolled by KL1 programs, not by hardware nor by lan-
puape systern automabically, Thers are two reasons,

One is thet KL1 can describe load balancing programs
within usual logic programming fealures. Sinee many
research topics on load distribution have been remained
unsolved especially on dynamic problems, experiments
on software controlled load balancing is advantageous
in an aspect of flexibility, T doss not include significant
overhead because the KL1 language system realize a very
low-cost implementation.

The other is that distributed memory architecture

needs strong locality of computation, for which some pro-
prammers' help is important {or better ivad balancing.
Language system has to support e:mugh functions and
efficiency for the cxperiments of various load balancing
schemes b:.-' software.
Some load balancing schernes are prepared as utility
programs, available for application programmers.

3.7 Characterizing the Hardware Ar-
chitecture

Features of PIM hardware architecture are lisied below,
Seme of them are 5pcciajizrd for symmbuolic processing and
]a,[ge-sca.'le pa:rallel cumputa.i.iun of d}rum'rﬁc pmblm‘ns,
and some of them are standard.

(1) Distributed memory MIMD machine:
Target hardware iz the large-scale MIMD machine
with distributed memory stroclure. Hundreds pro-
cessing nodes are connected by highspeed network,
It was a basic choice of the B & D. The structure
was considered to have large scalability, to be mostly
easy for implementation, and Lo be suitable o wep-

arate local garbage collections and global.

{2) Cluster structure: Eight processars, that are
tightly coupled with shared bus and shared mem.
ary, form a cluster. Many clusters are connected
with highspeed network to form the total system.
Programmers deal with a cluster as a computation
node with large computation power and large mem-
ary, since automatic load balancing is supported by
lanpusge system within a cluster.

Cluster 15 a substructure of the PIM, realizing a

low latency and high bandwidth connection between
processors. There are two major advantages of

the cluster structure. The first is its applicability
to those problems which have less locality, whils
distributed memoary architecture hardly processes
those problems efficiently. ‘L'he second is higher ef-
ficiency of memory usage compared with full dis-
tributed memory systems with the same memory
size. A substructure with higher bandwidth inter-
processor connection is effective to reduce needs of
memery size per processer, keeping the same efli-
ciency of parallel processing. It affects the total sys-
tem cost significant]y

A disadvantage is helerogenecus inter-processor
connections that increase the complexity of hard-
ware implementations, however, the cluster with
tightly coupled processors will be a standard com-
ponent i Lthe near fature.

Large memory against processing power:
WNon-uniform computation or dynamic computation
with wide variation of grain size require larger mem-
ory to keep the processing efficiency, compared with
data-parallel computation, Because extra work is
needed to fill the idling time cansed by irregular syn-
chronization, which reguires more working space in
a Mmemory.

(3)

{4) Highspeed network: [ighspesd network connee-
tion between processing nodes has already become
standard. However, the ratio of network load and
procezssor load, cansed by netwark communications,
is different fram the case of numerical processing,
Management of virtual sing]x: name space usually
anses extra processor loads for each communica-
tions, compared with the case of simple data trans-
fer in numerical processing. [t causes less needs to
network bandwidth against processing power.

On the other hand, parallel symbolic computation
with dynamic features often arises remote synchro-
nizations with small data transfer. Hesponse of
the network comemunication is more important than
bandwidth for such cases,

(5) Coherent cache memory: Each processor in 2
cluster has coherent cache memory with write back
strategy. Basic technology is similar to the stan-
dard coherent cache memory used in commercial
tightly eoupled mulliprocessors. However, the oc-
currence of cache to cache data transfer, caused by
inter-processor communications, is larger than the
usual time sharing uwse of commercial multiproces-

Optimizations of cache commands and bus

protocols for such usage is important to reduce bus

traffic.

SO05.

{6) Dedicated processors: Processors include special
features of Lag handling, date type checking and
branching, and dereferencing pointers for eflicient

10

KL1 execution, These features are useful not
enly for symbolic processing, but alse for an efl-
ficient implementation of a single-assignment lan-
guage needed for the parallel processing of the dy-
namic and non-uniform problems.

The processors have dedicated instruction scts de-
rived [rom the abstract instruction set KL1-B,

Pipelining and RISC-like instruction sets are also
usedd, that are standard technigues,

4 Machine Architecture and

Hardware

Overall structure and features of the PIM system were
presented in the previous section. This section shows
the machine architecture, hardware implementations and
some technical data of each PIM models in detail.

Overview of Five PIM Models

Five PIM models have been developed, that have differ-
ent architectures or different combmations of component
technelogies, and have different rolls of H & 1

4.1

PIM/p : PIM/p is the largest PIM model which con-
tains maximum 512 processors. PIM/p focuses both
architectural research and actual use in software R

& D.

PIM/p took the m:ult.t-duster architecture shown in
Figure 3. Maximum 64 clusters can be connected.

Connection network took hypercube topology. Two
in&ependent netwarks are connected to each clus-

ters.

Each cluster contains eight processors connected
with & shared bus and shared memery. A proces-
sor has coherent cache memory, a network interface
unit “NIU", and an I/0 device interface (SCSI bus)
{Kumon et al. 1892]

Processors in all PIM models have SCS1 buses, which
are used to connect FEPs (Front End Processors] and
hard disks. The PSI-UX [Nakashima et ol 1992] is used
for the FEF, as an intelligent I/0 device for human-
machine interface.

PIM/m : PIM/m targets the software development
machine and rigid compatibility with the Multi-
PSI/V2. 236 processors are connected with two
dimensicnal mesh network. The structure is
shown in Figure 4. 32 hard disks, which are
HEE mn total, and meny FEPs are connected
[Nakashima et al. 1992],

Double Hypercube Network

Figure 3: Overview of PIM/p Architecture

,
PE
240

16
e ",
FEP
R
PE FPE FPE
21 T 242 7 255
T T |
A 0
FE PE ('
18 =
I T
PE PE
2 m = 15
r
]
e [B — GCE s

Figure 4: Overview of PIM/m Architecture

PIM/e : PIM/e also takes the multi-cluster archi-
tecture including 256 processors in total. A
cluster contains eight processors. 32 clusters
are connected with a crossbar switch network

[Nakagawa ef al. 1992].

PIM/k : PIM/k f{focuses on architectural research
within a cluster. Hierarchical cache system has been
investigated to connect larger number of proces.
sors in a cluster [Sakai et al. 1991}, Four processors
share a local bus and second cache. They form a
mini-cluster. Four mini-civsters are connected to a
shared memory-bus and shared memery (Figure 5).

