ICOT Technical Report: TR-768

TH-T6H

PIM/k: a Parallel Inference Machine
with a Cache Hierarchy

by
H. Sakai. 5.Asano, A. Nakase
S. lsobe, H. Muratani & T. Takewaki (Toshiba)

April, 1992

@992, 1ICOT

Mirta Kokusai Bldg. 21F {03)3456-3191 ~5

IC DT 4-28 Mita |1-Chome Telex [COT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

PIM/k: a Parallel Inference Machine with a Cache Hierarchy

Mivoshi Sakai. shigebiro Asano, Akihiko Nakase
Shouzou Isobe, Hirolum Muratani, Toshiaki Takewaki

FOSHIBA Corporation

Abstract

This paper presents the featores of PIM/k. one of the Parallel Inference Ma-
clines boing developed wider the Japan's Tifth Generation Computer Project. One
of the primary goals al the project is to realize a fast inference machine by means
of parallel processing. Townrds this goal. PIM/K employs a cache hierarchy to
reduce the wmemory aveess latency, while the other PIMs employ inter-cluster net-
works to obiain high hand width of the whole svstems. This paper describes the
design considerations of a hicrarchival cache consistency protocol with an efficient
replacement algorithm, The kL1 system sollware which was initially designed for
the inter-cluster networks of the other PIMs chould be tuned for 1he cache hierar-
chy. This paper shows that the cache hierarchy is advantageous (rom the software
points of view and thal stopand-cony GO emploved by the PIMs requires adapting
in arder ta avoud an elficieney problem. Though PIM/K 15 still under development,
this paper also reports a K11 program evaluation on the actual machine with 4

processing clewmenls [PTs).

1

1 Introduction

Parallel processing is one of the ost important kevs for faster execution in the knowledge
engineering domain, Under the Japan’s Fifth Generation Computer Project, several types
of Parallel Inference Machines {PIMs) are being developed. All PIMs employ a common
parallel logie progranuning language KL1 which was derived from Flat GHC [Ueda8T].

Ta achieve high performance with hundreds of processing elements {PEs), most of the
machines have emploved mmter-cluster networks to obtain high band width of the whole
svstems. Faeh eluster las from one 1o cight PEs and a shared memory. While a PE can
have access 1o its memory directh by load and store instructions, an'inter-cluster memeory
access requives a request and g reply message exchange. Though this approach has the
advantage of sealalnlnv, a major disadvantage may be the inter-cluster memory access
latency caused by the message handling software overhead. For example, a KL1 program
which cantains a database relerred frequently by the rest part of the program may suffer
from a serions performance bottle-neck at the cluster where the database resides.

'I'o recuce memary aceess latency, a Parallel Inference Machine PIM/k employs a cache
hierarchy [Wilson®T). It enables a PE to have access to a different cluster’s shared memory
I load and store mstructions. We have designed a consistency protocol for a cache

generalor generator
.)

—— —J—]message

~

] (I

comsumer COMEUMmer

(a) (b)

Figure 12 The shared psemory based communication among kL1 processes

hierarchy and have tuned the L1 system software to exploit our memory architecture.
This paper discusses the featares of PIM/k. especially the application of a cache hierarchy.

The rest of this paper is organized as follows, First, we present the motive for applying
a cache hierarchy 1o PIM k. Secondiy. the design considerations of the PIM/k memory
architecture, are discussed. Then we describe the KL1 system software tuned for the
cache hierarchy and discuss the advantages of the cache hierarchy and a possible efhciency
problem. Finallv, we describe our enrrent status and a kL1 program evaluation on the
actual hardware winth 4 PEs.

2 Motive for applying a cache hierarchy to PIM/k

2.1 KL1 parallel execution on a shared memory

The parallel exccution of a K11 program [Gotoss] and a shared memory model are well
matched in terms of inter-process communication and automatic load balancing.
later-process cotnmnication is classified into two basic categories, namely message
passing and data sharing. KLL. belonging to the latter. may be considered a set of
concurrent processes which share data within a unique memory address space.

