ICOT Technical Report: TR-0773

TR-0773

Experimental Parallel Inference Software

by
K. Nitta, K. Taki & N. Ichivoshi

Aprl, 1992

© 1992 1COT

Mita Kokusai Bldg. 21F (0313456-3191~5

" :D | 4-28 Mita 1-Chome Telex ICOT 132964

Minato-kn Tokyo 108 Japan

Institute for New Generation Computer Technology

Experimental Parallel Inference Software

Katsumi Nitta Kazuo Taki Nobuyuki Ichiyoshi
Seventh Research Laboratory
Institute for New Generation Computer Techuology
4-28 Mita 1-chome, Minato-ku, Tokyo 108, Japan
{nitta taki.ichiyoshi}@icot.or.jp

Abstract

As tools to develop large scale intelligent systems, ICOT
has developed parallel inference machines PIMs, a par-
allel logic programming Jenguage KL1 and an operating
system PIMOS. In order to evaluate the appropriateness
of these tools to the development of practical intelligent
systems, we have developed four application programs in
KL — the LS1-CAD svstem, the Genome Analysis Sys.
tern, the Lepal Reasoning System and the Ge Playing
Game Svstem —, and cooperating menufacturers have
developed eight application programs. They cover a wide
range of knowledge processing techniques such as case
based reasoning, model-hased reasoning, qua.]i'.at.]l‘-.'c rea-
saning and machine learning,

To obtan high perflormance from each application pro-
gram, we have developed parallel programming tech-
niques such 2s concurrent algorithms and load balanc-
ing. Moreover, we analyzed the performance of parallel
programming technelogy theoreticaliy. The result torms
good puidelines for the selection of parallel programming
technigues.

We introduce each application program and the results
of performance analysis, and discuss our expeniences of
paralle]l propramming.

1 Introduction

Az tools to develop knowledge processing systems, ICOT
his develaped an experimental parallel inference machine
Multi-P51 and five models of parallel inference machine
PiMs [Uchida et ol. 1988] [Goto ef al 1988]. They are
MIMD machines on which user’s programs written in the
parallel logie programming languape KL1 can run in par-
allel [Chikavama 1952). As KL1 iz based on the theory of
first order predicate logic, it is useful to represent human
knowladge naturally and to formalize inference processes
naturally. Therefore, we can develop large-scale intelli-
gent systems easier by using PIMs and KL1. However, if
we develop KL1 programs naively, we cannot obtain high
performance because the performance can be affected by

sequential bottlenecks and various parallelization over
heads; Good parallel algorithms and load distribution
techniques have to be developed. Moreover, to develop
efficient paralle] programs, we have to understand the
characteristics of the KL1 language and the architec.
tures of Multi-P5I and PIMs (Figure 1), As these par-
allel programming technologies are closely related, when
W {le.'.rplnp KL1 PrOgrams, we have to choose suitable
techniques carefully. Therefore, we need guidelnes for
selecting suitable parallel programming techniques and
for estimating the relation between date size, number
of processors, and performance. To get such guidelines,
in addition to developing application programs, we have
to conduct theoretical analvsis of parallel programming

technigues,
Application Programs
[F‘aral]el Problem Salving]
il Ty

M{ Concurrent Algur'rthm)

Theoretical _.E,_,,,[Load Dlstribmion]
Analysis

4+(KL1 implementation J

-m-[F'araIIaI Inference Machines]

Crr >

Figure 1: Parallel programming technologies

We have developed parallel application programs to
achieve the following goals.

Evaluation of applicability of PIMz to developing
practical intellgent systerns:

As PIMs solve problems efficiently by paraliel infer-
ence, developing large scale systems using them is
wasier than using other computers. We wish to cul-
tivate application fields and develop Al techniques
where PIMs are effectively used.

» Development of Parallel Programming Techniques:
By analyzing the behavier of application programs,
we can extract parallel programming techniques to
obtain high performance. A library of these tech-
niques will help to develop new parallel programs.

In Section 2, we will give an overview of the research
activities of the seventh research laboratory of ICOT.
Section J presents application programs developed ine
side ICOT, asd Section 4 presents application programs
developed outside ICOT. In Section 5, the research ac-
tivity in performanes analysis is reperted. In Section 6,
we summarize the experiences of parallsl program devel-
opment.

2 Research Activities

A5 we explained 1n the previous section, to develop intel-
ligent systemns on PIMs, we have to cover a wide range of
technologies from the knowledge of humar experts to the
features of hardware, To manage the various researches
effectively, we organized the researchers of the seventh re-
search laboratory into four Applicgtion Groups and one
Ferformance Analysts Growp (Figure 2). The roles of
the Application Groups and the Performance Analysis
Group are to develop specific application programs, and
to give guidelines on parallel programming techniques by
analveing the behavior of KL1 programs theoretically.

Following are the researches of the Application Groups,
To acquire knowledge fram human experts effectively,
these groups established four working groups: parallel
IC CAD {PIC), genetic information processing (1P,
advanced design system [(ADS), and knowledge architec-
ture (KAR).

o L5I-CAD System:
The LSI design process consists of several stages,
such ag architecture design, function design, logic de-
sign, micro program design, logic simulation and lay-
out design. Thiz group has developed the following
Lwo sysbems,

- Lngir Simulator
— LSI Layout Systems
s Genome Apalysiz Svstem:
Cine of the most important targets of genome analy-

sis is to interpret the meanings of protein sequences,
This group has developed the following systems.

— Protein Sequence Analysis System

— Protein Folding Simulation Program

— Protein Structure Analysis Program

s Legal Reasoning System:
The difficulty of legal reasoning stems from the am-
biguity of legal concepts. To deal with ambiguous
concepts, this group has developed a legal reasoning
system with & rule-based engine and a case-based
EIEInE.

s Go Playing Game System:
The game of go iz a traditional Japanese board game.
This group has developed a paraliel go playing game

swslen.

In the next section, we will present an overview of each
system.

' ™
Development of Application Programs

(Lsi-cAD) (Genome Analysis |

[Lagal Fleasnn]ng] (En Playing Game]

Specific Problem Solving

[Ferfunnanc:e Analysis]

General Framework
Figure . Research groups

Besides the above application programs, cooperating
manufacturers have developed knowledge processing sys-
tems in order to evaluate the appropriateness of PIMs to
these fields.

s Co-HILEX: Co-operative Recursive L5] Layoui Frob-
lem Solver
(hierarchical and cooperative problem solving)

& Cooperative Logic design Expert System
(assurnption-based reasoning, cooperative problem
solving)

& Case-based circuit design system
{case-hased reasoning)

» High Level Synthesis by Parallel Rule-based Anneal-
ing
{rule-based annealing)

& Design Supporting Systern based on Deep Reasoning
{qualitative reasoning)

s A Diagnostic and Control Expert System Based on
a Plant Model
{model-based reasoning, gualitative reasoning)

s Adaptive Model-based [Magnostic System {model-
based reasoning, machine learning}

¢ Motif Extraction System
{geuetic algorithm, machine learning)

These systems cover vanous knowledge processing sys-
terns such az CAD systems, diagnosis systems, and con-
trol sysiems. They are related to vanous Al tech-
niques such as case-based reasoning, qualitative reason-
ing. mode] based reasoning, and machine learniug,

We will introduce these systems in Section 4,

3 Overview of Application Pro-
grams (1)

3.1 Logic Simulator

3.1.1 Background

A logic simulator is used to verify not only the func
tions of designed circuits but also the timing of signal
propagation. Since logic simulation is one of the most
time-consuming stages in LS1 design, faster simulators
are urgently needed. A parallel logic simulator is one
likely way of producing quick simulation.

Burallel logic simulation is treated 28 a typical applica-
tion of paralle]l discrete event simulation (FINES). PDES
can be modeled so that several objects (state automata)
change their states by communicating with each other.
A essage has the information of an event whose oc-
currence time is stamped on the message (time-stamp).
Sinee messages should be received and evaluated in the
time-stamp order by their destination objects, the time-
keeping mechanisimn is essential for efficient execution
of PDES. Several mechanisms have been proposed for
PDES time-keeping, however, each has its own pecaliar
shortcomings.

We are targeting an efficient logic simulator on PIM,
which is a distributed memory MIMD machine. We
adopted the Time Warp mechanism (TW), which has
been considered te contain a heavy overhead — a roll-
back process. In practice, however, TW has never been
evaluated in detail on MIMD machines. We expecled
that TW would be a suitable logic simulator on large-
seale MIMD machines with some devices that redurced
the rollback overhead. Thus, a local message scheduler,
an antimessage reduction mechanism, and a load distri-
bution scheme were added to our system and evaluated,

3.1.2 Owverview of Logic Simulator

The system simulates combinatorial eiecuits and sequen-
tial circuits that have feedback loops. It handles three
values: Hi, Lo, and X (unknown). A different delay time
can be assigned to each gate (non-unit delay medel).
Since this simulator handles gates oniy, flip-flops and
other functional blocks should be completely decom-
posed into gales,

The Time Warp mechanism (TW) [Jefferson 1935] was
propused by D). R. Jefferson. ln PDES using TW, each
object usually acts according to received messages and
also records the history of messages and states, assuming
that messages arrive chronclogically, But when a mes-
sage arrives at an object out of time-stamp order, the ob-
ject rewinds its history (this process is called rollback],
and makes adjustments as if the message had arrived in
correct time-stamp order. After roliback, ordinary com-
putation is resumed. If there are messages which should
nol have been sent, the object also sends anlimessages
in order to cancel those messages.

Since TW contains its own peculiar overheads caused
by the rollback processes, some device for reducing the
overheads 15 needed for quick simulation. Furthermore,
inter-PE communication overheads must be reduced be-
cause the simulator works on & distributed memory ma-
chine such as PIM.

For these purposes, & load distribution scheme, a local
message scheduler, and an antimessage reduction mech-
anism are included in our simulator. These are expected
te reduce the overheads described above and might pro-
mote the efficient execution of the simulator,

Fach device is outlined below,

s Cagcading-Oriented Partitioning

We propose the Cascading-Orented Partitioning strat-
egyv for partitioning circuits to attain high-quality load
distribution (Figure 3)

[/,

—-

Figure 3: Cascading-Oriented Partitioning

This scheme provides adequate partitioning solutions
that satisfy these three requirements: load balancing,

Speedup

'EIEI] e ideal

| —s— g12207] o
spf [s@2aa -~ 99K
—o— 5370 - [ew faec)
A p

Mo, nf PEs

Figure 4: Speedup

keeping inter-PE communication frequency low, and de
riving a lol of parallelism,

» Local Message Echeduler

During simulation, there are usually several messages
to be evaluated mn a PE. When TW iz used, Lhe bigger
thme-stamp a message has, the more likely the message is
to be rolled back. For this reason, appropriate message
scheduling in each PE is peeded for reducing rollback
frequency.

s Antimessage Reduction

As long as messages are sent through the KL1 stream,
messages arrive at their receiver in the same order as
thev are transmitted. lo this eavironment, subsequent
antimessapes can be reduced. We adopted this optimiza-
tion, expecting that it would reduce the rellback cost.

3.1.3 Result

We executed several experimental simulations on the
Multi-PSI. Four sequential circuits, presented in IS-
CAS'EY, were zimulated in our experiments.

Figure 4 shows the speedup figures when the eircuits
were sirmulated using various numbers of PEs. The best
performance is also shown there. In the best case, very
good spesdup of 48-fold was attained using 64 PEs. Ap-
proximately 99K events/sec performance, fairly good for
a full-safiware logic simulater, was alse attained. This
experiment revealed that the Time Warp mechanism
would be an efiident time-keeping mechamsm.