PIM/i : PLIM/ is alse o research use system. LIW-type
instruction set and cache protocol with broadcasting
type has been vestigated [Sato ef al. EEEZJ.

The glebal configuration of five PIMs are summarized
in table 1.

Specifications of components, that are processors, net-
works, and cache systems, will be reported in the follow-
ing subsections.

(140}
- -

presafeanne- Mini-Cluster 0 -~ ¢, Lo :

.| PEo|| PE:|| PE:|| PEs| | | % | |

DD e G] Te] Mini- | Mini- ! Mini- !

 |[Gache]) |[Gache]| [[Sactg | |[Sache)l § ! Cluster | Cluster; | Cluster |

5'1"f['l Lo v o2 1 8

2nd Cashe

I-B-E; ----------------- - rrame -=t ke ---[----‘ Liama 1 ----- J.___a]_..u...

|
Shared Memory
Figure §: Overview of PIM/k Architecture
Table 1: Glebal Canfiguration
I'D]J-:Gog__}r Number of Ulusters | Total Number of PEs || Memeory Size/Cluster

FIM/p hypercube = 2 64 512 256 MB
P.I['nyrij B mesh 56 256 &0 MB
PIM/c crasshar 3z 256 160 MB
FIM/k — 11 16 1 GB
PIM/i — i 16 20 MB
Multi-P51/V2 § mesl | [B4 B0 MDB |

(1 four mini-clusters included)

4.2 Processing Element

Since KL1 implementation requires frequent runtime
type checking, all CPUs of PIM models are designed as
the tagged-architecture similar to the Multi-PSIL.

PIM/p, PIM/i and PIM/k have RISC-like instruction
set whereas PIM/m and PIM/c have CISC-like micro
progeammable instruction set {Table 2}, The former pro-
cessors execute machine instructions which are at a level
still lower than KLI-B. The latter processors interpret
KLI1-B code by horizontal micre program.

The CPU of PIM/p [Kumon ef al. 1992] has a unigue
feature called macro-call [Shinogi et ol 1988] instrue-
tions for light-weight subrontine calls. The instructions
enable the size of compiled user program codes to be kept
small and to reduce the overheads of subroutine calls. It
also has some more instructions dedicated to KL1 im-
plementation, such as dereference instructions and MRB
[Chikayama and Kimura 1987] incremental garbage col-
lection instructions. The CPU takes four-stage pipeline

12

structure.

The CPU of PIM/m [Nakashima et al. 1592] is a mi-
croprogram controlied processor with five-stage pipehin-
ing. The instruction set is KL1-B itself, which is binary
compatible with Multi-PSI/V2, Sophisticated data type
checkg and the automatic dereference mechanism are
special features.

The CPU of PIM/i tries the LIW{long instruction
word }-type instruction set.

4.3 Network

Networks are summarized in table 3.

In PIM/p, each processor has a NI and four Nls are
connacted to a router. The router works as a node in the
network. There are two hypercube networks to attain
large band width.

PIM/m has a two dimensional mesh network, similar
to the Multi-P51, The networks of PIM/p and PIM/m
realize so-called the worm-hole mutius.

Table 2: Specification of Processing Element

Tnstruction set Cvcle time | LS! fabncation | Line interval
PIM/p RISC + marra instruction il nsec f | standard-cell 0,96 pm
PIM/m CISC [micro programmable) | 63 nsec standarc-cell 0.8 pm
PIM/c C15C (micre programmable) | 50 nsec | gabe-arrays 0.8 um
PIM /K RISC 100 nsec custom 1.2 gm
PIM /i RISC 100 nsee § | standard-cell 1.2 ym
[Multi-PSI/V2 | CISC (micro programmable) | 200 nsec gate-arrays | 20pm |

(f are design specifications. They are under testing with longer eycle time.)

Table 3: Netwaork

. # PEs in a cluster | # Nls in a cluster | Transfer Rate §
FIM/p 5 5 T3 MB/sec | %2
PIM S 1 1] MB,I"S':C
PIM /e B 1 40 MEB/sec 1
PIM/k 16 — —
PIM,: B 1 -_
[Multi-PS1/VZ | 1 [1 10 MB/sec |

{PE = processing element, N = network interface)
{1t per channel, fnll duplex

PiM/e has one special processor named cluster con-
troller in each cluster. The cluster controller is connected
tro o oshared bus and works as 2 network interface o a
crossbar network, The chuster eontroller has overall re-
sponaibility for netwark communications.

4.4 Cache System

Since KLI programs anse asynchronous communica-
tions among processors very frequently, shared bus traf-
fic tends to become very heavy. To solve this prob-
lem, an optimized coherent cache protocols were de-
signed [Goto ef al. 1985%])[Matsumoto ef al. 1987], which
can keep the locality high and reduce the shared bus traf-
fic [Nishida el al. lggﬂt. All PIMs have write-back type
conerent cache protocols (Table 4). Low cost locking
mechanisme are also supperted with utilizing the cache
block status.

5 Kl
tion

Language Implementa-

KLI1 language has many beneficial featires Lo write ef-
ficient concurrent and parallel progeams of the dynamic
and non-uniform problems, which was explained in sec

13

1t design specifications)

tion J.4. The KL1 implementation 15 focused to realize
the execution efficiency of those language features. This
section looks at the language implementation methods
and technigues briefly, that correspond to the impiemen-
tation features presented in section 3.5. The purpose of
this section is to give & concrete image of several key fea-
tures of the KL1 implementation. Detailed information
are presented in [Hirata et ol 1992] [Nakajima 1992].

5.1 Execution Model of KL1

For the help of getting the image, the execution model
of KL1 15 shown brieflv. KL1 program is made up of 2

collection of clauses, whose form 1s:

H:=Gy, .G | Byy oo, Ba.

guard part bady pars

where H is the head, &, the guard goal, that are collec-
tively called the guard part. The H; are the body goals
and the vertical bar { | } 15 the commilment operater,
The guard part can be considered as a pattern match
and condition tests. If there are alternative clauses, their
puard parts are tested sequentially,. When a clause sue-
ceeds the pattern match and the condition tests, the
clawse commits, The caller goal is reduced to the body

Table 4; Specification of Cache System

Coherence Contral | Mapping Cache Size
Protocal # States f Instruction | Data
PIM /p mvalidation 1 I 4 way 64 LB
PIM/m — — ! direct-map 3RHB] 20 KB
PIM/c mvalidation 5 2 way =0 KB
PIM/E hierarchical 1 [1eL) direct-map 128 KB | 256 KB
invalidation [2na) 4 way 1ME| 4MB
FIM /1] broadeasting i direct-map 160 KB | 160 KB
Mulu-PSI/V2) -] — direct- map 2 KB '

[1 does not include fﬂrhng state. }

FProcesang Element

Current (Goal

Creation by
goal rewriting

Suspension by
guard unification

—

©
©@ ©

Heady Goals

©
© ©

Suspended Goals

Nesumption by

Bndy unification

Figurl? f: Execution Model of KT.1

goals of the committed clause. L'hese body goals are ax-
ecuted concurrently [AND-parallel]. 4 K1 clanse can
b considered as & rewrite rule, which rewrites the caller
goel to the body poals.

