ICOT Technical Report: TR-767

TR-767

The Unique Features of PIM/k:
A Parallel Inference Machine
with Hierarchical Cache Systemn

by

S. Asanoa, S. Isobe & H. Sakai (Toshiba)

April, 1992

@ 1992, ICOT

Mita Kokusai Bldg. 21F (0334563191 -5

IC:DT 4-28 Mita 1-Chome Telex ICOT 13171964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

The Unique Features of PIM/k:A Parallel Inference Machine with
Hierarchical Cache System

Shigehiro Asano® Shouzou lsobe Hiroshi Sakai
TOSHIBA R&D Center

Abstract
This paper presents the unique features of a multiprocessor system, its hierarchical cache system,
dedicated debug supports and performance evaluation mechanisms. For the hierarchical cache system,
we present general consideration to extend a well known one-level cache protocol for the two-level
eache, The new feature of it is a special replacement algorithm which keeps multi-level-inclusion
property. For the second feature, we present novel mechanisms by which we can debug and evaluate
the multiprocessor effectively. The mechanisms guarantee the same consequence with the same input.

1 Introduction

Parallel processing is now considered as a major key for high-performance machine. In the Japan’s fifth
generation computer project{TCOT), parallel processing has been studied extensively. As one of the
experimental hardware project, we have been developing a parallel inference machine called PIM/k. A
parallel inference machine is a special-purpose machine which runs a parallel logic language called KL1
[Goto8d).

PIM/k emplovs a bus-based tree-structured, multi-level parallel cache system. In this architecture,
transactions between processor-processor, of processor-memory are distributed on separated buses. For
this reason, this architecture has potentially higher performance compared to conventional single-level
bus-structured machines[AndrewsT).

An important result in developing this type of architecture i3 the design considerations of the hierar-
chical cache memory. We have enhanced Berkeley protocol[Katz83] for multi-level parallel cache. For this
type of cache, Multi-Level-Inclusion{ MLI) praperty [Baer87] is the key to implement simple and efficient
protocol, We propose a special replacement algorithm which ensures the MLI property.

Our major interest is to evaluate architecture of hierarchical cache system. For this purpose, we
prepare some special hardware for debugging and performance evaluation. Its significant features include
the tobustness of repeatability. With this feature, software debugging and performance evaluation are
simplified.

This paper focuses on two topics: One is the hierarchical coherent cache, and the other is the mech-
anisms for multiprocessor debugging and performance evaluation.

The rest of this paper is organized as follows, Next section describes why we chose hierarchical
cache architecture for PIM k. Section 3 presents overall architecture of PIM/k. Section 4 presents the
mechanisms for debugging and performance evaluation as a multiprocessor system. Section 5 describes
the cache consistenty protocol and our replacement algorithm which maintains the MLI property. Finally
we close with summary, the current status of the machine, and future directions. Appendix presents the
complete description of our hierarchical cache protocol.

2 Motive of the hierarchical shared-memory architecture

Parallel execution models in general are classified into two basic categories concerning interprocess
communication. One is message passing and the other is data sharing. The KL1 parallel execution

*e-madl asanofisl.rd l:.tml'iihﬂ_r.n.jp

model[Goto88] belongs to the latter. The parallel execution of a typical KL1 program may be considered
as a lot of concurrent processes. These processes cooperate with one another to carry out a given task
by sharing data within a unigue memory address space. A process which wants to pass a value to other
processes, allocates a new space and set the value into it. A process which finds out that the space has
already been set a value, uses the value for its own execution. Thus, the naive memory architecture re-
quired by the KL1 parallel execution would be a large uniform memory which can be shared by numerous
processing elements with little latency, though it is extremely difficult.

All the parallel inference machines being developed[GotoB9] have non-uniferm memory architecture.
Each machine consists of clusters having from one to eight processing elements and a memory shared by
them. Tlowever there is a diversity of intercluster connection. All the machines except PIM/k incorporate
message passing mechanisms. That is, a processor which wants to refer a different cluster’s memory has
to send a message to the destination cluster in order to ask a processor of the destination cluster to do the
required operation. On the other hand, PIM/k adopts a global memory shared among all the processcrs,
for the purpase of reducing the overhead of the memory relerence across clusters, A processor refers the
global memory by simply executing load and store instructions.