Consider the conumunications between generator and consumer processes: When there
AlE 110 TTHCSRASCS, hatl of [rroreEses have pﬂilntEl‘H to the same variable as i]lustrated in
FFigure L{a). ln this case, the consumer which finds out no message would suspend its
evecution until the generator scuds a messaze. When the generator gets ready to send a
message. it creales a list strueture with the message and processes its pointer as llustrated
in Figure 1{h}. The consumer can then process this message cell and attain the pointer
ta the new variable, Tor further communication. Then the inter-process conumunication
retirns o the state illustrated i Figure 1{a). This shared memory based communication

is suitable for knowledge processing because a meszsage containing pointers Lo structured
data can be passed efficiently =0 that proceszes may share the data.

Automatic load balancing «uring a program execution is inevitable for a PIM to
achieve high performance. Generally, it s essentially impossible to predict how many
and what kind of subtasks are created during a program execution within knowledge
processing domain. Fven if possilile, it would be heavily time dependent. A PIM realizes
the automatic load balancing by niigrating goals between from heavy loaded PEs to light
loaded PEs. Since goals may have pointers, a goal migration within a uniform address
space 15 more efficient than that across different address spaces.

2.2 Applying a cache hierarchy to PIM/k

Hased on the above consideration, PIM/E has adopted a cache hierarchy as illustrated
e Figure 20 PEs of & cluster share a second-level cache through a first-level bus, which
mwans a second-level cache may be cousidered as a cluster’s shared memory. The second-
level caches are connected 1o a global memory through a memory-level bus. Therefore
the memory-level bus may correspoud to the inter-cluster networks of the other PIMs.

While the shared memory architectures [Lenoski9l] [Warren82| have been proposed
{or multiprocessors, we adopted a cache hicrarchy for two reasons. Firstly, the allocation
of memory o cach cluster should change. because the amount of memory is application
and time dependent. Secondly, the evolution of VLSI will deliver inference processors
with built-in fist-level cache. This will bring the cache hierarchy a reality.

Exploting a cache Wicrarcly with multiple processors necessitates the reduction of
transactions on its memory-level bus. For the hardware. an efficient cache protocol is
required. For the WLT systemn soltware, the load balancing mechanism across clusters
should be designed carelully 10 avoid excessive inter-clusier memary access. There is
one more important aspeclt lo consider; A KL1 program execution tends to consume
the heap space at a very high speed because of the single assignment property and the
parallel semantics of the KL language. It is known that a goal reduction of practical
programs allocates two words in average from the free heap space. Suppose a cache line
size is four words and the performance of a processor is 400,000 reductions per second.
Then 20 processors would do 8.000.000 store operations every second which would cause
2000.000 block read and 20000000 hlock copyback transactions. To aveid this amount of
transactions on the memory-level bus, the second-level cache should be large enough so
that it keeps the [ree heap space. Then, the memary access transactions described above
would he enclosed within a fivsi-lovel hus,

3 Memory architecture

3.1 Overview

As s atlustrated in Figuree 20 the actual PIN Kk has four elusters, each of which has four
Pl A PE b s BISCotvpe 32 bit micro-processor with tag architecture. A PE has a

FC||FC| |FC}||FC}|FC||FC

first-lefel bus first-le el bus ﬁnll.-l:r'd bus

sC sC sC sC

I ' | | |

memory-level bus

P = Processor

FC = first-level cache
SC = second-leve| cache
M = memory

IFigure 20 The memory architecture of PIM/k

private memory as well as a first-level cache, since the IKL1 system software uses run-time
routines and small lixed amount of memory frequently. Following the Harvard architecture
of the processor. the private memory consists of an instruction memory (128KBytes)
and a data memory (128K Byies). The first-level cache consists of an instruction cache
(123K Bytes) and a data cache {256 Bytes). The second-level cache also consists of an
instruction cache { 1M} and & data cache (1MB). The global memory size is 1 GByte. To
recluce hardware, no consistency mechanism is provided for the instruction cache however
a flush mechanisim which invalidates the tag memory is adopted.