An execution model of KLI is shewn in Figure 6.
There is & goal pool which bolds the reedy goals to be
rewritten. One of ready goals 15 taken from the goal poal
for the execution, which is the current goal. When there
is a clanse, which matches the current goal and succeeds
the condition tests, the current goal s rewritten, The
rewritten goals are placed back to the goal poal.

Goals may have common variables, that are used for
the communication and synchronization. Let us assume
that there are two goals sharing a logical variable. A
body unification, produced in a poal rewriting, can in-
stantiate the variable. Guard unifications, that appear in
a execution of the other goal, test the instantiated value
ol the variable. This 15 the communication between the
goals. When the variable 1s not instantiated before the

14

guard unification, and no other clause can commuit, the
current goal 15 suspended. Instantiation of the varable
resuimes the suspended goal. This is the synchronization
[Ueda and Chikayama 99|

5.2 Supports for the Implicit Commu-
nication

There are several important mechanisms that realize the
implicit communication befween compuiation nodes.

Let us assuine Lhat thers are Lwo goals shianing a vazis
able in a computation nede. Each goal has a reference
to the variable. When a goal is sent to the other compu
tation node, a remote reference has to be generated im-
plicitly. The implieit communication between the goals
in the difterent nodes will be performed along with this
remote reference,

The wnportant mechanisms are shown briefly.

5.2.1 Global Name Space

The implicit reference management across the computa-
Liom niwles are supported for logical variables, structured
data and program code. It is a support of the virtual
global name space or a distributed memory hardware,

The export /import tables realize the feature. The
export/import tables are the indirect reference tables
that separate the local address space in a computation
node and the global space for the remote references (Fig-
ure T} The remote reference (external reference) is iden-
tified by the pair (Aed, where A is the node number
in which the referenced data resides, and e is the entry
number of the export table. Registration to the tables
are performed dynamically when a new remote reference
is made [Ichivoshi ef al 1987

The entry number & does not change even when a lo-
cel garbage cellection occurs which moves the location
of the exported cell. When a duplicated exporta-
tiunﬁmportatiun occurs, the same table entry num-
ber i used (reducing a mew registration to the table)

which eliminates useless data transfer between nodes
[lchivoshi er el 1988].

Export Table | Import Table
. HEF
L1 <h.e> EX
exported 1
cell, X
Mode A MNode B
Figure 7: Export and Tmpert Tables
5.2.2 Implicit Data Transfer

Tiata Transfer by Unifications: The implicit data
transfer between computation nodes is injtiated by uni-
fications.

A guard unification tries to test an instantiation of
a logical wariable. When it is an external reference
(EX in Figure T), & read request message, Yread{X,
ReturnAddress), is sent to the node A, Where X 15 the
external reference (Ae), and ReturnAddress is a newly
created export Lable eniey in the node B

The poal execution, which initiated the guard unifica
tion, i3 suspended when no other clause can commit

When the referenced cell has a conerete value
¥, it is returned by the message, Yanswer_valuael(
ReturnAddress, V }. The message resumes the sus
pended goal, which waits for the value V. If the refer-
enced cell i not boond Leoa e '\.'ulut_-l Lhe read re\q.u-csl,
iz suspended entil the variable is instantiated.

When a body unification tries to unify a remote cell
X with & term ¥, a message Yurify (¥, ¥) is sent to
the referenced cluster. When Yis an atomic data or a
structure, a simple dats transfer ocours,

The unifications betwesn two oniostantialed variables
in different clusters may make reference loops between
clusters. This problem can be solved by controlling the
direction of reference pointers [lchivoshi et al. 1988].

Lazy Transfer: When a structured data is transferred
between nodes, one-level transfer is performed. The com
ponents of a structure may be atomic data or pested
structures. The atomic data are copied and transferred
directly, while {he pested sicuctures are remained as
pointers and transferred as external reflerences. This is
called the one-leve] transfer. The policy 1s that the data
transfer should be delayed as lazily as possible, until the
data is really needed for some operation,

Code Transfer: Program codes are handled as large
struclored data. They are loaded on one cluster by a

15

loader program at first. Any KL1 goal hold the refer-
ence to the corresponding code object. When a goal is
sent to a cluster and the cluster does not contain the cor-
responding code object, the goal execution is suspended
and the eade is dynamically transferred from the cluster
which is pointed by the external refecence held in the
goal.

5.3 Small-Grain Concurrent Procoesses

5.3.1 Process Group Management

KLl goals can he considerad as lightweight processes.
For the efficient parallel processing, a user task have
to include a lot of lightweight processes. It s needed
for the parallel operating system that a group of goals
(lightweight processes) can be handled all togeiher as a
task. The shoen supports the meta control facilities of
execution control, resource management and status mon-
itoring for the goal group.

Shoen and Foster Parent: Anv goals have to belong
to & certain shoen. The foster-porent 1p 13 2 proxy sheen,
which 15 ¢reated in every compuiation nodes where the
goals of the shoen are executed. Each goal points their
foster-parent in the node, and test the request for meta-
controls tn a certain interval (e.g. in every goal reduc-
tions). Figure & shows the relationship among sheens,
fnstr:r-pn.mn ts and Eﬂa.is. I

A sheen and a foster parent keep their envirenments,
such as status, resources, and the number of goals.
Foster-parents reduce the communication between sach
goal and their shoen, to avoid an aceess bottleneck at the
shoen.

Termination Detection: The termination detection
of & goal group is one of the ditlicult subjects in parallel
compulation systemns, especially when messages may he
in transit on the network. Fven if all the foster parents
report their terminations, the shoen should not terminate
when there are goals in transit.

One of the solutions is the Weighted Throw Count-
ing (WTC) scheme [Rokusawa et al. 1888], which is an
application of the Weighted Reference Counting (WRC)
scheme [Watson and Watson 1987).