To exploit a hierarchical coherent cache memery, it is very important to reduce transactions on its
memory-level bus. For the hardware, the efficient coherent protocol is required. For the KL1 software,
the load balancing mechanism across clusters should be designed carefully to avoid excessive memory
reference across clusters. There is one more important aspect to consider. A KL1 program execution
tends to consume the global memary at a very high speed because of the single ussignment property
and the parallel semantics of the KLl language. Some preceding evaluation showed that a processor
allocates a new word in every reduction. Suppose a cache line size is four words and the performance
of a single processor is 500,000 reductions per second. Then 20 processors would de 10,000 000 store
operations every second which would cause 2,500,000 block read and 2,500,000 block write transactions.
This serious memory-level bus bottle-neck comes from the premise that a new space exists only in the
global memory and not in the cache memories. Therefore, when a hierarchical cache memaory is applied
to a parallel inference machine, we think that the second-level cache memory should be large enough so
that the average working set of a cluster can be kept in it. Our motive to enlarge the second-level cache,
instead of the first-level cache, comes from the current VLSI technology trend that a processor chip with
only a small cache is avalable.

Sinece PIM/k is the only parallel inference machine which employs a bierarchical cache memory, we
have been interested in the following points from the architectural points of view.

s What kind of cache echerency protocols are possible and which one is appropriate for the KL1
program execution?

« What kind of hardware supports are useful to ease debugging and to eollect accurate data for the
performance evaluation?

The next three sections present our decisions for these questions.

3 Overview of PIM/k architecture

3.1 Memory architecture

The memory space of each processor consists of two parts: the local space, and the shared space.
The former includes the instruction loeal memory(128K Bytes) for the code, and the data local mem-
ory(128KBytes) for the operand. The latter is shared among every processor and is accessed thorough
each cache memory,

For the shared space, the memory architecture of PIM/k is a hierarchical cache system. Each processor
has its own private cache, and four processors share a second-level cache through a first-level bus. Four
secand-level caches are conmected to a shared-memory(1GBytes) by a memory-level bus. Fig.l shows
its memory architecture with 16 processors. Each private cache consists of the data cache(256KBytes)

ra

PJ(T) ®» ®E P)®)
1) T

first-leyel bus first-feyel bus first-lepel bus first-lefel bus

sC sC sC sC

| l

memory-level bus

M

F = Processor

FC = first-level cache
S = second-level cache
M = memory

Figure 1: The memory architecture of PIM/k

and the instruction cache{ 128K Bytes). The second-level cache is also divided into two parts: the data
cache{4MBytes), and the instruction cache(1MBytes).

For the instruction cache, hardwared consistency mechanisms are not provided, because the cost of
maintaining consistency by software is not so high. We prepare the flush operation which invalidates the
instruction cache and keeps it consistent. We discuss only the data cache consistency mechanisms in the

following sections,

3.2 Processor board

The processor board consists of a processor, the data local memory, the instruction local memory, the
data cache, the instruction cache, a trace memory, two universal event counters, a slitcheck module and
a diagnostic processor.

Fig.2 shows the block diagram of the processor board. The trace memory and the universal event
counters are explained in the next section. The slitcheck module is for efficient interprocessor communi-

cations. The features of the processor include:
« RISC type 32bils processor;
+ 4bits tag for symbol processing languages; and
s separated bus for data and instruction.

The diagnostic processor controls almost all the resources on the board. All the diagnostic processors
within the system are connected to a supervisor processor(SVP). By sending requests to and receiving
replies from the diagnostic processors, the SVP can control the execution of the processors and callect

various information from the system.

2 SV F r

diagnosis
—lrace memory— processce
TADH DADR
1DATA —| TP | ppara
! [local +— [|event counter [loeal f—
=t I rache — Slitcheck I} eache p—
|
EFI E@ SHNQOP
|
first [evel bus

Figure 2: Black diagram of the processor board

4 Software debugging and performance evaluation support

Generally debugping of a parallel program is difficnlt compared to that of a sequential program. Some
bugs are caused by an interaction between processors. The debugging requires the programmer to grasp
complicated interactions between processors. Singlestep mechanisms which are useful in the case of a
sequential program debogging, are less effective becanse they would influence interaction of the processors.
This section presents our solutions for these problems.