3.2 Design considerations of a hierarchical cache protocol

[Wilson87] proposed a hierarchical cache memory and reported its performance evaluation
by a simulation using an analvtical model. However, no results, as far as we know, have
shed light on the design considerations of the hierarchical cache consistency protecol.
Our hierarchical cache employs a write invalidate, copybacked protocel following [Goto89]
which reports itz superiority for KL] execution. We think that our design procedure can
also be applied to other tvpes of hierarchical cache memories

3.2.1 Enhancement of the MOESI protocol to a cache hierarchy

There are several consistency protocols for a single-level cache, and most of them can
he considered as a reduced version of the MOFESI model [Sweazey86]. In the design of
PIM/k cache protacol, we hegan 1o enhance the MOESI model for the cache hierarchy
and finally reached an extension of the Berkeley protocol [Katz85] though there are some
other possible alternatives,

The MOESI model intraduced the following three properties.

valid or invalid:
indicates whether the hlock has valid data or not.

shared or exclusive:
indicates whether the block data is shared with other cache memories or pot.

owned ar unowned:
mdicates whether the block has ownership or not. The ownership means that the
hlock is 1o reply 1o a data request on the bus, and to do a copvback to the memory.

The block with ownership has always vahd data.

These properties characterize the five states of a cache block listed in Table 1. Some
other protocols for a single-level cache can he obtained by merging some of the above five
states, For example, the Berkeley protocol merges states E and 5 into state UNO.

Table 1 [Mive states of the MOESI model

M| Modihed | valid, exclusive and owned

O | Owned valid, shared and owned

Io | Exclusive | valid, exclusive and not owned
S | Shared valid, shared and not owned

I | Invalid invalid

Now let us consider applving the MOES] model to a cgche herarchy. It can be applied
tor the first-level cache by simply changing the word *memory™ to the word “second-level
cache”. However it is not troe of the second-level cache. Consider the case where a
processor does a write operalion. The relevant first-level cache block turns its state to
state M and holds the new data. For the second-level cache, the corresponding block also
furns ibs state o state M. but the block data remains unchanged. This suggests that
the ownership definition should be changed so that either the second-level cache black or
some of its first-level cache biocks has valid data.

Then. suppose that a read request from the memory-level bus hits a second-level cache
Block with Towned” state. It were not for any mechanism to determine whether the
{li”.i‘l i.‘i "I."ﬁliﬁl o 1T, 1-]1!‘ HT‘I"‘[JII'I'I-I[‘\'{‘E {'Hf'ilt" l."l'ﬂ'l'll:l'1 ﬁ.l“’-ﬁ:l.-".‘i I'I?l\"f_‘! o l_'ﬂl']su]'. thf‘ ﬁTSt.-IEVE‘]
cache with ownership. oo order to reduee this kind of traffic on the first-level bus, we
decided to introduce a fourth property assocated with each second-level cache hlack.

same or different:
indicates whether the hlock has valid data or not.

Now we show the split of states Il and S in the first-level cache is less effective than
in the case of a single-level cache. For a single-level cache based on the MOESI model,
a write operation to a block with state 5 has to issue an invalidation command, while
one to a block with state E need not issue any command. Let us consider the same
situation in the case of a cache hierarchy. Just before the wrile operation, the first-level
cache black has state F and the second-cache block has a state of "exclusive, same”. The
write operation [rom a processor causes difference between the first-level and the second-
level caches and thus te change the fourth property of the second-level cache hlock into
“different”™, an additional connmand from the firsi-level cache is required. Therefore we
decided Lo merge states E and 5 of the first-level cache into one, namely state UNQ of
the Berkeley pratocol. As a result. we decided to adopt the Berkeley protocol for the
first-level cache.

Getting back to the second-level cache pratocol. the possible combination of the above
four properties would be 9 states'. However the following three states:

e notowned, different aned shared®

o notowned. dilferent and cxelusive’

o ‘owned. shared and different”
are tmpractical and can be removed with no penalty. The final version of state definition
and the bus commands are summarized in the next section.