5.2.2 Geoal Scheduling

The goal scheduling, discussed here, is a different concept
with the goal group management by shoen. The goal
scheduling 15 Lhe stale transition management of each
goals, among ready, ezeculion, and suspension states,
Execution priority is also managed.

Basic Goal Scheduling Scheme: The ready goals in
a computation node are linked into a list forming & ready-
goal-stack. In principle, a current goal is popped from the

shoen
: ﬂ'\thl'.llll_vl'-l--...,...M”.
shoen
eee| @ |e
©l©) ©@©
cluster 0 cluster 1 clustar 2
shoen : shoen record G : goal

fp : foster-parent record

Figure 8 Relationship of sheen and foster-parents

ready-goal-stack, then the goal rewriting is performed,
The rewritten gonls are pus].u:d to the rca.dy-g‘qal-sta.gk?
which is the depth-first scheduling in a computation
node.

When any unification suspends, the goal is linked as
a suspended goal to the vanable which caused the sus-
pension. Here, the non-busy waiting methed has been
adopted. That is, the suspended goal is not scheduled
until the variable will be instantiated. When a suspended
goal is resumed, it is linked to the ready-goal-stack AgAin.

Execution prierity of goals can be specified by
pragmas. The ready-goal-stack is managed with the pri-
ority of goals.

Goal Distribution within a Cluster: An automatic
load balancing seheme is tried within a clusier. An indi

vidual ready-goal-stack it provided for the highest prior-
ity goals in each processing element, to avoid confiicts of
access to the common goal-stack [Sato ef al. 1987], The
highest-priozity goals are distributed to keep the proces

sor loads in good balance [Hirata ef of, 1992]

Inter-cluster Goal Distribution: A body geal,
goal@node(CL}, is thrown with a message Ythrow to a
node CL when the clause commits. The node (more pre-
cisely, a certain processing element in the cluster CL),
that received the Ythrow message, links the goal to its
ready-goal-stack as well as to the foster-parent. If there
is no foster-parent, one will be created on the spot.

16

5.4 Memory Management

Memory management like dynamic memory allocation,
reclamation, and garbage eollection are indispensable for
concurrent symbalic processing languages.

5.4.1 Incremental Garbage Collection by MRB

The MRER methad 15 a subset of the relerence counting
gcheme which maintains one-bit information in peinters
indicating whether the pointed data object has multi-
ple references to it or not [Chikayama and Kimura 1987)
['Ena.mnra el al, 1938]. Garhag?. cells that have n:ﬂ}-‘ o
single reference can be reclaimed inerementally.

The MRB is also vseful to optimize the updating of
structured data. Structured data must be copied in prin-
ciple when it is updated partially, because af the single-
assignment feature. However, 1t can be rewritten de-
structively when the strueture has only a single reference,
keeping a semantics of the single-assignment language.

5.4.2 Garbage Collection within a Cluster

Another garbage collection is implemented, which is per-
formed locally within a cluster aceompanied with the in-
cremental garbage collection by ML, Because the MRD
scheme leaves some garbages,

So-called stop and copy scheme is adopted basically,
The parallel mechanism has been investigated to collect
garbages by all processing elements in parallel in a cluster
[Imai and Tiek 1991].

5.4.2 Inter-Cluster Garbage Collection by WEC

An incremental inter-cluster garbage collection scheme,
the weighted export counting (WEC) scheme is em-
ployed [Ichiyoshi et ol 1988]. It is an application
of the weighted reference counting (WRC) scheme
[Watson and Watson 1987]. The scheme has several ad-
vantages. One is the incremental garbage collection ca-
pability with fewer message exchanges compared with
the full reference counting. The other is also a capabil-
ity of reducing the messages for the case when a imported
data has to be exported again to the different clusters,

5.5 Abstract Instruction Set KL1-B

KLI-B is the abstract instruction set which is common
in PIM models. The role of KL1-E is similar to that of
WAM [Warren 1983], An explanation of each KL1-B in-
struction can be found in [Kimura and Chikayama 1987).

Mast of the KL]1 implementation schemes, presented
in previous eections, are realized as runtime routines that
are invoked by certain KL1-B instructions implicitly.

The KL1 compiler for PIM has two phases. The first
phase compiles a KL.1 program into an KL1-B code. The
second phase translates the KL1-B code into a native
code, making a linkage with runtime routines,

6 Measurements and Ewalua-

tion

This section describes some measurements results and
evaluations for the parallel inference machines and the
language systern, 'L'he measurements focused on a low-
cost implementation of emall-grain concurrent processes
and remote synchromization and ecommunication. Mea-
surementls on a few benchmark programs are also re-

ported. including the most recent measurements on
PIM/m.
6.1 Measurements and Ewvaluation on

the Multi-PSI/V2

The KL language implementation includes so-called
05 kernel funclions, as shown in section 3.5, Most of
the implementation features, that were presented in sec
thom 3, concernn with the 05 kerne! functions. Efficient
implementations of these functions enable the actual use
of the benelicial features of KL1 language (presented in
section 3.4) 1o write efficient parallel programs of the dy-
namic and Ron-untform problems for large-scale parallel
TACOINCeS,

The actual execution cost of some of these functions
hiave been measured on the Multi- PSIAEZ, Goal schedul-
g cost within & computation nede, communication
cost between nodes. and comrnunication overhead in
benchmark programs are reported. Measurements re
sujty shows the quite low-cost implementations,

Mote that the Multi-PS1/V2 has 2 mesh strueture with
64 processing elements (PEs). There are 64 computation
nodes each of which is one PE.

6.1.1 Goal Scheduling Cost in a Naode

Goal scheduling and
a processing clement
[Ornighi e ol. 1500].

I'he enqueue and dequene cost of o simplest goal
15 5.4 ps (27 micro-instrection steps). When a goal is
rewritlen to several goals in a goal reduction, they are
pushed on the ready-goal-stack once (except for one goal
which can be executed directly). The enquene and de-
gueue cost s the summation of the pushing and pepping
cost of a goal to the ready-goal-stack. The enqueue and
dequene cost can be considered as & part of the process
Sork cost.

The single-suspension cost of & simple goal is 14
us {T0 steps). When & goal iz suspended waiting for a
variable instantiation, the goal is hooked to the variable
cell. When the variable is instantiated, the goal becomes
executable and is pushed on the ready-goal-stack., The
single-suspension cost is a summation of the hook, en-
quene, and dequeve cost. The single-suspension cost can

synchronization cost within
{FE} have been measured

7

be considered as the syncﬁmni;r:ﬁﬂn rost between -
CES5E28 in a FI'CH:EEEDI.