In addition, we analyzed several factors which
possibly limited spesdup, Details are reported o

[Matsumoto ef ol 1992).

3.2 LSI Layout Systems

4.2.1 Background

The LSl layeut consists of two stages. The first is
placement, which determines the physical position of the
circuit components. The next iz roufing, which finds

the paths between terminals of the circuit components.
These are the most time-consuming stages in LS1 design,
Therefore high performance layout CAD systems lead to
a sherter LST design period.

Qlur aim is to study concurrent algorithms and load-
balancing methodologies through design and develop-
ment of parallel lavout programs. Also, we are targeting
the system to attain a high guality layout running on
Multi-PST and PIM.

3.2.2 Overview of L5I Layout System

{1) Placement System Our placement system 15 im-
plemented for the standard cell type L3I without any
macre blocks. The standard cells have uniform height
and varjant widths. These cells are assigned intomultiple
cell-blocks so as to minimize the chip area (strictly speak-
ing, the total estimated wire length). The cell placement
problem i3 a combinatorial eptimization problem. As a
powerful technigue to solve such problems, simulated an-
nealing {SA) is well-known. In order to execute SA ef-
ficiently, cooling schedules are imporiant. In our place-
ment system, Lhe time homogeneous patallel SA alge-
rithen [Kimwra ef al 1991], whick constructs appropri-
ate cooling schedules automatically, was adopted. Figure
5 shows an outline of this algorithm.

{2) Routing System Our routing system finds
paths based on the look-ahead line search algorithm
[Kitazawa 1985]. This algorithm provides high quality
solutions in a short execution time, however, it was orig-
inally proposed with assumption of sequential execution.
We introduced a new programming style based on a con-
current objects model in routing problems, and improved
the basic algorithm to make it suitable for parallel execu-
tien. The concurrent objects model is expected to derive
parallelism of small grain size. We designed the concur-
rent algorithm so that objects=processes corresponds to

T {temperatare)
T J_}E—_ a conling schedule for the
Tr | Kr sequental stmulated annealing
F == K
Ta i
Te e, "
Ts1 —_—
0 ~————= { {time}
u parallelize
T puossp = 1 on PE1
Ts I“"i‘. L 1—3: T Lot mPE2
TJ' x B Ii- i - r on PH
Ta —= T T f t on PE4
Ts ~—®= on PES

1 : a probabilisisc exchange of solutions
f=1d : frequency of exchanges

Figure 5 Time-homogeneous parellel simulated annecal-
Ing

masker WMa-procassas
fZzmevens
¢ e
AR
(A
Vs

A

—

DDA

N

LY

[
=g ‘-'""-\..__
(it ——

nA-roCasEes
Figure §: Master line processes and line processes

LI T Tt)
[:

C 0TI w1
[T [i
I T [T
| IR .

Figure T: Placement results

every line ssgment on a routing grid. As in Figure &,
each prodess L'IJ]'".‘S;JUI]-I']E- Lo each grid line {Triﬂ-&'!-l‘.‘:l' line
process) and fine segment (fine process) on it. A mas-
ter line process manzages line processes on the same grid
line and passes messages beiween the line processes and
crossing line processes,

3.2.3 Result

(1} Placement System The MUNC benchmark data
consisting of 123 cells and 147 nets was chosen for our
measurements. In the initial placement, the value of en-
ergy was 311520 (the lower bound of the chip area 15
estimated as 1.372[mm?]).

When we executed our program for 30 minutes using 64
processors, the final energy was 424478 (the lower bound
of the chip area is estimated as 0.615 [mm?)).

Experimental resolts showed that final Energy 15 re-
duced by 56.0 percent in comparison to the initial energy.
Figure 7 shows the placement results.

(2} Routing We evaluate our router from the follow-
ing three points of view using real LSI chip data. (1)
Dtata size vs. Speedup, (2) Parallelism vs. Wiring Rate,
(3} Comparison with a general purpose computer.

Figure 8 shows the system performance when the rout-
g program was execuled using various numbers of PEs.
The size of DATAZ is larger than DATAL. In the best
case, 24-fold speedup was attained using 64 PEs.

Spewdugp
25

-
20 DATM’,:P""

15 /,/'

-

s /’

®a B 18 az a4
Mo, of PEs
Figure 8: Speedup
Other experimenial results are reported in

[Date et ai. 1992].

3.3 Protein Sequence Analysis Pro-
grams

4.3.1 Hackgronnd

A primary structure of protein is a linear chain of amino
acids. After a protein 15 created in the cell, it is folded
znd forms a complex structure.

The similarity analysis of protein sequences by the use
of multiple alignment is an important technique for pre-
dicting the function and higher order structure of pro-
teins and for drawing phylogenetic trees of creatures. An
alignment 15 realized by lining the sequences with cor-
responding characters {amino acids) directly above one
another as follows.

.. YICSFADCGAAYNENWELOQAHLC-EH. . .
.. . FPCKEEGCEKGF TSLHHLTRHFL-TH. . .
.. .FTCDSDFCDLARFTTEANMEERFNRFH. . .

Until recently, multiple alignment was produced by hand
by biologists. However, with the increasing rate of de-
terrmination of protein sequences, computer assistance in
multiple alignment is becoming indispensable.

It is well-known that once a similarity value between
amino acids is given, the multiple alignment problem
can be solved theoretically by Dynaric Programming
(DP)[Nesdleman et al. 1870]. An alignment algerithm
by DP methad s the same as finding the shortest path
in & network constructed by input sequences {Figure 9),
N-way DP can align n sequences simultaneously and can
derive the optimal alignment of these sequences.

One problem with DP is the incredible computational
time it requires, N-way DP takes computational time in
the order of the n-th power of the sequence length. To
keep this expansion of computational time manageable,
neatly all multiple alignment systems developed so far
employ 2-way DP as a base and combine the results of
Zeway DF to produce multiple alignment [Barton 1990].

Figure 9 Alignment by Z-way DF

This class of alignment methods is good because of the
small computational time requited, but this is not suf-
ficient to produce an alignment of sequences when their
similarities are low.

3.3.2 Overview of Protein Sequence Analysis
Programs

To produce multiple alignments of high-quality with
small increases in computational time, we develuped
several multiple alignment systems. MASCOT {Mul
tiple Aligmmeni Svstem developed by 100T, see Fig-
ure 10) iz a multiple alignment system based on DP
{Hirosawa ef ol 1991].

When prolein sequences are given Lo MASCOT, MAS-
COT, fisstly, classifies them into several clusters based on
the similentics of sequences. Next, for each cluster, se-
quences are aligned from the nearest tree sequences using
F3-way DP. Then, each intra-cluster alignment is refined
by the simulated annealing method {Figure 5). Finally,
cach intra-cluster alignment 15 merged into a single align-
ment, :

3.3.3 Result

Fach modale of MASCOT is described by the KLI and 35
executed on the Multi-P5I Though MASCOT requires
more computation than conventional alignment systems
due to the use of 3-way DP, paraliel execution by the par-
allel inference machine [Ishikawa ef al. 1991] can reduce
the total time. Figure 11 shows the speedup of 3-way DF
versus the number of processors used. 128 processors are
about 64 times faster than a single processor.
MASCOT ean produce a biologically valuable result.
A resultant alignment shows elear consensus patterns in
care alignments and discernible patterns in the alignment
of each cluster. We think that this is a promising way to
compare these kinds of pattern information with known
motif information so that integrated information can be
useful for attachment-alignment and intra-cluster align-
ment. We are now investigating how to use knowledge
engineering to realize such an extension of MASCOT,

Bd
B0 1
Speedup

ELE ar

0
20 :

E

1 18 27 64 128

Number of processors

Figure 11: Speedup in 3-way dynamic programming

3.4 Folding Simulation Program
3.4.1 Background

Folding simulation simulates the process of protein for-
mation from its stretched state to its native folded state
by computer. This researck topic has held the interest
of biclogists for a quarter of a century because while we
can determine the order of amino acids in a sequence of
protein extremely easily, it is very difficult to determine
the structure of a protein. X-ray crystallography and
NMHA{Nuclear Magnetic Resonance] can be used to de-
termine structure, However, both require plenty of time
from months to 2 year.

One of the most frequently emploved approxima-
tion methods is lattice representation [Ueda ef ol 1978]
[Skolnick and Kolinsky 1991], which restricts the posi-
tion of amine acids in 3 -dimensional lattice cells.

3.4.2 Overview of Folding Simulation Program

We applied time homegeneous parallel (temperaiure par-
allelj simulated annealing (Figure 5) to the folding sim-
ulation problem [Hirosawa et ol 1992], Water-counting,
which uses lattice representation (Figure 12) and em-
ploys oniy hydrophobic interaction, is introduced to for-
mulate folding simulation 25 an optimization problem.
In lattice cells, any place where protein 1s not present
wiill Bres filled with water.

The energy to be minimized iz expressed in the follow-
ing formula.

E{Energy) =
E.mum-.hmm (Water Comnly — 1) % Hydrophobieitym
Water Countn =

ad

The energy can be reduced both by increasing the
amount of water around the hydrophilic amino acid and
by reducing the amount of water around the hydrophobic
amino acid. The minimization of energy has the effect
of inviting hydrophobic amino acids toward the center

- intra-Cluster _ Evaluation
soquences] ngnmmant - - _of = Alignmant
—»| Cluster | _| Inwa-Cluster | inter-Cluster Alignmant
Analysis - [=1 Alignment , .
* Algnment 9 i Consultation
- -Gl r - —
llfl%r?n"::rif - i Motif Dictionary

-
.
-r".l
a'.’
o

Generation of Initial Alignment

Generation
of
Cara Alignment Alignment
by
Attachment

LT
wan
teeall

- Refinamant of Alignmanit's

L}

Simulated Annealing

Figure 10: Multiple sequence alignment system: MASCOT

E o
o
P o =l . -10000
=7 oo i
o S —= ! Sequantial SA
- 3 R 20000 1
o s " .: :_.:? .._. m” pgr;lul SA
ST I 30000 1 Temperalure Farals! SA
Energy 1
~40000 1
Figure 12: Representation of a section of protein: main]
chaing(shaded) and side chains(unshaded) i
o 10000 20000 30000 400C
Step

of the protein where there is less water and to oust hy-
drophilic amino acids to the surface of the protein where
water 15 almmidant., These effects serve Lo prodoce pro-
tein that has a similar distribution of hydrophobie amine
acids and hydrophilic amine acids within the protein
structure.

3.4.3 Hesult

We selected flavedoxin, whose structure is known, as the
protein to be simulated. This protein 13 of & medium
size and has 138 amine acids, We ran the folding simu-
lation program using temperature parallel SA en Mult-
P51 using 20 processors over 10 days. This corresponds
te 30,000 eveles. We also ran the folding simulation pro-
graan osing swuple porallel SA o 30,000 cyeles, also with
20 processors.

Figure 13: Energy history of folding simulation

We made the following observations from the energy
history of simulation (Figure 13).

1. Two kinds of parallel 5As had better results within
a fixed time than sequential SA. This is simply the
effect of multiple processors,

2. Up to the middle stage of simulation, temperature
paralicl SA 15 always better than simple parallel SA.
This is because temperature parallel SA can produce
cptimal solutions at that time.