Thus, we have six meaningful states, In our actual implementation, however, we
decided to mevge the six states into four because of the following reasons.

o [requires less hardware. because four states are represenied by only two bits,

o [t enables us to make the first-level and the memary-level huses compatible, which
eases havdware debugging,

3.2.2 Definition of states and bus commands

The stave definition for the firsi-level cache is the same as the Berkeley protocol.
INV: [ovalid. does not contain vahd data.

UNO: UNOwued, has valid data, possibly he shared among other processors’ caches,
cannot be written before obtaining right to update, does not have ownership.
NON: Not exclusive OwNed, has valid data, possibly be shared among other processors’

caches, cannot be written before obtaining right to update, has ownership.
EXC: EXClusive. has valid data exclusively, not be shared, can be written locally. has
ownership.

The state delinition for the second-level cache 15 the same as above except that of state
EXC. For the fourth property, UNQO and NON have the property of "same”, while EXC
has the properiyv of "different”.

Yafowned or notowned) = 2{shared or exclusive) = 2{same or different)+ 1{invalid)=9.

EXC: EXClusive. does not have valid data, but one of the first-level caches above has
valid data. has ownership.

The first-level bus commandds are listed in Table 2. The first four commands come
fram the first-level cache memories. while the other two are used by the second-level
cache to realize a snooping mechanism. The memory-level bus commands are the first
fonr commands in Table 2 since the shared memory does not have a snooping mechanism.

Table 2: Bus commands

RSI: || Read SHared.

Read data-block.

RFO: || Read For Ownership.

Read data-block, and vbtain ownership.

WEFET: || Write For Invalidation,

Invalidate ot her data-hlock.

WWL | Write Without Invalidation,

Clapyharck data-block to second-level.

FAL Flush And luvalidation.

Foree first level cache which has ownership to copyback,

and Tavalidate first level cache.
FWI Flush Withoul Invalidation,
Force first-level cache which has ownership to copyback.

3.3 Replacement algorithm for the second-level cache
3.3.1 Multi-level-inclusion property

While the mwst important role of the second-level cache is to provide the first-level caches
with required data, it alse works as a filter of the bus traflic between the memory-level
and the hrst-level buses. For example., if an invalidation command from a first-level cache
hits a second-level cache block with exclusive property, the second-level cache does not
have Lo transfer the command to the memory-level bus. Likewise, if a memory-level bus
command dees not hit the hlock of a second-level cache, the second-level cache does not
have to transfer 1he command 1o ils first-level bus.

In the above discussion, we have assumed implicitly that the memory location which
exists in a first-level cache must be held by its second-level cache. This constraint is called
the Multi-Level-Inclusion (MLI) property [Baer87]. This property puts the following
constraint Lo Lhe second-level cache memory,

constraint A: The second-level cachie should be at least M x N-way set associative, where
M ois the number of its first-level caclhe memories and N is the number of ways of
cacl Mrst-level cache wmemory.

3.3.2 Replacement algorithm

Consider the case where a memory access request by a processor causes a cache miss both
in the first-level and Lhe second-level caches and an appropriate cache block has to he
selected to hold the required hlock data in each cache. The second-level cache block also
has to be selected 1o keep the MLI property. It should be noted that some replacemnent
algorithms for a single-level cache, including the LRU algorithm, violate the MLI property.

[Baer87] presented a replacement algorithim which keeps this property. The idea was
that when an block is to be replaced from the second-level cache, all the corresponding
blocks of the first-level cache should be copybacked beforehand, This method has two
disadvantages, namely increase in bus transaction and decrease in hit-ratio of the first-
level cache caused by invalidating valid copies still used by other processors.