The two-way multiple-suspension cost of a simple
Eoal is 28 us {140 steps). A goal can wait for the vari-
able instantiation of several different variables. The first
instantiation resumes the goal execution. If the mstan.
tiation causes a comitment of a clause, the other wait-
ing conditions are thrown away., The two-way multiple-
suspension 15 a case of two variables. The {eature is 2
combination of the ill[th‘.]’lTiiJ‘lH.l:'.}" amd the H}'Tu_'h]':m;iz,a-
tion. Coest incresse from the single-suspension corre-
E;]nl'll']!. to the ir1'i|1FEI'|:‘|E|'I tabion cost of the 'rr.!.dff.cnﬂm.ncy_

These low-cost implementations encourage the actual
uge of a lot of small-grain processes. These costs of the
poal scheduling also give a guideline for the lower bound
of pracess grain sige for efficient execution within a com-
putation node.

6.1.2 Communication Cost Between Nodes

Cost of the communication primitives have been mea-
sured on the Multa-PSI/ V2
svstemn [Nakaiima and Tchivoshi 1980). A goal sending
to ansther PE [a remote call of a lightweight process) is
realized by Wthrow goal message. Inter-PE reading of
values (used for remote synchronization and ¢ommuni-
cation) is realized by Xread & Yanswer_value protocols.

Figure & shows the cost of handling those three mes-
sages at both sending and recerving PE,

The
cost is broken down into three parls. Encode/decode
KL1 term, etc. is for encoding and decoding message
packets to/from internal representations of KL1 term. It
also includes the maintenance of the exporti/import ta-
bles and the foster parent records (c.f. section 5). It is
the essential part of the message handiing.

Basic message handling routine in Figure 9 cor
responds to the simple dats conversion between 40-bit
tagged words and byte-serial messages. The routine in-
cludes data transfer to/from the hardware buffer. The
cost can be potentially reduced by hardware supports,
Capy-RPEB stand: for copying a message packet from the
hardware buffer to the software buffer. [t is only exe-
cuted when the bardware buffer tends to be full.

The network transfer speed i1s 0.2 ups/byte. It takes
below 1 ps to hop one network node. It means that the
message handling cost, just explained befare, i1 dorminant
in the communication cost.

Send_throew {a) shows the cost of sending a 65 byte
Athrow_goal message containing & goal with three ar-
guments. It takes 419 micro-instruclion steps or 85 s
[evele time = 200 ns). Receive_throw (k) shows the cost
of receiving the same §throv_goal message and storing
it in a goal stack.

The bar graphs (c), (d), (e} and (f} describe the
cost of sending and receiving a Yread message and

Send_throw | goal | atom, EXREF EXREF | | [65 bytes |

a) Poooees] | 85 usec (412 steps)

Racedve_throw

o TR | e steps

Send_read {EXREF) [14 bytes |
{cl N- 25 usec {117 steps)

Receive_road

o S] 35 psec (175 steps)

Send_answer_value | Jatom | EXREF]) [24 byles |

@iasy | 42 psec (208 steps)

Receive_answer_velue

o IR | 80 usec (387 steps)
4 | L 1 1 L J
F T T L T | T 1
a 20 40 60 B 100 120 140 | psec)
EXREF External podnter
B Copy_to RPKB

Blasic massage hardling routing
] Encodeidecods KL1 term, aic.

Figure 9: Message Handling Cost

Table 5: Message Frequency and Reductions
Pentomino (39.3 KRPS on 1 PF) -

Mumof PEs | 4 PEs | 16 PEs | 64 PEs
execution time (sec) 34.63 ' 14.62 4.35
total reductions (= 1000) | 8317, 1 8,332 [8,340,
reductions/sec (KILMS) 152.2 a7l | 19194
reductions/msg 221, 108, 48.
msg bvtes/sec | = [000) 14.5 18,1 4410.5
Bestpath (23.4 KRPS on | PE)

] Mumof PEs | 4 PEs | 16 PEs fid PEs |
execution time {sec) 10,655 | 4.062 1.691 |
total reductions (= 1000} | 087.7 1213.6 1,5(5.2
reductions/sec [KRPS) a7 208 4 Bup.1
reductions/msg 21.9 11.7 [
msg bytes/sec { x 1HH)] 114.0 6025 3.854.3

{KRPS: Kilo Reductions Per Second)

Table 6: Single Processor Performance of PIM /m

| benchmark | condition PIM/m | Multi-PSI/v2 [=T
append LO0D elements || 1.63 msec T.B0 msec 4.8
best-path | 90,000 nodes 147 sec 213 sec 1.3
pentoming | 8 % 3 box 107 sec 240 sec 2.2
15-puzasle 2,885 K nodes || 9,283 sec 21 6610 sec 2.3

18

(8]
HE R

‘Workrata

Workrate

1 1 Fi & & € A fa
Ny of PES O ide Num of PEs
B Cache miss
B Msg handing
W Computing

40

Q 2 dn [=) a 20 ED
Mum of FE2 Mum of PEs
& Speec-un
=+ Ideal
Pentomine Bestpath
Figure 10: Decomposition of Processor Time and Speed-up
Table 7: System Performance on Pentomino (8 » § box}
{ No. of PEs PIM/m Multi-PS1/v2 Mo
Time | Spesdup Time | Speedup
R PE] 1,124ms | 9541
123 PE | 1,290 ms 8313]
64 PE | 2,162 ms 49.60 4,679 ms al.20 216
{3 TE] 3,69 ms 2903 #8278 ms 23.94 2.24
W PE L 6,910 ms 15.52 | 15,686 ms 15.27 2.27
1 PE || 107,238 ms 1.00 | 239,545 ms 1.00 2.23

famswer value message.

Sending and receiving cost of the Ythrov_goal mes
sage, 215 ps {1056 steps) in total, can be considered as
the cost of a process fork te a different PE, or & remote
procedure cali, Cost of the Lread and Yanswer.value
messapes, 182 ps (897 steps) in total, correspond to the

cost of the remote syochronization.