4.1 Repeatability of a parallel processing

Repeated execution of a parallel program may result in different memory image even though it starts
from the same initial state. This phenomenon makes debugging of an incorrect program very difficult.
The phenomenon is caused by the change of accessing orders between processors which is attributed to
the following asynchronous factors.

s Multiple independent clocks i the system.

« Modules which are not initialized.

e [/0O operations like disk [/0 whose exscution time varies,

¢ Unexpected interrupts which notify a device errcr and so on.

To avoid these unfavorable factors, we have taken the following measures. For the first factor, all
state-transitions of PIM/k are made synchronous to an identical clock. For the second factor, the bus
arbitors are initialized when the system starts. Stll, the reflesh operations of dynamic-RAM may disturh
the repeatability, because a reflesh cycle is asynchronous to a program execution. To salve this problem,
the start of 2 program execution is made suspended until the reflesh counter turns 0. The third factor
requires a more sophisticated method. Our solution consists of the following steps:

1) A processor which wants to start an I/ operation interrupts all the other processors.

2) The other processors, receiving the interrupt, call a subroutine in which the processors suspend.
— _q _—

3) The processor does the [/()} operation.
4) After finishing the I/0 operation, the processor suspends itself.

5} The S'\"FI O dnf.?.r.t.lng all the ProOcessors are mjﬁpendm‘ll resuimes their execution with their Program
counters set at a certain address,

By suspending the other processors during the I/0 operation and resuming the execution from the same
state, the order of access between processors remains unchanged.

The fourth lactor, unexpected interrupt is unavoidable. But it is possible for an interrupt handler to
inform a programmer of its occurrence.

4.2 Suspension mechanisms

In our system, suspension mechanisms play an important role in software debugging and performance
evaluation because most of the resources can be examined only when the system is suspended.
PIM/k has the following hardwared meaus for suspension:

s suspension address register which suspends the system when a specified address s accessed.
o suspension signal which can be asserted by a processor or a diagnostic processor,
e frace memory which interrupts the system at a specified clock.

These mechanisms, controlled by & system software, provide a comfortable debugging environment.
For example, the system can be suspended at an arbitrary clock. Here let the clock of suspension be
Nxd2K+M eveles,

1) Set n = 0 which counts the number of interrupts from the trace memory,
2) Set the trace memory to interropt in 32K eycles.
3) Start or resume the program execulion.

4} When an inberrupl is received, if n < N Lhen increment n, else exil. The data in the trace memory or
universal event counters will be saved to the SVF if required. [We will mention it later.}

5) If n = N then set the trace memory to interrupt in next M cycles and goto 3), else goto 2).

Because slow-down caused by the above suspension mechanisms is only 0.3%, we use it in the normal
execution by setting N very large.

4.3 Long trace with little distortion

Trace memory captures address traces of both data-access and instruction-fetch on every clock cycle.
It enables programmers to get exact information about interactions between processors. For example,
imagine a spin-lock case where processorl has locked a variable and processor? is spinning oo the locked
variable. When processorl unlocks the variable, processor2 locks the variable. The trace memory enables
a programmer to sec which processor is spinning on the variable and when the processor gets the lock
variable without affecting the program execution.

This trace facility is also useful as a tool for performance evaluation. Trace-driven simulation has been
a popular method for evaluating cache memory systems [Smith82]. Up to now, the following methods
have been used to obtain address traces: 1) using a hardware monitor, 2) modifying microcode to record
memory accesses[Agarwal86)], 3) causing trap on every instruction, 4) using a software simulator, and 5)
instrumenting codes to record memory accesses. [Stunkel91] surveyed the above methods and pointed out
the significance of the continuity and capturing speed of traces. To obtain continuous traces, a suspension
mechanism of the processors 5 :aquir:ﬂ while t.ran.sﬁ:rring data from the trace buffer to the Il.irﬂ devices.

They gave negative remarks to the first two hardware-based methods. Their eriticisms include insufficient
length of continuous address traces, due to the lack of the suspension mechanism. The third method is
easy to implement but tends to suffer from the execution-pattern distortion for multiprocessor system.
The fourth methed is accurate and can get continuous traces hut the slowest. The last method is faster
than the third and the fourth, but still slow-down is inevitable,

On the other hand, our method gets rid of the above disadvantages. Hardware-based mechanism of
PIM/k can obtain very long, accurate, and continuous address traces by getting 32Kcycles-long trace at
every step 4 of sectiond 2,

Clur address trace does contain a distortion; If a processor being stalled received the interrupt, it
does not aceept the interrupt immediately. But, even in this case, the discrepancy is only several clocks
between processors. Therefore the distortion is negligible compared to other methods which slows down
the execution by 10 times or more.