3. Two kinds of parallel SAs have almost the same final
enerpy value,

3.5 Protein Structure Analysis Pro-
grams

3.5.1 Background

One of Lhe inost important problems in the field of strue-
tural biology and biophysics is protein structure predic-
tion. Structural biologists have proposed many methods
to solve the structure prediction problem. Stll, the ac-
curacy of secondary structure prediction (ie. to know
the local feature of a protein :‘-l[uutu:e], which seems to
be the easiest part of protein structure prediction, is far
below the biclogical demand.

3.5.2 Overview of Protein structure analysis
programs

We plan to solve this difficult problem by a three-phase
stratepy. [n the first phase, we should develop a effective
methad for representing the structure of protoin. Sec-
ondly, we are to analvze the statistical relation between
the representation and the sequence of a protein, amdl
1o obtain a statistic prediction method. Finally, we are
planning to analyze which part of the prediction 15 sta-
tistically hoprecise by logical consideration in order to
know the limits of the statistical prediction method. We
also plan to improve the prediction method by using log-
ical knowledge gained from analysiz. This plan should
ensire that the parallel inference machine is used effec-
tively

At the moment, we are in the first phase, and have
ablamed a new way of representing the strueture of pro-
tein produced by multi-variate analysis [Figure 14). The
three dimenzional distribution of the amine asid residues
which are gerial in & protein sequence 15 easily character-
1zed by each standard deviation on the three main axes
of the distribution. This gives us the local coordinates
for analvzing the local structure.

3.5.3 Hesult

Az the result, we found it possible to numerically repre-
sent the local structure of protein, and we can recognize
its secondary structure from this new representation of
protein, This numerical sepresentation, which scems to
IH‘: ﬁllllt.ﬂir]!" {"[|"|||||i".'.ri|.::1.] "_'.ll'flrlTiUII.\ h“'l-.h s lEﬂIﬁSSiDﬂ
analysis, may be guantized into & symbolhc representa-
tion for logical or symbolic operations (Figure 15).

3.6 A Legal Reasoning System
3.6.1 Background

Legal knowledge consists of statutory laws and oid cases.
As a statutory law is a set of legal rules, inference by &

Fipure 14: Main axes of the distribution of aminoe acid
resicues

Tum

=2 = | b
100 110 120 130 140 150 160 170 180 1890 200

Figure 13 Spatial distribution of amino acids of protein
aeQueEnce

statutory law is realized as rule-based reasoning. How.
ever, legal rules oflen contain legal predicates (legal con-
cepls). Same legal concepts are ambiguous and their
strict meanings are not fixed unti] the rules are applied
to actual facts. To apply legal rules to actual facts, rule
interpretation and matching between legal concepts and
concrete facts are needed. To realize this, old cases are
often referenced and their explanations are reused. Con-
sequently, legal reasoning can be modeled as a mixed
paradigm of rule-based reasoning and case-based reason-
ng.

However, there are some difficulties in developing &
practical iegal reasoning systemn. Firstly, as there are
many leral rules and many old cases, it takes a long time
to search for similar cases and to draw conclusions based
on them. Secondiy, to manage several inference engines,
a complex mechanism to control inference iz needed.

To solve these problems by parallel inference, we devel-
oped a legal ressoning system, HELIC-I1, on the parallel
inference machioe.

3.6.2 Owverview of the Legal Reasoning System

HELIC-1T draws legal conclusions for a given case by
referencing a statutery law and old cases and oulpuling
them in the form of inforence trees [Nitta ef al. 1992].

HELIC-II consists of a rule-based engine and a case
bazed engine (Figure 16). The rule-based engine refers
tor legal rules and draws legal cansequences logically. The
case-hased engine gencrates legal concepts from given
facts by referring to similar old cases.

Inference
Tree

Flgun_' 16: Architecture of HELIC T

Rule-based inference As there ate many legal rules,
a fast rule-based engine is needed. Moreover, legal rules
sometimes have exceptional rules, the rule-based engine
has to be added some mechanism to handle nonmono-
tonic reasoning.

The rule-based engine of HELIC-T1 is based on the par
allel theorem prover MGTP (Model Generation Theo-
rem Prover) [Fujita ef al. 1991]. Given a set of non-Horn
clavses, MGTP generates models which satisly ail input
clauses by parallel inference.

To use MGTT as a rule-based engine of legal rules, and
to obtain high performance by pipeline effect, we added
several extended functione to the erginal MGTP.

Case-based inference A judicial precedent (old case)
consists of arguments by both sides and the opindon of
judges and & final conclusion. We represent an old case
az a stfwation and some case rules

A situafion contains informations on the ocourrences
of the case and represents a set of events/objects and
their temporgl relafions. Arguments by both sides are
represented as a set of case rules

The function of the case-based engine is to generate le-
gal concepts by referring to similar old cases, In the first
stage, the engine searches for similar cases from the case
hase, Old cases are distributed Lo each processor(PE) of
the Mulli PSI, and similarities between the new case and
old cases are evaluated in parallel. In the second stage,
cimilarities between caze rules of selected vases and the
new case are measured using a Rete-like network (Figure
17), and new arguments are constructed.

new case

|

IIHHHHEII

Fﬂnvﬂ.qarﬁ.bﬂm} | [uiutur.mrnuﬂ-J

Figure 17, Rete-like network

3.6.3 Results

We observed that HELIC-11 can solve several cases of the
Penal Code. Figure 18 shows the spesdup in the second
stage of the case-based engine. We obtained more than
50-fold specdup using the 64PEs of the Multi-PSL

Tima{sec.) Sheedus

Iﬂ:ll-':ll
1

14000

g

o 1o 20 30 40 S0 60 70
INuTer of processon

Figure 18: Performance of the case-based engine

3.7
3.7

Go it a popular board game played traditionally in
Japas, China, and Korea. Go is played using black and
white stones and a 19 = 19 grid. The two players alter-
nately place black and white stones on the grid intersec-
tions. The goal is to gain mote secure derritosies than
your opponent. [t 1g a perfect information game.

Go has been a difficult game for computers to play.
There have been no go playving programs that mateh the
ability of average human go-player. The difficulty of con-
structing a go- p'|ayi115 Progran comes mamly from the
fact that (1) the branching factor of an average game tree
i.'s Landr ;.-1,:'53 rur]_rrull: :run_'P RP.H.FF.I"LP_# tio .hP f!j.ﬁibl.!, ant‘:
(2] a simple and good board evaluation function does
ol exisl.

As a go-playing program requizes basic Al techniques
such as searching, processing ambiguuus patterns, ex-
ceptional processing, and cooperative problem solving,
it is & suitable research subject for knowledge processing
technologies.

We are trving to buld a strome go program using the
computing pewer of the parallel inference machines. We
are airming 2t the strength of GOG (GO Generation)
with the ability of ihe average human plaver.

Go Playing Game System “GOG”
Background

3.7.2 Overview of GOG

00 has the [oliowing three features.

1. It simulates the thinking mechanism of a human
player.

2. The large tasks are performed in parallel,

o

. The uew “flying corps” technigue has been applied
to improve the strength of GOG considerably while
retaining its real-time response.

Simulating the Thinking Mechanism of a Human
Player The process in which the GOG system deter-
munes its next moves comprises three stages (Figure 200,
When the system receives the enemy's move, 1t first rec-
ognizes the board configuration. And then, it generates
many candidate moves. It rates those moves and selects
the one with the highest value as the next move.

¢ Doard Recopmtion

The rew data of the board configuration is simply
the state of every boand posilion, which is either {a)
vacant, (b) occupied by a white stone, or (c) occu-
pied by a black stone. Just like a human player, the
system starts from the raw board data and succes-
sively makes higher-level data structures — stones,
strings I:a string is connected stones of the same
coler}, groups (strings of the same color that are elose

enemy’'s Board || Ca‘_{lﬂi&a‘te | Next Mowve
move Recognition) | Ceneration Decision
Y S
paralle
execution ECOEMILIo i Capture)
of Linkage Escape /.

Figure 19: Outline of Process in The Parallel COG

to each other), families (loosely connected groups),
etc. —, and then determines their attributes (poten-
tial value, arca of surrounded territory, ele.) in the
recopnition phase,

o Candidate Move Generation

The system has condidate knowledge which gener-
ates the coordinate and evaluation value of a can-
didate move, To decide the next move, many can-
didates are listed by executing tasks invoked from
candidate knowledge. GOG has 12 kinds of the
candidaze knowledge [JOSEKIL Edge, DAME, In-
vasion, Spheres’ Contact Point, Capture/Escape,
Cut/connect, Enclose/Escape, etc.).

o Next Move Decision

The local adjustment for candidates rearranges
disharmonies between the different candidate knowl-
edges. Then, the system sums the total preposed
values of candidates at each point on the board. The
system seleets the one with the highest value as the
nexl e and plays il

Parallel Processing In GOG, one of the processors
of the Multi-P5] serves as a manager processor, and the
rest act as worker processors. The next move decision
process is made on the manager processor, which also
distributes tasks to worker processors.

When the system receives the enemy's move, il rec-
ognizes the board configuration and generates candidate
moves. Tn those processes, it picks up large taska such as
local searches, which check whether a string to be cap-
tured or not, and dispatches the worker processors. The
results are sent to the manager processor which, then,
decides the next move hased on those results.

Flying Corps To improve the strength of the system
considerably while retaining its real-time response, we

proposed the concepl of flying corps

This idea is to find the tasks which are important but
don't have to be solved before the next move and to
make fiving corps processes cxecute these tasks. The
systemn which incorporates the fiving corps idea consists
of main corps processes and flying corps processes {Fig-
ure 20). A fiying corps process and a main corps process
are assigned to the same processor. Main corps processes
comsist of a manager and workers and flying corps pro-
cesses use the same manager and workers. Main corps
processes execule necessary tasks to cperale by o rules
and tasks to maintain their strength,

Main corps processes have & higher priority than flying
corps processes. Flying corps processes notify task com-
pletion to a flying corpe manager process when the dis-
patched task is completed (which may be several moves
after the initiation of the sask), Whenever the main
corps tasks are finished, the manager process of main
corps will collect the results of finished tasks on fving
corps processes. With those results and the results by
main corps worker processes, the system decides on the
next move. The time to decide the next move depends
enly on the main corps processes,

Flying corps processes execube these Lasks indepen
dently from the immediate next meve decision process
(it main corps processes). When the opponent iz think-
ing af the next move, the Ayving corps processes kKeep on
runnipg. When a locel situation, which caused tasks for
flying corps, will be changed by some later move, these
tasks are aborted.

PE 1

f:ﬂa.na.ger of idle PE ™
for ﬁv.rmr: corps

manager ma.na er
of main corps of ﬂ]..'lng Corps

éan ager of idle P’E_H“‘-I

for mam cn[ps A

I\'_.-‘

WDI’ ar WOTEEr o
AN COT o Cor
L E [g COrpy

Figure 20: Configuration of System

4.7.2 Result

Table 1 shows the GOG's performance in paraliel execu-
tion, From these resulis, the parallel execution shortens
the processing time in go. The strength of GOG, includ-
ing the flving corps idea, is now under evaluation.