We mntroduce an efficient algorithm which consists of the following three rules.

rule 1) If there is a cache block with state INV, select it.

rule 2) Otherwise, if there is a cache block which does not have any corresponding blocks
i the upper fist-level caches, select it

rule 3) Otherwise select the cache hlock which corresponds ta the first-level cache block
to be replaced. :

We now prove that the above rules alwavs keep the MLI property. When either the rule
| or 2 is applied. a block to be replaced does not have any valid data in its corresponding
first level cache blocks, When the last rule is applied, the constraint A ensures that the
replaced block does not have any valid copies other than the block to be replaced in
the first-level cache. This replacement algorithm needs no additional commands to keep
Lhe MLL property and can be cfficientlv implemented by a small amount of hardware
[Asano2].

3.4 Debugging support

A powerful debugging envirommnent is necessary especially in the development of a PIM.
Generally, parallel execution of # WL1 program almost always results in different memory
image, yel they are all correct. Goal reductions which create new KL1 ohjects compete
with one another for allocating heap area for the objects, Therefore some asynchronous
factors of hardware wounld affect the address of each KL1 object, which, in turn, affects
cache hit or miss and inereases the asvnchronousness among PEs.

To ease the debugging, PIM/k was designed 1o achieve repeatahle parallel execution
[Asano92]. Although 1t is disturbed by the arrival of an asynchronous 1/0 request from
a front-end processor or disk devices, we have appreciated 1t in debugging hardware and
soltware errors whicl appear after several minute parallel execution. It 1s realized by the
tollowing mechanisime:

e adopting a system-level svochronous clock;

o inihiabizng the b arlntors at Lhe]wginniug ol a program execulion; and

o starting the parallel execution at a certain DRAM reflesh cycle.

cluster A P l{ cluster B

-ﬁ

import tables

Figure 3. External Data Heference Mechanisms
o]

4 The effects on the KL1 system software

The standard K11 svstem software was designed for PIMs with a message passing network
should be tuned for the cache hievarchy. This section reviews the standard software and

then discusses how it should e taned.

4.1 Overview of the standard KL1 system
4.1.1 External data reference mechanisms

The standard L1 system handles internal pointers and external ones as different data
types. They are given diffevent tags, REF and EXREF. While an internal reference to
a kL1 object requires only a load mstruction, an external reference requires consulting
import and export tables as illustrated in figure 3. Suppose PE, of cluster, tries to get the
kL1 object pointed by an EXREF pointer. This read operation consists of the following
steps.
e PE; looks up the proper entry of its import table and sends a read request to
clusterg.
e PE, of clustery receives the request, looks up the proper entry of its export table,
reads the required object. and sends back a reply message which holds the object.
o PPE, receives the reply message.
[Ohnishidl] reported that a passive unification which includes one external read takes

a Multi-PS] system 23 append logical instructions, while an internal one takes less than

oI,

4.1.2 Garbage collection

The standard KL1 svstem emplovs both a real-time GC and a stop-and-copy GC. For the
real-time GC. the KL1 system employs a multiple reference bit (MRB) which identifies
single aud multiple relerences [Nishida88). It is based on the observation that most objects
are single refevcnced. The MRHE mechanism also ensures a constant time update operation
of a single referenced vector. Without this mechanism, the update operation would take
time proportional to its size because KL avoids destructive assignment operations.

Since the real-time GC does not reclaim all the reusable area, a stop-and-copy GC
15 invaked when the entire heap space of a cluster has been exhausted. The ecxternal
referenice mechanism enables a cluster to do a stop-and-copy GC without suspending
other clusters hecanse all the external memory access requests are served hy the cluster
which is doing the GO, However, if a cluster-level GC fails to reclaim any area, clusters
have to participate i a global GO which may reclaim some more area by reclaiming
external references.

4.2 Tuned KL1 system software
4.2.1 Direct access mechanism and its dvantages

In order to exploil the low latency of the remote memory access, we decided to integrate
the internal and external pointers. An external memory access is estimated to take PIN /k
less than one append logical instruction in a typical case. Avoiding the external pointers
does not lead to any difficulties, because every operation requiring remote memory access
results in a stale cquivalent to the case of the standard KL1 system. The integration
of the pointer types has three more advantages. One is that the tuned KL1 system is
reduced hall in code size, whicl. in turn. leads to higher hit ratio of the instruction cache.
Another advantage is much easier debugging of the inter-cluster operatioms of the KL1
system soltware. The other is that various kinds of inter-cluster load distribution schemes
get available, because the resouree management tables of other clusters can be examined
miore flexibly and more efficiently than the standard KL system.