4.4 Universal event counters

Each processor board has two 16bits counters which count various types of events on the board. For
example, we can obtain read-hit ratio by setting the counters to count the number of read-hit and the
number of read-access respectively.

The value of the counter is examined at step 4 of sectiond. 2. The interrupt handler accumulates these
values, or sends them to the SVP through the diagnostic processor. The SVP can show the dynamic
belavior of the systemn on its screen. The typical resolution is 32 Keyles because the trace memory raises
an interrupt signal in every that interval,

For the sake of the repeatability, we need not measure all types of events at a single execution. Instead,
we can obtain parameters separately by repeating the program execution with different setting of the
counters.

5 Cache consistency protocol

A multiprocesser system with private caches introduces the cache consistency problem: Exislence of
mnltiple copies in private caches causes data inconsistency when a processor writes to its private cache.
This section focuses on how we designed and implemented a cache consistency protecel for PIM/k.

5.1 Write invalidate versus write broadcast

In & coherent cache system, each cache memary maintains the state of each block appropriately on the
arrival of the request from its own processor and the snooping bus. Hardware-based cache consistency
mechanisms are basically classified into two types, namely write invalidate and write broadcast. The
former keeps the consistency by invalidating the copies kept in other cache memories when a processor
does a write operation. The latter broadcasts the new data to update each copy in other cache memories.

Some simulation studies|Eggers88) compares the performance of these two mechanisms. The results
depend heavily on the type of applications. [Golo89] shows that write invalidate, copybacked protocol is
preferred for KL1 execution. So we decided to follow the recommendation,

5.2 Design considerations of a hierarchical cache protocol

For the single-level cache system, several consistency protocols belonging to write invalidate type have
been proposed. Each of them can be considered as a reduced set of the MOESI model[SweazeyB86]. In the
design of PIM/k hierarchical cache, we began to extend the MOEST model for a hierarchical cache and
reached an extension of the Berkeley protocol[Katz85] though there are some other possible alternatives.
This subsection describes the outline of our design considerations.

The MOESI model introduced the following three properties to describe a cache block state.

+ valid or invalid
¢ shared or exclusive
s owned or unowned

The MOESI model has the set of five states described below which is the maximum set characterized by
the above properties.

+« M: Modified; valid, exclusive and owned
e O Owned; valid, shared and owned

o E: Exclusive; valid, exclusive and not owned

5: Shared; valid, shared and not owned
¢ [: Invalid; invalid

The other protocols can be described as rediced versions of this model. For example, in the Berkeley
protocol, E and § are mapped to the same state UNO.

Now we try to extend the MOESI model for the hierarchical cache. The state of a first-level cache
block can be described fully by the above three propertics. However il is nol true of Lhe second-level
cache. [n order to implement an efficient protocol, it is necessary to manage the inherent data difference
between Lhe firsi-level and the sccond-level caused by the copybacked scheme, Therefore we decided to
imtrodiee the following fourth property.

e same or different

Suppose thal a read request from the memory-level bus hits a second-level cache block with " owned
same” atate. The second-level cache can make a reply without consulting a first-level cache because the
fourth property tells both the contents are the same. The fourth property reduces the traffic on the
first-level bus.

Mow we get back to applying the MOESI model to the first-level cache and show the split of E and S
slale is less effective than that in a single-level eache. For a single-level cache adopting the MOESI model,
when a processor does a wrile operation Lo a dala block with state E {rx.clusn't llut.uwul:d]l, the cache
need not issue an invalidation command. Let us congider the same situation in the case of a hierarchical
cache. Defore the write operation, the first-level cache block has state E and the second-cache block has
a state of "exclusive, same”. The write operation causes difference between the first-level and the second-
kevel cache and thus the fourth property of the second-level cache block must be maintained. Generally
the first-level cache must send a request to change the fourth property of the second-level cache block
whenever the state of its block changes from siate E to state Q. Therefore we decided to merge the states
E and S of the first-level cache into one, namely the UNO state of the Berkeley protocol. As a result, we
adopted the Berkeley protocal for the first-level cache,

Now we present our design considerations of the seeond-level eache peotocol. The possible eombination
of the above four properties would identify at most 9 states’. However the following three states are
impractical.