We have been developing sequential GOG. The object
15 Lo test the new algonithm ideas of recognition, candi.
date knowledge, and next move decision. Last Novem-

Table 1: Speedup in Parallel Execution

| ist of final match, 13th Kise! tournament |

Stage [1 PE | 4 PE | 16 PE

Inth move 1.0 3.3 5.1
90th move 1.0 3.4 | &
180th move 1.0 3.7 | 7.5
oth of final match, 13th Meijin tournament
Stage [1 PE[4 PE | 16 PE

J0th move 1.0 3.2 ¢ 3.4
G0th move 1.0 A4 5.6
180th move 1.0 3.6 | 5.4

ber, the sequential GG and seven other computer go
programs including last year's top five programs, par-
ticipated in the tournament at the Game Playing Sys-
tem Workshop. The result of our sequential GOG was
2 wins and 3 loses. It shows that G0OG iz a top-class
computer go-program. ln human terms, the current sys-
Lem 15 stronger than an entry leve] human go player, but
considerably weaker than an average player.

4 Overview of Application Pro-
grams (2)

4.1 Co-HLEX: Co-operative Recursive

LSI Lavout Problem Solver

L5l layout is one of the greatest problems requiring mas-
sive computation power. Also, the development and en-
hancement of a layout system consumes huge amounts
of programmers labor. In the development of Co-HLEX,
the development of a parallel algorithm as well as the
possibility of more elegant program deseriplions were in-
vestigated. The classical divide and conquer algorithm
works well while subproblems correlate weakly. For LS]
layout, this is not so. Neighboring modules should have
abutting shapes and wires to avold dead spaces. The
concurrent co-operation mechanism among processes of-
fered by FOCS paradigm might be an effective means to
solve this problem.

An overview of Co-HLEX 15 given in Figure 21.

The problem-solving kernel is 2 quadtree-shaped pro-
cess network called CMPN that generates a chip lay-
out. Before layout generation, each node of CMPN con-
tains circuit data including the module name, the module
property, a list of net names connecting this module to
others, and a list of sub-circuit names. After the lay-
out 18 generated, layont data are added to each node:
the template name (layoutframe) wsed to slice the node,
the enveloping rectangle size, the list of adopted wirng
pattern names for each net, ete,

VO Pracainse. Probiem Selving Merne| ([CMPH Process Mel)
Clreuh Tres Placamant Routing
Canaratian
Layeut Dovice [Aggregwta | | Divide | Aggregeis
aa [2(]
Varfication 5 " 3 I
?ﬂhﬂr;-“m gm@: y 'Tﬁ
SRR e
o ¥ i |
ST |} oy | |
Creuli Wm
e
= |13 LU
= b= fio

Figure 21: Overview of Co-HLEX

A recursive algorithm called HRCTL {1lierarchical Re
cursive Concurrent Theorem) was developed. This alge-
rithm performs the layout by the following steps.

Placement A placement message containing a list of
planned shape and planned peripherzl connector
placements is sent to the top node of CMPN from
the co-ordination process, Then a set of recursive
placement actions is performed by CMPN processes,
In top-down processing, each nen-terminal node is
sliced by using an appropriate lavoutframe picked up
from the template library. Reaching the leaf node,
an appropriate layoutframe defining the cell geome.
try 15 chosen. In bottem-up processing, the layouts
of lower level children are aggregated to form a par-
ent layout,

Wiring Noo-terminal power supply nets Vec and Ves
are wired first, because they interfere with the wiring
of signal nets. Non-terminal signal nets are then
wired. Then, a set of recursive wiring actions is per-
formed by CMPM. For each nat of the non-terrminal
node, the existence range (CERW) of all the periph-
eral connectors of the net are first reduced, then
an appropriate winng pattern is selected from the
wiring pattern list attached to the lavoutframe cho-
sen before. At each point where the chosen pattern
crosses the sub-slice border Line, an induced connec-
tor i introduced. This is used as & peripheral con-
nector by the adjacent sub-slices in the subsequent

7

recursion. Hecursion terminates at each leafl node,
with each CERW reduced to the magnitude of cell
neight or width. Lastly., the nets in cells are wired
(SE-wiring, NW-wiring, and ND-wiring).

Layout experiments are conducted for bipolar-analog
circuits with approximately 1000 modules: The resulting
layout realized a compact module placement and wires
free of useless bends. By runtime wire abutment coop-
eration, channel areas used by inter-module patch wires
wore avolded., This was useful for chip aree reduction.

Co-HLEX has a time complexily of roughly Q[N
where N 1z the number of modules in the circuit, as con-
trasted to a time complexity of nearly (A?) for tradi-
tional layeut svstems,

The Co-HLEX program has 1,000 Lines in KL1, while
traditional implementations typically have more than
100,000 lines of code. The recursive HROTL alge-
rithm and the moedularized streamed-parallel computa-
tion mode] of KL1 both contributed to the size reduction.

4.2 Cooperative Logic Design Expert

System

Oine of the pressing problems of CAD systems is the lack
of a means to iterate the eycle of evaluation and redesign
until the design satisfies all constraints. Without it, it
waould be impossible to design a quality circuit with the
destred characteristics (area and speed) by looking at the
desipn from a global point of view.

co-LODEX is a cooperative logic design expert sys-
tem on a mulliprocessor, based on an evaluation-
redesign mechanism using assumption-based reasoning
[Maruyama 1988][Maruyama 1990]. In it, design alter-
natives are considered as assumptions and constraint vi-
olations are viewed as contradictions. Redesign is im-
plemented as contradistion resolution. Justifications for
constraint violations, nogeod justifications (NJs), play
a central role in the mechanism. co-LODEX divides
the whole circuil to be designed into subcircuits in ad-
vance and designs each subeireuit on each processor to
exploit. parallel processing. Global evaluation.redesign
takes place by processors exchanging design results or
Nls. MJs received from other agents help narrow down
the search space for an agent in the sense that new NJs
made from received MJs enable the agent to prune the
search space [Maruvama 1991]. That is the reason why
we claim that co-LODEX is cooperative,

co- LODEX inpots a behavioral specification written
in & hardware description language, a block diagram of
the datapath and constraints on ares and speed. Con-
straints on area are expressed as inequalities in the gate
count, and constraints on speed are expressed as inequal-
ities in the propagation delay. co LODEX outputs a
CMOS standard call netlist that satisfies the constraints.

The resulting netlist can be inpot to an aulomatic place
and-route systemn for CMOS standard eells,

co- LODEX divides the whele circuit to be designed
into subcircuits. Each subcircuit is designed by a design
agent. Figure 22 shows the five subcircuits for a circuit
that solves & second-order dilferential equation (THFEGQ)
and the agents in charge.

i

&

\
/|

I

— ekl P

Figure 22; Sub-circuits and agents

Fach design agent designe given functional blocks hi.
crarchically using the top-down method. This method
keeps splitting functional blocks and subblocks inte sub-
subblecks until all given blocks are implemented with
CMOS standard cells.

Then it counts the number af gates and estimates de-
lays to evaluate the implemented cireuit against con
straints on area and time. A design agent usually de-
signs its subcircnit independently and in paraliel with the
other design agents. However, since the design resuits
of the other agents are necessary for evaluation against
global conslraints, design agents exchange their results
every bime thev design or redesign. A design agent re-
designs when it detects a constramt violation for which
1t 15 respansible.

co LODEX was implemented on Multi-FPSI in KL
[Minoda 1992], Experimental results show that co-
LODEX can efficiently carry out global optimization.
nt::ilEl] EI.E;I:'.II.‘..H- (::H'I[!HJHJII(] Lis |ilr|.li'.{-f'.‘il-i{l'l'.‘i- on A one-Lo-ane
basis. We had onc extra processor for distributing the
functional blocks to other processors and making statis-
tics. The relation between the number of design agents
(1 Lo 14) and Lhe spesdop for & cirouit with bigh unifor-
mity is shown in Figure 23,

4.3 Case-based circuit design system

Hecently, much attention has heen paid to case-based
reasoning |CBR.) as a software technology for agquiring
large amounts of knowledge casily and utibzing it ef-

& pondur
W —_—
" / .
" | e e
o § ChRg i o

1 fr.f o

ot e 8 Gl i SRR
& ‘,.-v"" o=

||"uf,d
T

= d Apmu
oW ooz o oW

Figare 23: Relation between the number of agents and
speedup

ficiently. We have researched inte a flexible and fast
CBR mechanism through upper-level digital cirenit de-
ﬁ:}g_ll]PI'Ub]E]I]h.

We suppose Lhal noviee designers, who have knowledge
about primitive circuits but lack experiences in design,
will use this system to solve application problems that
are & little beyond the basic level. ‘Lhis system con-
structs block diagrams satisfying given specifications by
retrieving similar precedent circuits, then modifying and
combining them, based only on design cases and knowl-
adge on primitive gircuits

This system features retrieving cireuits whose fune-
{ional structures are similar o the problem’s and use
a Structure Mapping Engine (SML) [Falkenhainer 86) as
A CAse-TelTIeVEerD.

SME can extract cases structurally simiiar to the given
problem, if higher order relations in given structures are
the same between the case and the problem, even if the
lower relations and entities are not same. In this sys-
tem, SME eveluates the similarity of functional hicrar-
chy trees. [t, also, evaluates the descriptions of the cir-
cuit block functions that represent the hierarchical rela-
tions between the primary funclion and secondary fune-
tions that are pecessary to realize the primary function.
T]II‘.’III ik 1'|.-.L|'i:-.'-t_':ﬁ l.||:-. l_',i.l't'.u;lt.ﬂ wh;c]l |:|.-|.1.-'!-: L]H?'.' most smi-
lar funetions a5 & whole even though the details may be
different. For example, when designing a digital clock,
SME retrieves a similar circuit which counts the amount
of money from the case base, even if there is no digital
clock circuit,

Figure 24 shows the configuration of this system, We
deseribe the design process briefly below,

Fiestly, Analyzer analyzes the input specs to create
functiona! hicrarchy trees along the data flow and de-
tailed specs for the given problem. Secondly, Helriever
retrieves the cases which have similar functional hierar-
chy trees to the problems with SME, Thirdly, Adapter
checks whether the detail specs are the same between

Indeax : functional hierarchy tree
for specs
detail specs

Figure 24: Configuration of case-based circuit design sys
tem

the retrieved case and the problem. When different,
adaptor checks the possibility of modifying detail specs,
then combines the retrieved cases which have confirmed
adaptability to the given problem. In this phase, SME
also predicts design failures and recovers from them, and
those failure recoveries are reported via Advisor. Finally,
the system autputs hlock diagrams corresponding to the
comhined cases. Users evaluate the sutput block dia-
gram ad, i i1 is suitnble, the problem and the sslution
are stored in the case base as a new case.

We confirmed thal non-siereatyped circuits are actu-
ally designed with this approach in mind; i.e. a digital
clock with the additional function of sensing temperature
can be an air-conditioner performance monitor.

Through experiments we also confirmed the effective-
ness of the CBH method with SME. SME, however, has
very high running costs becanss af its structural match-
ing process which includes the combination problem. For
this problem, we made SMF programns parallel with the
multi-level load balancer, and, with the 64 P'E of Mult
'S, we obtained 10-fold speedup.

4.4 High Level Synthesis by Parallel
Rule-based Annealing

Figure 25 describes the process flow of High Level Syn-
thesis (HLS). L5l behavior descriptions written in a

14

Pascal-like language (Paspec) are parsed and converted
te a schedule table. The schedule table describes when
cach expression is executed and by which ALU. Tt cor-
responds to a datapath circuit. The problem finding the
lowest cost configuration in the schedule table. The cost
is the sum of the chip area and the execution speed. [t
is a typical combinatorial optimization problem [COF).

hearistics

E1r‘
Parsing

Y

based
ling

Rale—
Anpea

Darapath

Y

wut] sl skl

EEEIE

]

T E L

Figure 25: the process flow of HLS

Parallel Rule-Based Annealing Simulated anneal-
ing (SA) can be used to find a near global minimum in a
COP, but it requires a huge number of iterations. Heuris-
tic algorithms are faster, but the solutions are prons to
vapture in local minima. The rule-based annealing (HA)
algorithm was developed, which has intermediate char-
acteristics belween Lhe two, In cach iteration step, the
HA aigorithm generates candidates of the next schedule
table confliguration by using not only randam conversion
but conversions using heuristic rules. The rule is selected
probabilistically and the selection probability of the rule
alters the temperature changes. The higher the accep-
tance rate of the candidate is, the higher the selection
probability of the rule.