Comparing these value with the cost of local opera-
tione in the previous section, the remote synchronization
Lakes around 10 times higher cost than local. The remote
procedure cell costs more but below 40 times of the local
process fork. These remote/local ratic seems low enough

19

Table 8: System Performance on Pentomino {10 x 6 box)

No. of PEs PIM/m Multi-PSI/v2 e
- Time | Speedup Time I ngdug

256 PE 103,655 ms 234.29

128 PE 18,452 ms 128.87
64 PE | 350268 ms | 67.60 | 586,325 ms 247
J2PE| 604550 ms | 3496 | 1,729,430 ms 240
16 PE || 1,367,240 ms 17.76

1 FE Il 74 285 015 ms 100 |

to encourage the srmall-grain concurrent pracessing be-
tween FEs. Measurements of the communication cost
give a guidehine for the process grain size {communication
rate) to keep the communication everhead low, When a
Process ganin size decreases, becoming clese to the com-
munication cost, communication overhead increases sig-

nificantly {clase to 50% of CPU time),

©6.1.3 Measurements on Benchmark Programs

Benchmark Prugramu: The fpl]uwings are the two
benchmark programs used here.

Pentomino: A program to find out all solutions of a
packing piece puzzle { Fentomine] by exploring the
whole Ot tree. Two-level dynamic load balancing
i employed [Furuichi ef al, 1990],

¢ Bestpath: A 160 = 160 grid graph is given together
with non-negative edge costs. The program deter-
mines the lowesl cost path from a given verlex to
all vertices of the graph by performing a distributed
shortest path algarithm [W'ml.‘-L and Tehivoshs IQQ[I-].
The vertices are represented by KL1 processes, and
they exchange shortest path information along the
edges. 25,600 small processes work cooperatively.

Message & HReduction Profile: Table 5 chows
the execution time, the reduction and message rates,
etc. [Nakajima and Ichiyoshi 1950]. Average tiroe of one
reduction in a PE is an inverse of the KRPS velue. 25
@s (127 steps) in Pentomine, and 43 ws (214 steps) in
Bestpath. They are almost the grain size of concurrent
processes in a PE. The message sending rates an 64 PEs
are: one message per 88 reductions in Pentomino, and
one per § reductions in Bestpath.

The average network traffic was e
poted in [Nakajima and Ichiyoshi 1990], caleulated from
these figures. Hlelative to the 10 Mbyte/s network chan-
nel bandwidth, the average traffic on a channel is very
small: 0.08% (Pentomins) and 0.1% (Mestpath) of the
bandwidih.

Communication Overhead: Prafiling data of pro-
cessor execution has been measured on the two bench.
mark programs [Nakajima 1992]. The execution time is
broken down into the four categories in Figure 10: com-
puting time (reduction operations}, message handling
tirne, cache-miss penalty, and idling time. The average
of all PEs are shown in the bar graph. The resultant
speed-up is also shown with the ideal one.

Two-level dynamic load distribution is used in Pen-
tomine. Several thousands small processes are dis
tributed to 64 PEs in 4.35 seconds adaptively, The graph
shows low communication overhead and good speedup.
The {|1-.Era.r[ntiurl af prrocessor workrate m (4-PE execu-
tion s ma.iﬂ]].f caused hy the].ll.t‘.llﬂ:." of load i:ud:ing to
PEs.

In Bestpath, 25,600 small processes are distributed
staticallv on 64 PEs. Thev exchange messages to per-
forie an distributed algorithim. The intec-PE commu-
nication and the cache-miss penalty degrade the per-
formance because of the high communication rate and
the large working set. As the number of PEs grows,
the grid graph is divided into smaller blocks to keep the
workrate high, and it makes the inter- PE communication
rate higher. Best path includs speculative computation,
which increases with the large number of PEs. It causes
lovwer spesdup than a calealated value from the processor
waorkrate.

Measurements results in table 5 and Figure 10 show
the actual communication rate and communication over-
head. DProgrammers can use relatively large commu-
nicalion rate, one message per G reduchions {mea.mrad
in Bestpath), with non-large CPU overhead of approx:-
mately 15%. Considering a network load of 0.3% at that
timne, it is ebzerved that CPT] load (15% at that time)
will limit the communication band width when cormmu-
nication rate increases. The language implementation,
which supports the global name space on a distributed
memory hardware, tends to increase the OPU load con-
cerned with network communication.

¥

6.2 Preliminary Measurements on the
PIM

6.2.1 Single Processor Performance

Table 6.1 shows the single processor performance of
PIM/m for four benchmarks. The table also includes the
performance of Mulli PST/V2 and the ratic of PIM/m
and Multi-PSI/V2 (M/P-speedup).

M/ P-gpeedup is 1.5 to 2.3 in average. Frograms with
large working set tends to show low M/F-speedup.

6.2.2 System FPerformance

Table 7.5 show the preliminary measurements of system
performance on PIM/m. The benchmark program is
Pentomino.

Speedup saturation in Table T is caused by small prob-
lerr sime. Hetter speedup (234 folds speedup with 256
processnrs) was attained with larger problem in Table 8.
It is alse surprising Lhat ihe smail problem (executed
in 1.1 second) show 95 folds speedup, which uses the
multi-leve] dynamic load distribution distributing sev-
eral thousands of small processes. The facts shows an
efficient language implementation suitable to handle a
lot of small-grain processes with less overhead,

7 Conclusion

This paper described two subjects. One is an overview
of the researeh and development on the parallel inference
machine PIM and the language implementation of the
kernel language KL1, a concurrent logic programming
language.

The other is the clarification of the features and advan-
tages of KL1 language, its parallel implementation, and
the hardware architecture from the viewpoint that the
features are suitable and may be indispensable for effi-
cient parallel processing of the dynomic and non-uniform
profiems with large computation. Knowledge processing
i= ncluded m the problem domain, These problems have
not been covered by commercial parallel machines and
their software systems that target the scientific compu-
tation. The PIM systemn focuses on this new domain of
parallel processing.

PIM iz a distributed memory MIMD machine with a
global view, connecting & maximum of 512 processors.
It includes shared-memory substructures, Many compo-
nent technologies have been developed that support effi-
cient paralle] processing on the target problem domain,
especally on symbolic processing.

KL1 language also has very strong features for efficient
programming and execution of the dynamic and non-
uniform large problems. Major features are (1) small-
ETAIN CONCUrrent processes, I:E:I implicit synchronization
and communication, {3} separation of concurrency de-
sign and mapping (load allocation and scheduling), etc.

pd |

They support highly concurrent programming with com-
plex structures and support large flexibility for load bal-
ancing. The efficient language implementation made ac-
tual usze of the language features possible. The PIM and
K11 system have realized a strong research and develop-
ment environment {or parallel software in that problem
domadn,

Measurements and evaluations showed a very law-
cost language implementation for handling small-grain
conpcurrent processes and their remote communications.
Good speedup by paraliel processing on benchmark pro-
grams was also reported. A lot of small grain processes
were handled during this processing. These results prove
the efficiency and usefulness of the syslem to the dynamic
and non-uniform problems.