+ ‘notowned, different and shared®
+ 'notowned, different and exclusive’
+ ‘owned, shared and different’

Now, we have six meaningful states,
In cur actual implementation, however, we decided to merge these states into four states because:

i 2owned ar notowned s 2{shared ar exclusive) x 2{same ar different)41 (invalid =0

& It requires less hardware resources, because four states are represented by only two bits.

+ It enables us to make the first-level and the memory-level buses compatible, which eases the hard-
ware debugging.

The final version of the state definition and the bus commands are summarized in section3.5.

5.3 Multi-level-inclusion property

While the most important role of the second-level cache is to provide the small first-level caches with their

requi_red da..t,a, the second-level cache also works as a filter of the bus traffic between the memnjry-le\-‘e|

and the first-level buses. For example, suppose a second-level cache receives an invalidation command

from its first-level bus, If the second-level cache has an appropriate block with exclusive property, it does

not have to transfer the command to the memory-level bus. Moreover, a memory-level bus command for

the data which a second-level cache doesn't hold, will not incur another command on its first-level hus.
Through this section, we will assume the following condition is satisfied.

* The memory location which exists in a first-level cache, must be held by the second-level cache
directly connected to the first-level cache,

This constraint is called the Multi-Level-Inclusion{ MLI) property and was first proposed by [Baer§7].

5.4 Enhancement of the ownership

Here, we extend the ownership concept for the multi-level cache. The definition of ownership 15 given
differently for each level,

» For the first-level cache, the ownership means that the cache block is to reply to & data request on
the first-level bus, and to do a copyback to the second-level cache. The cache block with ownership
has always valid data.

+ For the second-level cache, the ownership means that the cache block is to reply to a data request
on the memory-level bus, and to do a copyback to the memory., The main difference is that the
cache block with ownership doesn't always have valid data.

Because the number of cache blocks with the ownership is at most only one for each level, there is
at most only one module which replies to a data request for each bus. If no module replies to the data
request, the lower module is responsible for the reply.

5.5 Definition of states and bus commands
Definition of the states for the first-level cache is the same as the Berkeley protocol.

e INV: Invalid, doesn’t contain valid data.

+« UNO: UNOwned, has a valid data copy, possibly is shared with other processors’ cache memeories,
cannot be written befare obtaining right to update, doesn’t have ownership,

« NON: Not exclusive OwNed, has a valid data copy, possibly be shared ameng other processors,
cannot be written before obtaining right to update, has ownership.

o EXC: EXClusive, has only one valid data, not be shared, can be written locally, has ownership.

Definition of the states for the second-level cache is the same as above except that of the state EXC.
For the fourth property, UNO and NON have the property of “same”, while EXC has "different”.

e EXC: has not a valid data copy, but one of the first-level cache above has a valid data copy, has
ownership.

Table 1: Bus commands

RSH: Head SHared,

Read data-block.

RFO: [| Read For Ownership,

HRead data-block, and obtain ownership.

WEFL || Write For Invalidation,

Invalidate other data-block,

WWT || Write Without Invalidation,

Copyback data-block to second-level,

FAT: Flush And Invalidation,

Foree first-level cache which has ownership Lo copyback,
and Invalidate first-level cache.

FWI- Flush Without Invalidation,

Force first-level cache which has ownership to copyback.

The first-level bus commands are listed in Table 1. There are six commands, the first four from the
first-level cache, and the rest from the second-level cache

The memory-level bus commands are the same as Tablel except they don’t have F'WI or FAL

The detail of the protoco] behavior will be presented in the appendix,

5.6 Replacement algorithm

This section describes cur replacement algorithm which keeps multi-level-inclusion property.

5.6.1 Previous replacement algorithm

It should be noted that every replacement algorithm in the second-level eache doesn’t keep the MLI
property. Here we prove that the LRU algerithm viclates the MLI property. Assume that there are two
processors, each of which has its own private cache {first-level direci-mapped cache) and a second-level
cache which 15 two-way-scl-associalive.

Table 2: Viciation of MLI

geqlrence F1 [P2 [WAYT | WAYZ |
AL first P1 access location 1 1 1 -
F? access location 2 1| 2 1 2
P2 access location 3 1 k] 3 2

When P2 has an access to location 3, the LREU algorithm replaces the oldest entry location 1 which
exists in the WAY] of the second-level cache. As a result, the data of location] exists in P1%s first-level
cache, but not in the second-level cache. Thus the MLI property is violated.