A parallel RA algorithm was then designed. The sys-
tem consists of one master processor amd a number of

slave Processors, Each processor runs the rule-based an-
nealing independently at the same temperature, gener
ating different sequences of configurations. At the begin-
ning of anncaling at a temperature, the master proces-
sor classifies the slave processors into a higher cost group
and a lower cost group based on the cost of configura-
tion. The annealing process continues until there is hittle
difference in the cost distributions of the the two groups,
at whick time the equilibrium state is considered to have
been reached. This contributes te the shortening of an
nealing steps at high temperatures. At low temperatures,
configurations judged to be trapped in local minima are
abandoned and are replaced by better configurations in
other processors.)

The parallel BA algorithm was implemented on a
Multi- P51 with 16 processors. Figure 26 shows Lhe ex
perimental results. The RA algorithm was 4 times faster
than the 5A algorithm. The paralie]l BA was 8 times
faster than the sequential RA. The effectiveness of the
parallel LA algorithm was thus experimentally proven.

Performance of parallel RA
TR === m———————romm = ===po=oc.
! . ! LA == 5A K
=31 ! . B -- Ea '_:
L "#’:.!“""'“:““": € —— Parallehi 5A
H ! H] —— Paralklel RA|
= e e e ooorTEEETTT ;
e “""“;‘""5'"“"‘"“"““.‘““f‘“”’i
1 1 :
|..__..._,_____|_____:___ -L.----:
; DA i
e Cmbo T TE— ..:.._..-.E.
om0 MO0 M EN0 M M M0 MO0 W

Compuatziion time (sech
F]Eurv 26: Exptrim::lta] Result

4.5 Design Supporting System based
on Deep Reasoning

In design, there are many cases in which a designer does
net directly design a new device, but rather, changes
ar immpraves an old device. Semetimnes a designer only
changes the parameters of components in a device to
satisfy the requirements. The designer, in such cases,
knows the structure of the device, and needs to deter-
mune the new values of the components. This is common
m electronic arcuits. Desg (Design supporting system
based on gualitative reasoning) determines valid ranges
of the design parameters using qualitative reasomng.
Diesq uses an envistoning mechanism, which, by wsing
qualitative reasoming, determines all possible behaviors
of a system, However, the qualitative reasoning of Desg

is different from ordinary qualitative reasoning, because
it can deal with guantities both qualitatively and quan-
titatively, Accordingly, Desg may be able to determine
guantitative ranges, if parameters are given as quantita-
tive values.

Initial data Knowledge base

Simultaneous

Bm\,hrwp”t inequalities
Reason
Model building VrisRr1*irl
m,;m-ns Vrl=Vdl
Idl=Ir1+Id2
Envisioning '-'ﬂ::j 0
+Output ‘arr iﬂefsr
Desmignm:m Query Paralle] constraint
E.nlmllmt +»> solver
on P51 + on Multi-PSI
-
Ranges of
design
parametsrs

Figure 27: System organization

The system organization of Desg is shown in Figure
27. D'ea'r.l consists of three subsystems:

Behavior reasoner

This subsystem is based on a qualitative reasoning
svstem, [ts medel building reasoning part builds si-
multaneous inequalities from initial data using defi-
nitions of physical rules and objects. The simultane-
ous inequalities are a model of a target system. The
envisioning part derives all possible behaviors

Design parameter calculator
This subsystem calculates ranges of design parame-
ters undefined in initial data.

Parallel constraint solver

This subsystem solves simultaneous inequalities. Itis
written in KL1 and is executed on a parallel inference
machine,

Deszq finds the valid ranges of design parameters as
follows:

{17 Perform envisioning with design parameters whose
values are undefined in initial data,

{2) Select preferable behaviers from possible behaviors
found by envisioning,

{3) Calenlate the ranges of the design parameters that
give preferable behaviers.

As an experiment, Desg successfully determined the
valid range of resistance Rb in the DTL circuit in Figure
23

DTL Circuit 2V

3V

Undefined parameter —— —
'F:.gm'r-' 28: DTL circwit

4.6 A Diagnostic and Control Expert
System Based on a Plant Model

Currently in the field of diagnosts and control of thermal
power plants, the trend in sysiems is that the more in-
telligent and dexibie they become, the more knowledge
they need. As for knowledge, conventional diagnoestic
and control expert systems are based on heuristics stored
& prion in knowledge bases, So, they cannet deal with
unforeseen events when they oceurin a plant. Unforeseen
events are abnormal situations which were not expected
when the plant was designed. To overcome this limi-
tation, we have focused on model-based reasoning and
developed & diagnostic and control expert system based
on & plant model,

The system (Figure 29) consists of two subsystems; the
Shallow ﬁlf!!'r'ﬁur:r Eltﬁ.yya'fg'ru fo_S‘,I and the DEEP Inffr—
ence Subsystem [DIS).

The 51515 a conventional plant contrel svstem based
on heuristics, namely shallow knowledge for plant con
trol. It selects and executes plant operations accord-
ing ta the heuristics stored in the knowledge base. The
Flant Monitor detects occurrences of unforeseen events,
and then activates the IS5 The DIS wtilizes various
kinds of models to realize the thought processes of a
skilied human cperator and to generate the knewledge
for plant control to deal with unforeseen events. 1L
consists of the foliowing modules: the Diggnosor, the
Operation-Genemtor, the Precondition-Generator, and
the Simulation-Verifier. The Disgnesor utilizes the
Qualitative Causal Model for plant process parameters
to diagnose unforeseen events, The Operation-Generator

generates the operations that deal with these unfore.
seent events, It utilizes the Device Model and the Op-
eration Principle Model. The Precondition-Generafor
generates the preconditions of each operation generated
Ly the Operation-Generator, and, as 2 result, generates
rule-based knowledge for plant contral. The Simulelion-
Verfier predicts the plant behawvior that will be ob-
served when the plant is operated according to the gener-
ated knowledge. It utilizes the Dynemics Model, verifies
the knowledge using predicted plant behavior, and gives
feedback to the Jpermtion-Generator, if necessary.

Figure 29: System Overview

The knowledge generated and wverified by the DIS is
transmitied Lo the $FS The S5 then ,execules the P].‘-Lnt
aperations accordingly, and, as a result, the unforesesn
events should be taken care of

We have implemented the system on Multi-PS1. To re-
elize & rich experimental environment, we have also jm-
plemented a plant simulator on & mini-computer. Both
computers are linked by a data transmission line. We
have incorporated both a device and a dynamics model
for each device of a thermal power plant [to a total of
T8). We summarize the experimental results as follows.

o The M5 could generate plan control knowledge to
deal with unforeseen events.

The S5I5 executed plant operators according to the
generated knowledge and eould deal with unforeseen
events.

» We have demonstrated & fivefold improvement in rea-
soming time by using Multi-PSI with 16 processor
elements.

4.7 Adaptive Model-Based Diagnostic
System

Thougl traditional rule-based diagnostic approaches
that use symptom-faillure asscciation rules have been
meoerporated by many current diagoostic systems, they
lack robustness. This is because they cannot deal with
lLJlEI}"t‘L’;EI’j Canes 1oL L'l'.l'-'l:'It'l'.] .:.l_'l- L]I".‘ fll]{"‘) i.]l i':?.‘- Li.l'l.ﬂﬂ-'l'
edge base. On the other hand, model-based diagnostic
systems that use Lhe bebavioral specification of a devies
are more robust than rule-based expert systems. How-
ever, in general, many tests are required to reach & cogn-
clusive decision because they lack the heuristic knowl-
edge which human experts wsually utilize. In order to
solve this problem, a model-based diagnostic system hes
been developed which is adaptable because of its ability
to learn from experience |Koseki ef af. 1980),

Thiz system consists of several modules as shown in
Figure 30. The knowledge base consists of design knowl-
edge and erperientiol dnowledge. The design knowledge
represents & correct model of the target device, It con-
sists of a structural description which sxpresses compo
nent nterconnections and a behavier description which
expresses the behavior of each component, The expe-
riential knowledge is expressed as a failure probability
for each component. The dingnosis medule utilizes those
two kinds of knowledge.

Design Experiential
Knowledge Knowledge

d A >

Tost Pattern Diagnosis Learnin
S | < Mo”7 | Wi
Symptom Test Testresult Suspects

Figure 30 Structure of the System

Figuee 31 shows the diagnosis flow of the system. The
system keeps a set of suspected components as & suspeci-
list. It uses an eliminate-not-suspected strategy to reduce
the number of suspects in the suspect-list, by repeating
the test-and-eliminate cycle. It starts by getting an ini-
tial symptom. A symptlom is represented as a set of tar-
get device input signals and an observed incorrect output
signal. It calculates an initial suspect-list from the given
initial symptoms. It performs model-based rea.mnin,g 1o
obtain a suspect-list using a correct design model and an
expected correct output signal. To ebtain an expected
correct output signal for the given inputs, the s:.-r'atem
carries out simulation using the correct design model.

Get obsarvad
data

¥

Calculate new suspacis
& update Suspect-List

Test suggestion

Test generation
& selection

Figure 31: Diagnosis Flow

After obtaining the initial suspect-hst, the system re.
peatsa test-and-eliminate cycle, while the number of sus-
pects is greater than one and an effective test exists. A
sel of lests is generated by the test pattern generator.
Among the generated tests, the most cost effective is
selected as the next test to be performed. The effective-
ness is evaluated by using a minimum entropy technique
that utilizes the fault probability distributicn. The se-
lected test is sugeested and fed into the target device.
By feeding the test into the target device, another set of
observations are obtained as a test result and are used
to eliminate the non-failure components.

Learning Mechanism The performance of the test
selection mechanism relies on the preciseness of the pre-
sumed probability distribution of components. In order
Lo estimate an appropriate probability distribution from
& small amount of abservation, the system acquires a pre-
sumption tree using minimum dmurl]:t.'u:m]t:JE‘l.h[MnL:I
criterion. A description length of a presumption tree
is defined as the sum of the code length and the log-
likelihood of the model, Using the constructed presump-
tion tree, the probability distribution of future events
can be presumed appropriately.

The algonthm is implemented in KL1 language on a
parallel inference machine, Multi-PSL. The experimental
results show that the 16 PE implementation is about 11
times as fast as the sequential one.

The performance of the adaptive diagnostic system (in
terms of the required number of tests) was also examined.
The target device was a packet exchange system and
its model was comprised of about 70 components. The
experimental results show that the number of required
tests can be reduced by about 40% on average by using
the learned knowledge

4.8 Motif Extraction System

One of the imporiant issues in genelic information pro-
cessing 15 lo find common patterns of sequences in
the zame category which give functional/structural at-
tributes to proteins. The patterns are called motifs, in
bological terms.

O Mulu PST, we have developed the motif extraction
system shown in Figure 32. In this, a motif is represented
by stochastic decision predicates and the eptimel motif is
searched for by the genetic algorithm with the minimum
description length(MDL) principle.