Further measurement and evaluation is continuing,
and the resultz of this will be reported soon. On the
other hand, many problems of parallel software remain
unsolved. Continucus research must be carried out to
construct 1he real technology of large-scale parallel pro-
cessing for the dynamic end nen-uniform problems in-
cluding the knowledge information processing in the 21st
century. The parallel inference machine PIM and the
KL1 language svstemn will be utilized as the best research
environment.

Acknowledgment

The R & T} of PIM system have been carried out by re-
searchers tn the first research laboratory and cooperat-
ing companies, supported with valuable suggestions and
helps by members of the second, seventh and the other
100T laboratories and the PIM working group. The
author would like to thank all of these people for their
comtinuous efforts and cooperation,

References

[Chikayama and Kimure 1987] T. Chikayama and Y.
Kimura. Multiple HReference Management in Flat
GHC. In Proc. of the Fourth Inl. Conf on Logic Pro-
gramming, 1987, pp.276-203.

[Chikayama 1992] T. Chikayama. Operating System PI-
MOS5 and Kernel Language KL1. In Proc. of the Int,
Conf. on Fifth Qeneration Compufer Systems, 1992,

[Furuichi ef al. 1990] M. Furuichi, K. Taki and N.
Ichiyoshi. A& multi-level load balancing echeme for or-

parallel exhaustive search programs on Lhe Multi-PSL
In Proc. of PPaPP'80, pp. 50-59, 1990,

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki and A. Matsumoto. Overview of the Parallel In-
ference Machine Architecture (PIM). In Proc. of the

Int. Conf on Fifth Generation Compuler Sysiems,
1COT, Tokyo, 1988, pp.208-229.

[Goto ef al. 1989] A. Goto, A. Matsumato and E. Tick.
Design and Performance of a Coherent Cache for Par-
alle! Logic Programming Architectures. In Proceedings
af 16tk Annual Infernaliona] Symposivm on Computer
Architecture, pages 25 - 31, Jerusalem, lsrasl, 1080

|Hirata et ol 1992) K. Hirata, R. Yamamots, A. Imai,
H. Kawai, K. Hirano, T. Takagi, K. Taki, A. Nakase
and K. Rokusawa. Parallel and Distributed Implemen-
tation of Concurrent Logic Programming language
KLL ln Proc. of the Ini. Conf. on Fifth Generation
Computer Systems, 1003

[Lchivoshi ef af. 1887] N. lchiyoshi, 1. Miyvazaki and
K. Taki. A Thstributed Tmplementation of Flat GHO
on the Multi-PSL In FProceedings of Fourth Interna-
tienal Conference en Logic Programming, pages 257-
275, University of Melbourne, MIT Press, 1987,

[ichiyoshi et al. 1988] N. Ichiyoshi, K. Rokusawa, K.
Makajima and Y., Inamuora. A MNew External Ref
erence Management and Distributed Unification for
KLl New (eneralion Computing, Ohmsha Ltd, 1990,
PR 158-17T.

[[ehiyoshi 1989) M. Ichivoshi. Parallel logic program-
ming on the Multi-I'S]. ICOT Technical Repor: TR-
487, ICOT, 1989, (Presented at the Italian-Swedish-
Japanese Workshop "30).

{Tmai et at. 1991] A. Imai, K. Hirata and K. Taki. PIM
Architecture and Implementations. In Proc. of Fourth
Franee Japansese Sympostum, ICOT | Rennes, France,
1991.

[Imai and Tick 1991] A. Imai and E. Tick. Evaluation
of Paralle! Copying Garbage Collection on a Shared
Memoery Multiproeessar. fO0T Technical Hepord, TR-
50, 1991, (1o appear in [EEE Transactions on Paral-
lel and DHistributed Systems)

{Inamura ef ol 1988] Y. Inamura, N. Ichivoshi, K.
Rokusawa and K. Nakajima, COptimization Te-
chiniques Using the MEB and Their Evaluation on the
Multi-PSI/VE. In Proc. af the North Amertoan [‘,'afr.f.
on Logtc Programming, 1080, pp. 907-921 [also JOOT
Teehnical Report, TH-466, 1989).

{Kimura and Chikayama 1987] Y. Kimura
and T. Chika-vama. An Absiract KL1 Machine and
its Instruction Set. In Proc. of Symposium on Logic
Programmang, 1987, pp.468-47T.

[Kumon ef al. 1992] K. Kumon, A, Asato, 5. Arai, T.
Shinogi, A. Hattorl, H. Hatazawa and K. Hirano. Ar-
chitecture and Implementation of PIM/p. In Proc. of

22

the Int. Conf. on Fifth Generation Computer Systems,
1942,

[Masuda ef al. 1988] Y. Masuda, Y. Ishizuks, Y.
Iwayama, K. taki and E. Sugine. Preliminary LEwval-
uation of the Connection Network for the Muiti-PSI]
System. In Proc. Europtan Conference on Ariificial fn-
telligence 19588 (ECAI-85], August 1988,

‘Matsumoto et al. 1987 A, Matsumoto, T. Nakagawa,
M. Sato, K. Nishida and A Goto. Locally Parallel
Cache Design Based on KL1 Memory Access Charac-
teristies. [COT Technieal Report 327, 1987,

[Na.lmﬁn,wa el ul 11339} T. Nakagawa, A. Goto and T.
Chikayama. Sht-Check Feature to Speed Up Interpro-
cessor Software Interruption Handling In JPSJ S5
Reports, R9-ATRC-T7-3, 1989 {/n Japanese),

[Makagawa ef ol 1992] T. Nakagaws, N. Ida, T. Tarui,
M. Asaic and M. Sugie. Hardware Implementation of
Dvnamic Load Balancing in the Paralle! Inference Ma-
chme PIM /e, In Proc. of the int. Conf. on Fifth Cen-
eration Computer Sysfems, 1992,

[MNakajima ef of. 1989] K. Nakajima, Y. Inamwra, N.
[zhivashi, K. Reokusaws and T. Chikayama. Dis-
tributed Implementation of KL1 on the Multi-PSI1/V2,
In FProc, of the Sizth Int. Conf. on Logic Programmaing,
1988, pages 436451,

[Nakaiima and Iehiyoshi 1990] K. Makajima and N,
Ichiyoshi. Evaluation of Inter-processor Communica-
tion in the KLl Implementation on the Multi-PS1. In
IC0T TR-581, 1990,

|Makajime 1892 K. Nakajima. Distributed Tmplementa-
tion of KL1 on the Multi-P51. In fmplementation of
Dhsiriluted Prolog, edited by P. Kacsuk and M. Wise,
John Wiley & Somns, Ltd., 1852

[Nakashima and Nakajima 1987] H. Nakashima and K.
Nakajima. Hardware Architecture of the Sequential
Inference Machine : PSI-IL. In Procesdings of 1987
Sympostum on Logic Programming, Sept. 1987, pp
104-113.