To keep the MLI property, [Bacr87] shows a solution that when an entry is to be replaced from the
second-level cache, all the corresponding entries of the first-level cache should be copybacked beforehand.

This method has two disadvantages of increase in bus transaction and decrease in hit-ratio of the
first=level cache caused by invalidation of valid copies used by other processors.

5.6.2 TU-bit mechanism

We introduce a U-bit mechanisim which is used in our new replacement algorithm. The basic idea of our
replacement s'rategy is to select a replacement block which is not occupied by other processors. A U-bit
which is attached to each set of a second-level cache, keeps track of which processor uses which way. A
second-level cache selects the replacement block according to the U-bit information.

Here, we explain our algorithim under the following conditions. The one is to simplify the explanation,
and the algorithm still works in the case of a set-associative cache, The second one is a requirement which
comes from the above strategy. The last one is a general requirement of the MLI property.

1} Each first-level cache is direct-mapped.

2) Each second-level cache is N-way set-associative. N 15 the number of processors. connected to a
gecond-level cache.

3) The number of sets in & second-level cache s larger than or equal to that of first-level cache.

We denote U-bit as Ulm,n], a boolean function, where m is the way number, and n is the processor
number. '[_.'[mm] is set to one when proccssor nouse the entey of way m of second-leve! cache, otherwise

sel Lo zero
Example: Imagine three processors are connected to a second-level cache,

o 'l's location 2000 cccupies way_l of the second-level cache.

o '2% location 1000 occcupies way 2 of the second-level eache.

e PY's location 1000 oecupies way 2 of the second-level cache.

¢ Both location 1000, 2000 and 3000 cccupies same set of the second-level cache.

In this sitwation, U-bit has following values:

o U[L,1]=1, U[1,2]=0, U[1,3]=0.

« U[2,1]=0, U[2,2]=1, U[23])=1.

+ U[3,1]=0, U[3,2]=0, U[3,3]=0.

Fig.3 ilustrates this example.

When a second-level cache receives a command and hit to way i U-bit must be changed in the following
[manmner.

Let p be the processor which issued the command.

1) For a RSH command, Ui, pl=1, U[j, pl=0 for all j#i,

2) for a RFO command, Ufi, p]=1, U[j, p]=0 for all j#i, U1, g]=0 for all gs¢p,
3) for a WFI command, U[i, q}=0 for all q#p,

4) for a WWI command, i, p]=0,

5.6.3 Selection of the replacement block

When a command issued by a first-level cache does not hit any way of the second-level cache (in this
case, because of the MLI property, no first-level caches reply to the commmand), the second-level cache
should allocate an appropriate way so as to hold the required block data. Our replacement algorithm
selects the replacement block according to the following rules.

rule 1} if there is a way which is INV, use it

—in—

2000 1000 1000
First-lewel
I— ——
Way._1 WAY. 2 WAY D
tlalol zo00 ojtr|1g 1000 ojoof=--~- Sacopd-Jevel

Figure 3: Example of the U-bit

rule 2} else if there is a s such that Ufs,p]=0 for all p. use the s-th way.

rule 3) else use the s-th way such that Ufs,p]=1. llere p is the processor which issued the command.

The first two rules try to find a block which does not have a valid copy in any npper first-level caches.
The last rule guarantees that a block which has a valid entry in any upper first-level cache except the
requestor's is not selected. The requirements described in section 5.6.2 ensures the last rnle is always
applied successfully. Whenever the last rule is applied, the requestor’s first-level cache always purges the
block corresponding to the second-level cache block. Therefore our replacement algorithm manages to
maintain the MLL propercty.

5.7 Lock operation

Lock and synchronization operations, like SWAP and CAS are essential for multiprocessing. In an
ewnership protocel, these operations are implemented as follows.

1) If the data block has a EXC state, do an atomic read-write operation immediately.
2) Otherwise, get ownership and invalidate other copies before doing an atomic read-write cperation.