Protein DB

Amdng acid sequences and their
functional classes are stored,

— >

Motif
motif{S,cytochrome_c) with p
;= contain(“"CXCXCH".5).

means that if 3 given sequence contains
"CIXCH™ 1t is cytochrome_c
with probability p.

Genetic Algorithm
with MDL Principle

Motif is represented by binary sunng,
Motsf's hitiness value is calculated using MDL principle,

Figure 32: Motf Extraction System

Stochastic Decision Predicate [t is difficult to ex-
press a motif as an exact symbelic pattern, so we enploy
the stochastic decision predicate as follows.

metif (S, cytechrome_c) with 129/225
t= contain{"CXXCH",5).
motif (3, others) with BO81/B0B4.

This example means that if § contains & subsequence
matched to “CXXCH", then 5 is evtochrome ¢ with

probability 12, otherwise 5 is another protein witl prob-

20
ability 333

1K

Minimum Description Length Principle We em-
pley the minimum description length{MDL) principle
because it is effective in estimating a good probabilis-
tic madel for sample data, ineluding uncertainty avoid-
g overfitting. The MDL principle suggests that the
best stochastic decision predicate minimizes the follow-
ing value,

predicate deseription length 4 correctness de-
seription length

The value of the predicate description length indicates
the predicate complexity(i.e smaller values are betier).
The value of the correctness description length indicates
the likelihood of the predicate(ie. smaller values are het-
ter}. Therefore, the MDL principle balances the trade-off
between the complexity of motif representation and the
likelthood of the predicate to sample data,

Genetic Algorithm The genetic algorithm is a prob-
abilistic search algorithm which simulates the evolution
process. We adopt it to search for the optimal stochas-
tic motil, because there is a combinatorially explosive
nurnber of stochastic motifs and it takes enormous com-
putation time to find the optimal stochastic motif by
exhaustive searches.

The following procedures are performed in order to
scarch for the optimal point of a given function fusing
the simple genetic algorithm.

1. Give a binary representation that Tanges over the
domain of the function f

2. Create an mitial population which consists of a set
of binary strings

3. Update the population repsatedly usi ng selection,
crussover, and mutation operators

4. Pick up the best binary string in the population after
certain generations

We apply the simple genetic algorithm to search for
the optimal motif representation. Each motif is repre
sented by a 120-bit binary string, with each bit corre-
sponding to one pattern (e.g. “CXXCH”). The 120-bit
binary string represenis the predicate whose condition
part is the copjunction of the patterns containing the
corresponding bits.

Table Z is the result of applying the motif extrac-
tion system to Cytochrome c in the Protein Sequence
Database of the National Biomedical Research Founda-
tion. This table shows the extracted motifs and their
description Jenglhs. COL is a description length of motif
complexity, PL is a deseription length of probabilities,
and DL is a description length of motif correctness,

Table 2: evischrome 2

Metif | Compared | Matched | Correct
CXXCH 8309 225 129
athers A084 8084 8081

Description Length 286,804 {CL = 16.288, PL = 10.397,
DL = 260.208}

5 Performance Analysis of Par-
allel Programs

5.1 Why Performance Analysis?

Alang with the development of varions application pro-
grams, we have been conducting a study of the perfor-
mance of parallel programs mm a more general frame-
work, The main concern 15 the performance of parallel
programs that solve farge-seale knowledge information
processing problems on large-scale parallel inference ma-
chines,

Parallel speedup comes from decomposing the whole
prablem into & number of subproblems and solving them
in parallel. Ideally, a parallelized program would run
p times faster on p processors than on one processor.
There are, however, varigus overhead factors, such as
load imbalance, communication overhead, and {possible)
increases in the amount of computation. Knowledge pro-
cessing type programs are “non-upiform” in (1) that the
number and size of subproblems are rarely predictable,
(2} that there can be random comrmunication patterns
between the subproblems, and (3) that the amount of
total computation can depend on the execotion order
of subproblems. This makes lsad balancing, communi-
cation control, and scheduling important and pontriv
ial issues in designing parallel knowledge processing pro-
grams.

The overiwad [aclors could make the effective perfor-
mance cbtained by actually running those programs far
worse than the “peak performance” of the machine, The
performance gap may not be just a constant factor loss
(e.g., 30 % loss), but could widen as the number of
processors increases. In fact, io poorly designed par-
allel programs, the effective-to-peak performance ratio
can approach zere as the number of processors increases
witheut Lmat.

Il we could understand the behavior of the vanous
overhead factors, we would be able to evaluate paral-
lel programs, identify the most serious bottlenecks, and
possibly, retnove them. The ultimate goal is to push the
horizon of the applicability of large-scale paraliel infer
ence machines into a wide vanety ol areas and problem
instances,

14

5.2 Early Experiences

As the first programs o tun oan the experimental
parallel inference machine Multi-PSI, four programs
WETE2 dE\rEIDPEll Lo EI'.'I].\'E‘ TEl.ﬂiu-'i."ul'd}' E.lmP]E PTDbIETnE.
These were demonstrated at the FGUS'S8S conference
[Tehiyoshi 1689]. They are:

Packing Piece Puzzle (Pentoming)

A rectangular box and a collection of pieces with var-
teus shapes are given. The goalis te find all possible
ways to pack the pieces into the box, The puzzle
is often known as the Pentomino puzzle, when the
pieces are all made up of § squares. The program
does a top-down ORi-paraliel all selution search.

Shortest Path Problem

Given a graph, where each edge has an associated
nonnegative cost, and a start node in the graph,
tke problem 13 to find the lowest cost path from the
start node to every node in the graph (single-source
shortest path problem), The program performs a
distributed graph algorithm. We used square grid
graphs with randomly generated edge costs,

Natural Language Parser

The problem iz to construet afl possible parse
trees for an Enghsh sentence. The program is &
PAX parser [Matsumoto 1957), which is essentially
a bottom-up chart parsing algorithm. Processes rep-
resent chart entries, and are connected by message
streams that reflect the data fiow in the chart.

Tsumego Sclver

A Teumege problem is to the game of go what the
checkimale problem is to the game of chess. The
black stones surrounding the white stones try to cap-
ture the latter by suffocating them, while the white
tries o survive. The problem is finding out the result
assuming that black and while do their best, The re-
sult 15 []] white is captured, (2] white survives, or
(%) there is a tie. The program does & paralie] alpha-
beta search.

In the Pentomino program, the parallelism comes from
concurrently searching different parts of the search tree.
Since disjoint subtrees can be searched totally indepen-
dently, there is no communication between search sub-
tasks or speculative computation. Thus, load balancing
is the key factor in parallel performance. In the first ver-
sion, we implemented a dynamic load balancing mech-
anism and stlained over 40-fold speedup using 64 pro-
cessors. The program starts in a processor called the
master, which expands the tree and generates seareh sub-
tasks. Each of the worker processors requests the master
processor [or & subtask in a demand-driven fashion (i.e.,

it requests a subtask when it becomes idle). Later im-
provement of dati structures and code tuning led to bet-
ter sequential pecformance but lower paralicl specdup. It
was found that the subtask generation theoughput of the
master processor could not keep up with the subtask so.
lution throughput of the worker processors. A multi-levsl
subtask allocation scheme was introduced, resulting in 50
fold speedup on 64 processors [Furaichi el ol 1990].

The load balancing mechanism was separated from the
program, and was released to other users as a utility.
Zeveral programs have used it One of them is a paral-
le] iterative deepening A" pregram for selving the Fif-
teen puzzle. Although the search tree is very unbal-
anced because of pruning with 2 heuristic function, it at
tained over 100 fold speedup on a ! 28-processor PIM/m
[Wada et af. 1992].

The shortest path program has a lob of mter-process
communication, but the communication 1z between
neighboring vertices. A mapping Lhatl respects the lo-
cality of the original grid graph can keep the amount of
inter-processor communication low. A simple mapping,
in which the square graph was divided into 25 many sub-
graphs as there are processors, maximized locality, But
the parallel speedup was poor, because the computation
spread like a wavefront, makir‘.g q-r.|1lr' some of the pro-
cessors busy al any time during execution. By dividing
Lhe praph ot smaller pieces and mapping a number of
pleces from different parts of the graph, processor uti-
lization was increased 'Wada and Ichivashi 1990).

The natural language parser is a communication inten-
sive program with a non-local communcation patlern.
The first static mapping of processes showed very Little
speedup. It was rewritten so that processes migrate to
where the necessary data reside to reduce inter-processor
communication. [t almost balved the execution tinpe
[Susaks ef ol 1989],

The Tsumege program did paralle] alpha-beta searches
up to the leaf nodes of the game tree, Seguential alpha-
lesta pruning ean habve the effective branching factor of
the game tree in the best cases. Simply searching dif-
ferent alternative moves in parallel loses much of this
pruning effect. In other words, the paralle]l version might
dir i lob of redundant speculative computation. In the
Tsumego program, the search taske of candidate moves
are given execution priotitic: according to the estimated
value of the moves, so as to reduce the amount of spec-
ulative computation [Oki 1989].

Through the development of these programs, & num
ber of techniques were developed for balancing the load,
localizing communication, and reduring the amount of
speculative computation.

5.3 Scalability Analysis

A deeper understanding of various overheads in parallel
execution requires the construction of models and anal-

an

yais of those models. The results form a robust core of
insight inte paralle]l performance,

The focus of the research was the scalability of paraliel
programs. Good parallel programs for utilizing large-
scale parallel inference machines have performance that
scales, 1.e., the performance increases in accordance with
the increase in the number of processors, For example,
two-level load balancing is more scalable than single-jevel
load balancing, because it can use more processors, But
deciding how scalable a program is requires some ana-
Iytical method

As a measure of scalability, we chose the iso-
efficiency funclion proposed by Kumar and Hae
!'I{umar el al. 1988]. For a fixed problem imstance, the
efficiency of a parallel algorithm (the speedup divided
by the number of processors) generally decreases as the
number of processors increases. The efficiency can often
be regained by increasing the problem size. The function
filp) is defined as an 1scefficiency function if the problem
size (identified with the sequential runtime) has to in-
crease as fip) to maintain & given constant efficiency £
as the number of processors p inereases. An isoefficiency
function grows at least linearlv as p increases {lest the
subiask size allocated to cach processor approaches zero).
Diue to various overheads, isocfficiency functions gener-
ally have strictly more than lnear growth 1o p. A slow
rrowth rate, such as plogp, in the izoefieiency function
would mean a desired efficicncy can be obtained by o
ning a problem with a relatively small problem size. On
the other hand. a very rapid growth rate such as 2° would
mdicate that only a very poor use of a large-scale parallel
computer would be possible by running 2 problem with
a realistic size. ’

Dn-dn:manf'. lnad haia.nl:iug WaE EhD!EI'.I. firs'l f’ﬂ'l’ ﬂﬂﬂ]:f"
sis. Hascd on a probabilistic model and explicitly stated
assumptions on the nature of the problem, the isceffi-
ciency functions of single-level load balancing and multi-
leve! load balancing were obtained. In a deterministic
case {all subtasks have the same running time), the 1socf-
ficieney funetion for single-level load balancing is p*, and
that for two-level load balancing is p**. The degree of
improvement in scalability was thus theoretically deter-
mined, The dependence of the isoefficiency functions on
the varation in suhtask sizes was also investigated, and
it was found thae if the subtask size is distributed aceord-
ing to an exponential distribution, a log p (respectively,
(log p)*?) factor is added to the iscefficiency function of
single-leve! (respectively, two-level) load balancing. The
details are found in [Kimura ef al 1991).