4.2.2 Garbage collection

In PIM [k, the real-time GC does not have to be amended. The MRB mechanism reclaims
unreferenced area without regavd to internal or external reference and the reclaimed area
can be put into the free hist of the cluster where it belongs.

The stop-and-copy GC. however, is affected. A cluster should not start a stop-and-
copy GO without sotifying the other clusters, because 1t might move objects which are
still referred to [rom other clusters without adjusting the external pointers. Therefore all
the clusters should participate in the GC, which is likely to cause an efficiency problem.
The required time for a stop-and-copy GO may be thought proportional to the amount
of live objects and independent of the GC interval. Thus frequent GCs would lase the
overall efficiency of the systen.

We have three possible solutions to reduce the GC frequency though we have imple-
mented only the first one,

¢ Reserve some memory as a system-level free space and allocate it to the heap ex-
hausted clusters.

e Suspend the goal reduction of the heap exhausted clusters. Since other clusters can
continue the goal reduction, the overall efficiency would be acceptable if the number
of suspended clusters remains small.

» Substitute the MRB-based real-time GC for a more powerful one like an ordinary
reference count mechanisn, [t would reclaim almost all garbage and reduce the GC

{requency.

The stop-and-copy GC creates import and export tables temporarily to avoid excessive
inter-cluster memory access. Fach reclaimed arca is put into the free list of the cluster

which the area belongs to.

5 Current status and preliminary evaluation

The PIM/k hardware is still under development and the KL1 system snftware has room
to be improved. So far, the hardware has one cluster with four Plis which runs a 12 queen
program coupled with the KL1 system software. The program execution consumes about
600 MB of the hieap memory without any stop-and-copy GC. The performance with four
PLs is about 3.5 timnes faster than the single PE's case.

Each PE hoard has connters and a trace memory. The former can count the number
of events such as all the cache aceesses and those that hit the first-level cache which
caleulate the first-lovel cache Wil ralio. The latter can record the PE’s memory access
request and part of the first-level bus status on every clock. All the trace memaories can
also interrupt their PEs in every 32K clocks which suspend the parallel execution almost
synchronously'. By reading the event counters during suspension and then resuming the
parallel execution, we can observe the dynamic features of a parallel execution without
affecting the execution much.

Figure 4 shows the first-cache hit ratio of the 12 queen program executed by ane PE.
In this figure, the hit ratio is averaged in every 0.8 second. At the beginning of the
execution. the P has 10k bvie free heap space within the first-level cache, which gets
exhausted in the first 1wo seconds, Then. the hit ratio gets stationary around 94%.

Though the actual PIN/k implementation has cut svme design alternatives, we are
still interested in various tvpes of shared memory model. For this purpose, we are also
developing a clock level software simulator which models the behavier of PE's instruction
fotch and decode, cache, memory. and hus arbitor. A KL1 program runs on the simulator
as if it runs on the actual hardware though the execution speed is about 7,500 times slower.

Hinterrupt is taken only at the end of an instruction which varies depending on the cache miss and
1i|e le

hit ratio(%)

100.00

93.00

94.00 _.la__mu"_’m&- A AT & R A

92,00
50.00

82.00) -
86.00

rime (sec)
.00 50.00 100.00 150.00

Figure 4: First-level cache hit ratio of PIM/k

It allows us to get the svstem’s hehavior in detail and to change the architectural config-
uration and/or cache protocol design easily. We are expecting that these approaches will
bring us extensive experience about parallel processing in knowledge processing domain.