Here "atomic” means blocking any snoop requests between the read and write operation,

5.8 Deadlock

Generally, a system which allows multiple requests to multiple resources simultaneously faces the deadlock
problem. Tn hierarchical cache, there is a possibility of deadlock, which is illustrated in Fig4

1) A request from processor P1 canses read miss in both first-level cache F1 and second-level cache 51,
then 51 tries to send a RSH through memory-level bus M1,

2} At the same time, an WFI arrives at 51 as the consequence of a write request from another processor
|

Fi)

B [B2 |
R5H y

51 52
I WFL [

M1

Figure 4: Example of deadlock

Tn our implementation, a second-level cache detects the deadlock condition and resolves it as folloywes:
1) Sending NAK signal to the first-level cache to cancel the command.

2} Transferring the request from the memory-level bus to the first-level bus.

3) Releasing NAK signal to let the first-level cache reexecute the suspended operation from the beginning,

Since our implementation employs non-split-bus, the second-level cache has only to detect above
condition. However, in the case of a split-bus, the system would have to memorize outstanding requests
in order to detect address collision between requests.

5.9 Possible enhancements

[Goto89] proposed some protocol optimizations for KL1. They introduced a Direct Write (DW) which
avoids a feteh operation on the write attempt to an uninitialized area. They reported DW reduce bus
traffic considerably.

In the case of two-level cache, however, DW is less effective because an additional command is required
to allocate an entry in the second-level cache to ensure the MLI property. If DW operation aliocated
a cache entry in the first-level cache without notifying to other caches, it would not allocate the cache
entry in the second-level cache, which would violate the MLI property Therefore, the firsi-level cache
must notify second-level cache whenever DW operation takes place.

6 Conclusion

In this paper, we have presented the umique features of PIM/k, a hierarchical cache memory based
multiprocessor. In the design of ils cache consistency protocol, we began to enhance the MOESI model
and finally decided to employ a Berkeley-like protocol. We also proposed a new replacement algorithm
which ensures the multi-level-inclusion property.

PIM/k employs new mechanisms which ensure the deterministic execution of the processors. These
mechanisms are useful for multiprocessor software debugging and performance evaluation. Our recent
experience have proved that the deterministic execution is also useful in hardware trouble shooting
hecause some bugs appear after the machine has been released to the software people. ‘The mechanisms
alss eapturcs continuous address traces with small distortion.

The current status is as follows. We have already finished building a prototype hardware and confirmed
that the machine executes simple parallel programs such as I# queen or prime-number-generation with

12

four processors. We are planning to complete 2 new version with 16 processors by the end of next
March. For the basic software, we are developing an efficient KL1 system which is designed to exploit
the hierarchical memory architecture. On top of it, a parallel operating system and some application
programs written in KL1 will be running. For the evaluation, we are also developing a software simulator
in order to compare various cache-memory architectures extensively. We are now checking the simulator’s
validity by comparing the result with that of the real hardware under the same system parameters.

Acknowledgement

We are grateful to De. Taki and Dr. Hirata of ICOT who have been leading the PIM project.

References

[AgarwalS6]

[Andrew87)

[BaersT)

[Eggers8s]

[Gotoss)]

[Goto8y]

[KatzB5]

[Smith§2]
[Stunkel91]

[SweazeyB6]

A Agarwal, BRI Sites, and M .Horowitz, "ATUM:A New Technique for Capturing Address
Traces Using Microcode’, Proceedings of the 13th Annual Internaticnal Symposium on
Computer Architecture, June 1986, pp. 119-127.

Andrew W. Wilsen Jr., "Hierarchical Cache/Bus Architecture for Shared Memory Mul-
tiprocessors’, Proceedings of the 14th Annual International Symposium on Computer
Architecture, June 19587, pp. 244252,

Jean-Loup Baer and Wen-Hann Wang, ‘Architectural Choices for Multilevel Cache Hier-
archies’, Proceedings of the 1987 International Conference on Paraliel Processing, 1947,
pp. 258-261,

Susan J Eggers and Randy H.Katz, "A Characterization of Sharing in Parallel Programs
and its Application to Coherency Protocol Evaluation®, Proceedings of the 15th Annual
International Symposium on Computer Architecture, May 1988, pp. 373-382.

Atsuhiro Goto, Masatoshi Sato, Katsuto Nakajima, Kazuo Taki, and Akira Matsumote,
"Overview of The Parallel Inference Machine Architecture (PIM), Proceedings of the
International Conference on Fifth Generation Computer Systems, Nov. 1988, pp. 208-
229,

Atsuhiro Goto, Akira Matsumoteo and Evan Tick, 'Design and Performance of a Coherent
(Cache for Parallel Logic Programming Architectures’, Proceedings of the 16th Annual
International Symposium on Computer Architecture, May 1989, pp. 25-13.