Maore recently, We studied the scalabilitv of distributed
hash tables as an example of static load distribution, A
distributed hash table is 2 parallelization of & sequen-
tial hash table; the table is divided into subtables of
equal gize, each one of which is allocated to sach proces-
sor. A number of rearch operations for the table can be
processed concurrently, resulting in increesed through-

put. The overhead comes mainly from Joad imbalance
and communication overhead. By allocating an increas-
ing number of buckets (= subtable size] to each pro-
cessor, the load is expected to be improved. We set
out to determine the necessary rate of increase of sub.
table size to maintain a good load balance. A very sim-
ple static load distribution model was defined and ana-
lvzed, and the isoefficiency function (with regard to load
imbalance) wes obtained [lebivoshi et al. 1992), It was
found that a relatively moderate growth in subtable siee
g (g = wi(log p)*)} is sufficient for the average load to ap-
proach pertect balance. This means that the distributed
hash table is a data structure that can exploit the com-
putational power of highly parallel compuiers with prob-
lems of a reasonahle size.

5.4 Remaining Tasks

We have experimented with a few techniques for mak-
ing better use of the computational power of large-scale
parellel computers. We have also conducted a scalabil
ity analyvsis for particular instances of both dynamic and
static load balancing. The analysis of vadous parallehe.
ing overheads and the determimation of their asymptotic
characteristics gives insight into the nature of large-scale
parallel processing, and geides us in the design of pro-
prams which ren on large-scale parallel computers,

Hewever, what we have done 15 a modest exploration of
the new world of large-scale paralle]l computation. The
analysis technigue must be expanded to include commus-
nication overheads and speculative computetion. Now
that PIM machines with hundreds of processors have be-
come operational. the results of asymptotic analysis can
e compared to experimental data and their applicability
can be evaluated.

6 Summary of Parallel Applica-
tion Programs

We hawve introduced overviews on parallel application
programs and resalts of perfunnance analysis. We will
summarize knowledge processing and paralle]l processing
using PIMe/KL]L.

(1} Knowledge Processing by PIM/KL1

We have developed parallel intelligent systems such
as CAD systems, diagnosis systems, control systems, a
game system, and so on. Knowledge technologies used
in them are the newest, and these systems are valuable
{rom viewpoint of Al applications, tao. Usually, as these
technologies need much computation time, 1t 15 impos-
sible to salve large problems using sequential machines.
Therefore, these systems are appropriate to evaluate ef-
fectiveness of parallel inference.

o

We have already been experienced in knowledge pro-
cessing by sequential logic programming languages.
Therefore, we have got accustomed to developing pro-
grams in KL1 in a short time. Generally, to develop
parallel programs, programmers have to consider the
gynchronization of each modules. This is troublesome
and often canses bugs. However, as KL1 has automated
mechanizms to synchronize inferences, we were able to
develop parailel programs in a relatively short period of
time as follows.

Program Size | man®menth
Logic Simulator Bk 3
Placement
(KL1} 4k 4
{ESP{) Bk 4
Routing 45k 2
Alignment by 3-DP T3k 4
Alignment by SA aTk 2
Faolding Simulation 137 k 4
Legal Reasoning
{Rule-based engine) [2.5 k 3
{Case-hased engine) 2k i
(o Playing Game 11k 10

% An extended Prelog for svstem programming.

In those cases where the program didn’t show high per-
formance, we had to consider another process maodel in
regards to granulanty of parallelism. Therefore, we have
te design the problem solution model in more detail than
when developing it on sequential machines.

(2) Two types of Process Programming

The programming style of KL is different from that of
sequential logie programming language. A typical pro-
grarnming style in KL1 is process programming. A pro-
cess iz an object which has internal states and procedures
to manipnlate thoss internal states. Facli process is con-
nected to other processes by sfreams. Communication is
through these streams. A process structure can be eas-
ily realized in KL1 and many problem solving technigues
«an I'.I'I: m.udcind h}' pmr.un.'i -I-t.l'l.lf.t-lll'ﬂ.

We observed that twe types of KL1 process structure
are used in application programs.

1. Static process structure

The first type of process structure 15 a stalic one.
In this, a process structure for problem solving is
constructed, then, inflormation is exchanged betwesn
processes. The process structure doesn't change until
the given problem is solved. Moest distributed algo-
rithms have a static process structure. The majonty
of application programs belong to this type.

For example, in the Logic Simulator, an electrical cir-
cuit is divided into sub circuits and each sub cireuit
is represented as & process (Figure 3] In the Protein
Sequence Analysis System, two protein sequences are
represented as a two dimensional network of KL1
processes (Figure 81, In the Legal Reasoning Sys-
tem, the lefthand side of a case rule is represented
as a Hete-like network of KL1 processes {Figure 17).
In co-LODEX, design agents are statically mapped
onto processors (Figure 220,

2. Dynamic process structure

The sccond tvpe of process structure is & dvnamic
one. The process structure changes during com-
putation. Typically, the toplevel process forks inte
subprocesses, each subprocess forks into subsubpro-
cesses, and so on (Figure 33}, Usually, this pro-
cess structure corresponds to a search tree. Appli-
cation programs such as Pentormine, Fifteen Puzzle
and Tezumege belong to this type.

Corocess)

Drocess

Figure 33: A search tree by & dynamic process struclure

(4) New Paradigm for Parallel Algorithms

We developed new programming paradigms while de-
signing parallel programs. Some of the paraliel alge-
rithms are not just parallelizations of sequential algo-
rithms, but have destrable properiies not present in the
base algorithm.

In combinatorial optimization programs. a parallel
simulated annealing (5A) algorithm (used in the LSI cell
placemnent program and MASCOT), & paralle! rule-based
annealing (RA) algorithm [used in the High Level Syn-
thesis Sysiem), and a parallel genetic algorithm (GA)
{used in the Motif Extraction System) were designed.

The parallel 3A algorithm is not just a paraliel ver-
sion of a sequential SA algorithm, By statically assign-
ing temperatures to processore and allowing solutions o
move from processor Lo processor, the solutions compete
for lower temperature processors: a better solution has a
high possibility of moving Lo a lower temperature, Thus,
the programmer is freed from case-by-case tuning of tem-
perature scheduling., The parallel SA algorithm is also

22

time-homogeneous, an important consequence of which
i it does not have the problem in sequential SA that the
solution can bhe irreversibly trapped in a local minimum
at & low temperature.

In the parallel A algorithm, the distribution of the so-
lition costs are monitored, and used to the judge whether
or not the equilibrium state has been reached.

In the go-playing program, the flying corpe idea suited
for real-time problem solving was introduced. The task
of the flving corps is to investigate the outcome of moves
that could result in & polentially large gain (such as cap-
turing & large opponent group or invasion of a large op-
ponent territory) or loss. The investigation of a possibal-
ity may take much longer time than allowed in real-time
move making and cannot be done by the main corps.

[4) Performance by Paralle] Inference

Some application programs exhibited high perfor-
mance by parallel execution, such as up te 100-fold
speedup using 128 processors. Examples include the
loghe simulatar (LS) (Figure 4), the legal reasoning sys-
tem (LR} {Figure 18), and MGTP which is a theo-
rem prover developed by the fifth research laboratory
of ICOT[Fujita et al. 1591] {Hasegawa of af. 1892]. Un-
derstandably, these are the cases where there is a lot
of parallelism and parallelization overheads are mini-
mized. ‘Lhe logic simulater {L5), the legal reasoning
systen (LR), and MGTP have high parallelisen coming
from the data size (a large number of gates in the logic
simulator and & farge number of case rules in the le-
gal reasoning system) or problem space size (MGTP) A
good Toad balance was realized by static even dala allo-
cation {LS, LR), or by dynamic load aliocation (MGTP}.
Either communication locality was preserved by process
clustering (L5}, or communication between independent
rubtasks is synall (rule set division in LR or OR-parallel
search in MGTP).

{5) Load Distribution Paradigm

In all our application prograrns, pregrams with a static
process siructure used a static load distribution, while
programs with a dypamic process structure used semi-
static or dynamic load distribution.

In 2 program with a static process structure, a good
load balance can usually be obtained by assigning
reughly the same number of processes Lo each processor,
To reduce the communication overhead, it is desirable
to respect the locality in the logicel process structure,
Thus, we first divide the processes into clusters of pro-
cesses that are close to each other, Then, the clusters
are mapped onto the processors. This direct cluster-to-
processor mapping may not attain good load balance,
since, at a given peint in computation, only part of the

process structure has a high level of computational ac-
tivity. In such a case, it is better to divide the process
structure into smaller clusters and map a number of clus
iers that are far apart from each other on one processor.
‘This multiple mapping scheme s adopted in the short
est path program and the lugic simulator. In the three
dimensienal DP ipatching progeam, a succession of abgn-
ment problems (sets of three protein sequences to align)
are fed into the machine and the alignment is performed
in a pipelined fashion. keeping most processors busy all
the tine.

In a program with a dynamic process structure, newly
spawned processes can be allocated to processors with a
light computational load to balance the load. To main-
tain low commmuication overhead, only a small num-
ber of processes are selected as candidates of load dis-
tribution. Tor example, in 2 tree search program, not
all search substasks but only Lhose at certain depths
are chosen for interprocessor load allecation. The Pen-
temine puzzle solver, the Filteen puzzle solver and the
Tsumego solver uze this on-demand dyvnamic load hai-
ancing scheme,

(6) Granularity of Parallelism

T abtain high performance by parallel processing, we
have to consider the granulanty of parallelisin. I the
sige of each suhtask is small, it is hard to obtain high
performance, because parallelization overheads such as
process switching and communication are serious, For
example, in the first version of the Logic Simulator, the
gates of the electrical circuit were represented as pro-
cesses communicating with each ether via streams. The
performance of this version was not high because the
task for each process was too small. The second wver-
ston represented subcircuits as processes (Figure 3), and
succeeded in improving the performance.

(7} Programming Environment

The first programs Lo run on the Multi-P51 were devel-
oped before the K L1 implementation on the machine had
been built. The user wrote and debugged & program on
the sequential PDSS (PIMOS development support sys-
tem} on a standard hardware. The program was then
ported to the the Multi-P5I, with the addition of load
distribution pragmas. The only debugging facilities on
the Multi-PST were those developed for debugging the
implementation itself, and it was not easy to debug ap-
plication programs with those facilities. Gradually, the
PIMOS operating system [Chikeyama 1992] added de-
bugging facilities such as an interactive tracing/spying
facility, & static code checker that gives warnings on
single-occurrence variables which are often simply mus-
spelled, and a deadliock reporting facility. The deadlock
reporting facility identifies perpetually suspended goals

23

and, instead of printing vut all of them (possibly very
many), it displays only a goal that is most upstream in
the data flow. It has been extremely helpful in locating
the cause of a perpetual suspension {usually, the culprit
is & prodicer process failing to instantiate the variable
an which the reported goal is suspended).

Performance monitoring and gathering facility was
later added (and is still being enhanced) JAikawa 1992).
Post-muortem display of processor utilization along the
time axis often clearly reveals that one processor is
heing a bottleneck at a particular phase of computa-
tion. Phe breakdown of processor time (inte comput-
ing feommunicating /idling) can give a hint on how the
process structure might be changed to remove the bot-
tleneck,

Sometimes knowledge of KL1 implementation is neces-
sary to interpret the information provided by the facility
to tune {sequential as well as parallel] performance. A
similar situation exists in performance tuning of applica-
Liou programs on any computers, but the problem seems
to be mere serious in a paralle] symbelic language like
K1.1. How to bridge the gap between the programmer's
idea of KL1 and the underlying implementation remains
a problent iu performance debugging/tuning.