6 Conclusion

I this paper. we present the fealures of PIM/k with a cache hierarchy. It was motivated
by a favorable relationship between the KL1 parallel execution and shared memory model.
The design of our hierarchical cache protocel started at enhancing the MOES] model and
has resulted in an extension of the Berkelev protocol. To keep the MLI property, 4 new
replacement algorithm for the second-level cache was proposed. The cache hierarchy
generally affects the KL system software in a favorable way, However the stop-and-copy
GO requires a more sophisticated treatment which we should evaluate by experimentation.
The actual machine has mechanisms which enahles us to observe the dynamic features
of a parallel execution. vet we are developmg a clock-level software simulator to evaluate
kL1 parallel execution on various types of shared memory architecture.

Acknowledgement

We are grateful to Dr. Taki and Dr. Hirata of ICOT who have been leading the PIM
project, We also express thanks o the other members of PIM/k group and Dr. Trehan
who gave us fruitful sugeestions,

12

References

{Asano92]

[Baer8T]

|[Eggersgs)

[(GoloBs]

iGoto8Y]

[Katz83]

[Lenoskidl]

[Nishidass]

[Ohnishio0]

[Smiths2)

[SweazevSi]

S.Asano. et al.. "The Unique Features of PIM/k: A Parallel Inference Ma-
chine with Hierarchical Cache System’, Submitted to the International Par-
allel Processing Syiuposium,

J.Baer and W.Wang, 'Architectural Choices for Multilevel Cache Hierar-
chies”. Proceedings of the 1987 International Conference on Parallel Process-
ing, 1987, pp. 258-261.

S.).Eggers and R.H.Katz, 'A Characterization of Sharing in Parallel Pro-
grams and its Application to Coherency Protocol Evaluation’, Proceedings
of the 13th Annual Diternational Symposium on Computer Architecture,
Mav 1058, pp. d7d-480

A.Coto. et al.. "Overview of The Parallel Inference Machine Architecture
(PIM}". Proceedings of the International Conference on Filth Generation
Computer Systems, Nov, 1988, pp. 208-229.

A.Goto, et al., 'Design and Performance of a Coherent Cache for Parallel
Logic Programming Architectures’, Proceedings of the 16th Annual Interna-
tional Svmposium on Computer Architecture, May 1989, pp. 25-33.

Rall.lvatz, et al. ‘liplementing A Cache Consistency Protocol’, Proceed-
ings of the 12th Annual International Symposium on Computer Architecture,
June 1985, pp. 270-283.

D.Lenoski. et al., ‘Overview and Status of the Stanford DASH Multiproces-
sor’. Mroceedings of the International Symposium on Shared Memory Mul-
tiprocessing. pp. 102-108. 1991,

I.Nishida. et al.., "Evaluation of the Effect of Incremental Garbage Collection
by MREB on FGHC Parallel Execution Performance’, Technical Report 394,
ICOT. 1935

S5.0hnashi. et al.. Tvaluation of the KL1 Language System on the Multi-
PSI. In Warkshop on Parallel Implementation of Languages for Symbolic
Computation, University of Oregon, 1990.

A.l.Smith. 'Cache Memories', ACM Computing Surveys, Vol.14, No.3, Sept.
1932, pp. 473-530.

P.Sweazey and A.JSmith. "A Class of Compatible Cache Consistency Pro-
tocols and their Support by the IEEE Futurebus’, Proceedings of the 13the
Annunal International Svmposium on Computer Architecture, June 1986, pp.
414-423.

— 13 —

{UedasT|

[Warren38)

[Wilson37]

K.Ueda, 'Guarded Horn Clauses’, Concurrent Prolog: Collected Papers,
E.Shapiro. Ed., MIT Press, 1937,

D.H.D.Warren, et al., "Data Diffusion Machine - a Scalable Shared Vir-
tual Memory Multiprocessor’, Proceedings of International Conference on
FGOSSE, 1988,

A.W.Wilson. 'Hierarchical Cache/Bus Architecture for Shared Memory Mul-
tiprocessors’, Proceedings of the 14th Annual International Symposium on
Computer Architecture, June 1987, pp. 244-252.