[Makashima ef ol 1992] H, Nakashima, K. Nakajima, 5.
Konde, ¥, Takeda, Y. Inamura, 5. Onishi and K. Ma-
suda. Architecture and Implementation of PIM/m. In
FProe, af the Int. Conf. on Fifth Generation Computer
Syslems, 1992,

[Nishida et al. 1990] K. Nishida, Y. Kimura, A. Mat-
sumote and A. Goto. Evaluation of MRE Ga.‘rbage
Collection on Parallel Lagie Programming Architec-
tures. In Proc. of the Seventh Ml Conf. on Logic Pro-
gramming, 1990, pages 83-095.

[Nitta ef al. 1992] K. Nitta, K. Taki and N. Ichiyoshi.
Experimental Parallel Inference Seftware. In Proc. of
the Ini. Conf. on Fifth Generation Computer Systems,
1992,

[Onishi et al. 1990] 5. Onishi, Y. Matsumoto, K. Naka-
jima and K.Taki. Evaluation of the KL1 Language Sys-
tem on the Multi- PS1. In Proc. of Weorkshep en Fur-
allel Tmplementation of Languages for Symbolic Com-
putation, July 30-31, 1990, Oregon, USA, Also ICOT
THR-485.

[Rokusawa et al. 1988] K. Rokusawa, M. Jehiveshi, T.
Chikayama and H, Nakashima. An Efficient Termi-
nation Datection and Abortion Algorithm for Dis-
tributed Processing Systems. Iln Proc of the 1§58
fnt. Conf. on Parallel Processing, Vol 1 Architecture,
1988 pp.18-22,

'Rokusawa and Ichivoshi 1992] K. Rokusawa and N.
Ichivoshi, A Scheme for State Change in a Distributed
Environment Using Weighted Throw Counting. In
Frog. of Swih Int. Porallel Processing Sympostum,
IECE, 1992.

'Sato et al. 1987) M. Sato, A, Goto, et al. KL1 Execu.
tion Model for PIM Cluster with Shared Memory. In
Proceedings of the Fourth Internalional Conference on
Logie Programming, pages 335-350, 1987,

[Sato and Goto 1938] M. Sato and A. Gote. Evaluation
of the KL1 Parallel System on a Shared Memory Mul-
Liprorcessar, In Proc. of [FIP Werking Conf. an Far
allel Processing, 1988, pp. A0G=315%,

[Sato ef al 1992] M. Sato, K. Takeda and T. Ohara. Le-
sign of the Parallel Inference Machine PIM/i Prooes
sor. In Trums. of TPST, Vol33, No 3, 1992, pp. 275-287
{ e Jupnese].

[Shinogi et al. 1988] T. Shinogi, K. Kumon, A. Hattori,
A, Goto, Y. Kimura and T. Chikayama. Macre-call
Instruction for the Efficient KL1 Implementation on
FLM. ln Frocecdings of the Infernational Conference
on Fifth Generation Computing Systems 1988, Tokyo,
Japan, pages 053-961, 1988.

[Takagi and Nakase 1991] T. Takagi and A. Nakase,
Evaluation of VPIM: A Distributed KL]1 Implementa-
tion — Focusing on Inter-ciuster Operations -, In IPSJ
816 Reports, 91-ARLC-89-27, 1991 [In Japanese).

[Takeda et af. 1988 Y. Takeda, H. Nakashima, K. Ma-
suda, T. Chikavama and K. Taki. A load Dalanc-
ing Mechanism for Large Scale Multiprocessor Sys-
tems and its lmplementation. In Proceedings of the
International Conference on Fifth Generation Com-
puter Systers, [COT, Tokye, 1888

23

[Taki et ol 1984 K. Taki, M. Yokota, A. Yamamoto,
H. Nishikawa, 5. Uchida, . Nakashima and A Mt
suishi. Hardware Design and Implementation of the
Personal Sequential Inference Machine (PSI}. In Proc.
of the Int. Conf. on Fifth Generation Computer Sys-
tems 1984, pp.398-409, Tokyo, Nov. 19584,

[Taki 1988] K. Taki. The Parallel Software Research and
Development Tool: Multi-PSI System. In Program-
ming of Fulure Generation Computers, K.Fuchi and
M. Nivat (Fditors), pages 411-426, Elsevier Science
Publishers B.V., North Holland, 1988,

{Uchida ef al. 1988] S. Uchida, K. Taki, K. Nakajima,
A. Goto and T. Chikayama. Hesearch and Develop-
ment of the Paraliel Inference Svstem in the Interme:
diate Stage of The FGUS Project. In Froc. of the Int.
Conf. on Fifth Generalion Computer Systems [958,
pp. 16-36, Tokva, Nev. 1088,

[Uchida 1892] §. Uchida. Summary of the Parallel In-
ference Machine and its Basic Software. In Prec. of
the Inf. Conf on Fifth Generation Computer Systems,
1992,

[Ueda 1986] K. Ueda Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concepl of a
Guard. 1001 Technical Report 208, 1986,

[Ueda and Chikayvama 1990] K. Ueda and T. Chike-
vama. Design of the Kernal Language for the FParal-
lel Inference Machine. The Computer Journal, [33)6,
L0940, pp.494=500,

[Wada and Ichivoshi 1990) K. Wada and N. Ichivoshi.
A study of mapping locally message exchanging al-
gorithms on a loosely-coupled multiprocessar. ICOT
Technical Feport TR-587, 1990,

[Warren 1983] D). H. D). Warren. An Abstract Prolog Io-
struction Set, Technical Nete 309, Artificial Intelli-
gence Center, SRI, 1983,

[Wateon and Watson 1987 P. Watson and I. Watson.
An Efficient Garbage Collection Scheme for Parailel
Computer Architectures. In Proc. of Parallel Architec-
twres and Languages Europe, LNCS 250, VoLII, 1987,
pp.432—443.