7 Conclusion

We introduced overviews of parallel application pro-
grams and research on performance analysis.

Application programs presented here contain nterest-
ing technologies from viewnoint of net only parallel pro-
cessing but knowledge processing.

By developing various knowledge processing technolo-
gics in KL] and measuring their performance, we showed
that KL1 is a suitable language to realize parallel knowl-
edge processing technologies and that they are executed
quickly on PIM. Therefore, PIM and KL1 are appropn-
ate tools to develop large scale intelligent systems.

Maoreover, we have developed many parailel program-
ming technigues to obtain high performance. We were
able to observe their effects actually on the parallel in-
ference machine. These experiences are summarized as
guidelines for developing larger application systems.

In addition to developing application programs, the
performance analysis group analyzed behaviors of par-
allel programs in a general framework. The results of
performance anelysis gave us useful information for se-
lecting parallel programming techniques and for predict-
ing their performance when the problem sizes are scaled
up.

The parallel inference performances presented in this
paper were measured on Multi-PSI or PIM/m. We need
to compare and analyze the performances on different
PIMs as future works. We would also like to develop
more utility programs which will help us to develop par-

allel programs, such as a dvnamie load balancer other
than the multi-level load balancer.

Acknowledgement

The research and development of parallel application
programs has been carried out by researchers of the sev-
enth research laboratory and cooperating manufacturers
with suggestions by members of the PI1C, GIP, ADS and
KA working groups. We would like to ackoowledge
them and their efforts. We also thank Kazuhire Fuchi,
the director of ICOT, and Shunichi Uchida, the manager
of the research department.

References

fAtkawa 1992] 5. Aikawa, K. Mayuni, H. Kubo, F. Mat-
suzawa. ParaGraph: A Graphical Tuning Tool for
Multiprocessor Ssytems, In Proc, Int. Jonf. on Fifth
GFeneration Computer Systerns 1992, ICOT, Tokyo,
Ty,

'Barton 1990} J. G. Barton, Protein Multiple Alignment
and Flexible Pattern Matching. In Methods in In-
symology, Vel 182 (1990), Acadensic Press, pp. 626-
43

[Chikayama 1992] Takashi Chikayama. KL1 and PI-
MOS. In Proc. Ini. Conf on Fifth Gencration Com-
puter Systems (992 [COT, Tokyo, 1992,

[Date et al 1997] H. Date, Y. Matsumeto, K. Kimura,
k. Taki, H. Kato and M. Hoshi. LS CAD Programs
on Paralle]l Inference Machine, In Proe. Int, Conf on
Fifth Generation Computer Systems 1898, ICOT,
Takya, 1992

[de Kicer 1986} J. de Kleer. An Assumnption-Based
Truth Maintenance Svstem, Artificial Intelligence
28, (1986}, pp.127-162,

[Doyle 1979] 1. Doyle. A Truth Maintenance System. Ar-
tificial Intelligence 24 (1986).

|[Falkenhainer 86] B. Falkenhsiner, K. D. Forbus, I
Gentner. The Structure-Mapping Engine. In Proc.
Fifth National Conference on Artifical Intelligence,
198E.

[Fujita ef al. 1991] H. Fujita, et. al. A Model Generation
Therem Prover in KL1 Using a Ramified-Stack Al-
gorithm. ICOT TTR-606 1991,

[Fukui 1989] S. Fukui. Improvement of the Virtual Time
Algorithm. Transactions of Information Processing
Society of Japan, Vol.30, No.12 (1989), pp. 1547
1554, {in Japanese)

4

[Furuichi ef al. 19%0] M. Fu-
ruichi, K. Taki, and N. Ichiveshi. A multi-tevel load
balancing scheme for or-paraliel exhaustive search
programs on the Multi-P5S1. In Prec. of PPoPP'30,
1290, pp. 50-59,

[Goto ef al. 1988] Atsuhiro Goto ef el Overview of the
Parallel Inference Machine Architecture. In Proe.
Int. Conf. on Fifth Generation Computer Systems
1988, ICOT, Tokyo, 1988.

|Hasegawa ef al 1992] Hasegawa, R. et ol MGTP: A
Parallel Theorem Prover Based on Lazy Model Gen-
eration. To appear in Prec. CADE' [System Ab-
stract), 142

[Hirosawa et al. 1991)
Hirasawa, M., Hoshida, M., Ishikawa, M. and T.
Toya. T. Multiple Alignment System for Protein
Sequences employing 3-dimensional Dynamic Pro-
gramming. In Proc. Genome Informatics Workshop
II, 1991 {in Japanesc).

[Hirosawa ef al 1982] Hirosawa, H., Feldmann, B.J,
Rawn, D, [shikawa, M., Hoshida, M. and Micheals,
G. Folding simulation using Temperature parallel
Simulated Annealing In Proc. Int. Conf. on Fifth
Generation Computer Sysiem 1982 10T, Tokyo,
1002,

[Ichivoshi 1989] N. Ichiveshi. Paraliel logic programming
on the Multi-P5L ICOT TR-487, 1988, (Presented
at the ltalian-Swedish-Japanese Weorkshop "90).

[Iehiyoshi et al. 1992] N. Ichiyoshi and K. Kimura.
Asymptotic load balance of distributed hash tables.
In Proc. Int. Conf on Fifth Generation Compuler
Systems 998, 1992,

[Ishikawa et al. 1991] Tshikawa M., Hoshida M., Hiro-
sawa M., Toya,T., Onizuke K., Nitta, K. and Kane-
hisa,M. Protein Sequence Analysis by Paralle]l In-
ference Machine. Information Processing Society of
Japan, TR-FI.23-8 {in Japanese).

[Jefferson 1945] D). R. Jefferson. Virtual Time. ACM
Tmansactions on Programming Longuages and Sys-
tems, Vol.7, No.3 {1985), pp. 404-425.

[Kimura et al. 1991] K. Kimura and K. Taki. Time-
homogeneous Parallel Anpnealing Algorithm. In
Proc. IMACE'91, 1991, pp. 827-828.

[Kimura et al. 1991 K. Kimura and N. Tchiyoshi. Proba-
hilistic analysis of the optimal efficiency of the multi-
level dynamic load balancing scheme. In Proc. Sezth
Ihstributed Memory Computing Conference, 1991,
pp. 145-152.

|Kitazawa 1985) H. Kitazawa. A Line Search Algorithm
with High Wireability For Custom VLST Design, Tn
Proc, ISCASES, 1985, pp.L035-1038.

|Koseki et al. 1990] Koseki, Y., Nakakuki, Y., and
Tanaka, M., An adaplive model-Based diagnostic
svatem, In Proc, PRICAT0, Vol 1 (1990), pp. 104-
L0,

[Kumar ef of 1488} V. Kumar, K. Ramesh, and V. N
llao. Parallel best-first search of state space graphs:
A surnmacry of results. In Prac. AAALEE 1988, pp.
132-127. '

[Maruyama 1988 . Maruyama et al. co-LODEX: a co-
uperative experl svatem for logic design. In Proc.
Int. Conf. on Fifth (Feneration Compuler Systems,
ICOT, Tokyo, 1958, pp.1294-1406.

[Maruyama 1930] F. Maruvama et al. Logic Design Sys-
tern with Evaluation-Redesign Mechanisim. Elec
tropics and Communications in Japan, Part 1:
Fundamental Electronic Science, Vol 73, Ne.d,
Scripta Technica, Inc. {1990).

[Maruvama 1991] F. Marnyama et al. Solving Combi-
natorial Constraint Satisfaction and Oplimization
Problems Using Sufficient Conditions for Constraint
Vislation. In Proe. the Tourth Int. Symposivm on
Artihoal Intelligence, 19471

[Matsumoto 1957] Y. Matsumoto. A parallel parsing
systemn for natural language amalvsis. In Prec,
Third International Conference on Logic Program-
ming, Lecturel MNotes on Computer Science 225,
Springer-Verlag, 1957, pp. 306-400.

IMatsumoto et al 1992 Y, Matsumoto and K. Taki.
Farallel logic Simulator based on Time Warp and
its Evaluation. ln Proe. fnt. Conf. on Fifth Genera-

fron Compufer Systems (892 1C0T, Tokve, 1992,

[Minoda 1992] Y. Minoda et al. A Cooperative Logic De-
gign Expert Svstem on a Multiprocessor. In Proc.
Ini. Conf. on Fifth Ceneration Computrr Sysiems
1282 1C0T Tokye, 1992,

[Makakuki ef af 1990] Nakakuki, Y., Koseki, Y., and
Taneka, M., Inductive learning in probabilistic do-
main, In Proc. AAAL-S0, Val, 2 {1990], pp. 8083814,

[Needleman ef al. 1970] Needleman.5.B. and
Wansch, 0.0 A General Method Applicable to the
Search for Similarities in the Amino Acd Sequences
of Two Proteins, J. of Mol Hiol, 48 (1870}, pp.
443-453.

[Nitta et al. 1992] K. Nitia et. al. HELIC-II: A Legal
Rensoning Systermn on the Parallel Inference Ma-
chine. In Proc. fnt. Conf. on Fifth Generation Com-
puter Systems 1802, ICOT, Tokyo, 1992,

25

[Oki 1989) H. Ok, K. Taki, 5. Sei, and M. Furuichi.
Tmplementation and evaluation of parallel Tsumego
program on the Muli-PS1 In Pree. the Jound Feral-
lel Processing Sympostum {JSPVES), 1989, pp. 351~
357, (In Japancse).

ISkolnick and Holinsky 1991] Skolnick, J. and Kolin-
ski,A., Dynamic Monte Carle Simulation of a New
Lattice Model of Globular Protein Folding, Strue-
ture and Dynamics, Jowrnal of Molecular Biology,
Vol 221, NoZ pp.495-311.

[Susaki et al. 1989] K. Susaki, H. Sate, K. Sugimura,
K. Akasake, K. Taki, 5. Yameszaki, and N, Hirota.
]mp]emem,a.timn and evaluation of |}i-|.r;-|.l|&1 sy mlax
analyzer PAX on the Multi-PSLL In Proc. Joint Par-
allel Procsssing Symposium (JEFPP'E9), 1089, pp.
342-330. {In Japanese].

[Uchida ef al. 1985 Shunichi Uchide et al. Research and
Development of the Paralicl Inference System in the
Intermediate Stage of the FGCS Project. In Proc.
Int, Conf, on Fifth Generetion Computer Systems,
1COT, Tokvo, 1888,

[Ueda ef al, 1878] Veda, Y., Taketomi, H. and Go, N.
{1978) Studies on pretein folding, unfolding and
fuctuations by compuler simulation. A three dimen-
sional lattice model of lvsozyme. Bilpolymers Vol 17
pp.1531 1548

[Wada and Ichiyoshi 1990] K. Wada and N_ lchiyoshi. A
study of mapping of locelly meszsage exchanging al-
gorithms on a loosely coupled multiprocessor. ICOT
TH-587, 1990.

{Wada ef al. 1992
M. Wada, K. Rokusawa, and N. Tchiyoshi. Paral-
lelization of iterative deepening A" algorithm and
its implerentation and performance measurement
on PIM/m. To appear in Joint Symposium on Par-
allel Processing JAPP'02 (in Japancse).