R.H.Katz, 5.J.Eggers, D.A. Woad., C.L.Perkins, R.G.Sheldon, 'Implementing A Cache
Consistency Protocal’, Proceedings of the 12th Annual Internaticnal Symposium on Com-
puter Architecture, June 1885, pp. 276-283.

Alan Jay Smith, 'Cache Memories’, ACM Computing Surveys, Vol.14, No.3, Sept. 1982,
e 473-530.

Craig B.Stunkel, Bob Janssends and W.Kent Fuchs, "Address Tracing for Parallel Ma-
chines”, IEEE COMPUTER, Jan. 1991, pp. 31-38.

Paul Sweazey and Alan Jay Smith, "A Class of Compatible Cache Consistency Protocols
and their Support by the IEEE Futurebus’, Proceedings of the 13the Annual International
Symposium on Computer Architecture, June 1986, pp. 414-423.

Appendix: Protocol behavior

The complete behavior of our protocol is deseribed by the following independent tables.
1) Table A.1 shows the first-level cache behavior in response to the processor,
2) Table A 2 shows the first-level cache behavior in response to the first-level bus eommands.
3) Table A.3 shows the second-level cache behavior in response to the first-level bus commands.
4) Table A 4 shows the second-level cache behavier in response to the memory-level bus commands.
5) Table A.5 shows the memory behavior which is responded to memory-level bus commands.
The notations comumonly used in the tables are listed helow.
+ "action/state” means " aller aetion finished, change to state”.
"no" means no action, no state change s taken.
« "never” means this case is never occur.

+ "-" means no action is taken.

Table A.1: processor access vs state of first-level eache

Head Writle
INV miss | RSH/UNO | RFO/EXC
EXC noe ne
NON no WFI/EXC
UNO o WFI/EXC |

¢ if read or write miss and state is EXC or NON then 1ssue WWI then treat as INV.

Table A.2: first-level bus access vs astate of first-level cache

RS5H RFU WEFI | WWI FAl FWI

INV miss ne no no no no no
EXC datatoC/NON | datatoC/INV | mever | mever | datatoC/INY | datatoC/UNO
NON datatoC/NON | datatoC/INV | -/INV | never | datatoC/INV | datatoC/UNO
UNO no -J/INV -/INV| no -JINV no

+ action "datatoC” means return data to first-leve] bus.

Table A3 First-level bus access ve state of second-level cache

RSH RFO WFI WWI_| FAL | FWI
TNV miss | RoHtoM datatoC/UNO | REOLM datatoC/EXC never never | never | never
EXC no 1o no -/NON | never | never
NON datateC/NON WFItoM datatolJEXC | WEPItoM/EXC | never | mever | never
URO datatoC/UNO WFItoM datatoC/EXC | WEItoM/EXC | never | mever | never
e "RSHtoM" means "HSH command is issued to memory-level bus".
« "RFOtoM” means "RFO command is issued to memary-level bus™.
s "WFItoM” means "WFI1 command is issued to memory-level bus™.
Table A.4: Memory-level hus access vs state of second-level cache
RSH RFO WFEI Wwi
INV muss o no no no
EXC FWltoC datatoM/NON | FAltolD datatoM TNV never never
NON datatoM /NON if not{ubza) then if not{ubza) then | never
(WTTteC datatoM}/INV (WFIteC)/INV
UNO no if not{ubza) then if not{ubza) then | no
(WEItoC)/INV (WFItoC)/INV

e "FWItol™ means "FWI command is 1ssued to first-level Lus™.

s "FAlLC" means "FAI command is issued to first-level bus”.

 "datatoM” means "return data to memory-level bus, and assert cache signal”.

 "if not(ubza)” means "if all of the U-bits of the entry is zero, following action is taken”.

Table A.5: memory-level bus access of memory

RSH

HFO

WEL

WWI

if not{cache) then [datatoM)

if not(cache) then {datatoM)

no

write dala to memory

s "if not{cache)” means "if cache signal® is asserted, following aclion is Laken”.
¢ cache signal is asserted when EXC or NON block reply to request.

— 15

