ICOT Technical Report: TR-0766

TR-0766

Message-Oriented Parallel Implementation of
Moded Flat GHC

by
K. Ueda & M. Morita (Mitsubishi)

April, 1942

© 1992, ICOT

Mita Kokosai Bldg, 21F (03)3456-3141~5
I :O I 4-28 Mita 1-Chorne Telex ICOT 32964
Minate-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Message-Oriented Parallel Implementation of Moded Flat GHC

Kazunor Ueda

Instituie for New Generation Computer Technology
4-28, Mita l-chome, Minato-ku, Tokyo 108, Japan
neda®icot.or. jp

Ahbstrace

We proposed in [Ueda and Morita 1990] a new,
message-orienied implementation technigque for Moded
Flat GHC that compiled unificatton for doata Leans-
Ter into messapge passing. The technigue was based
on constraint-based program analyzis, and significantly
improved the performance of programs thal used gouls
and strewms bo implement reconfigurable data strue-
rures. In this paper we discuss how the technique
can be parallelized. We focus on a method for
shared-memery multiprocessors, called the shared-goal
methed, though a different method could be used for
distributed-memory maltiprocessors. Unlike sther par-
allel implementations of concurrent logie languages
whick: we call process-ordended, the unit of parallel exe.
cution is not an individual goal but a chain of message
sends caused successively by an initial message send.
Parallelizmn comes from the existence of different chains
of message sends that can be executed independently
or in a pipelined manner. Mutnal exclesion based on
busgy waiting and on message buffering controls access
to individual, shared goals. Typical goals allow [lasi-
send optimizalion, the message-oriented counterpart of
last-call eptimization. We are building an experimen-
tal implementation on Sequent Symunetry. Tn spite of
the simple scheduling currently adopted, preliminary
evaluation shows good parallel speedup and good ab-
solute performanee for eoneurrent operations on binary
procese trees.

1. Introduction

Concurrent processes can be used both for program-
ming computation and for programming storage. The
latter aspect can be exploited in concurrent logic pro-
gramming Lo program reconfigurable data structures
using the fellowing analogy,

records «— (body) goals
pointers «—— streams (implemented by lists)

where a (concurrent) process is said to be implemented
by & multiset of goals.

Masao Morita

Mitsubishi Hesearch Instifute
36, Otemachi 2-chome, Chivoda-ku, Tokye 100, Japan
moritafaszdal .mri.co. jp

nt{[J,
L=[]1, R=[].
nt{[zearch(K V)|Cs] . E, VIi,L.R) :-true |
v=V1, nt(C=,K,V1,L.R).
nt{[search(K,V)|Cs] ,K1,Vi,L,R) :— K<K1 |
L=[searchi{k,V)IL1]), nt{C=,K1,¥1,L1,R},
nt{[search(K V) |Cs] ,K1,VL,L,R) ;- K>K1 |
fi-{search(¥ V) IK1]}, ntiCs ,K1,V1,L, K1},
nt{ [update(K,V)|Cs] K, _, L,R} :-true |
nt{C=,K,V,L R}
nt{ [update (K, V) [Cs] K1,V1 L R) 1— K<K1 }
L=Tupdate(k,¥)fL1], nt(C= K1, V1 L1 E}.
ot { fupdate (K, V) |Cs] K1, V1, L B} - K>E2 |
R={update(X V)IR1], nt(Cs K1,V1,L,R1).

-y = L,R) t=true |

til] 1 - true | true.

t{[search(_,V}(Csl) :— true |
V=undefined, t{Cs).

t{[update(X,V)iCs]) ;- true |
nt{C=,K,V,L,RY, £(L), t(R).

Program 1. A GHC program defining
hinary search trees as processes

An advantage of using processes {ur this purpose is
that it allows wnplementations te exploit parallelism
between operations on the storage. For instance, a
search operation on a binary seareh tree {Frogram 1),
given as a message in the interface stream, can enter
the tree soon after the previous operation has passed
the root of the tree. Programmers do not have to worry
about mulval exclusion, which is taken care of by the
implementation. This suggests that the programming
of reconfigurable data structures can be an important
application of concurrent logie languages. {T'he VEr-
hosity of Program 1 is a separate issue which is out of
the scope of this paper.)

Processes as storage are almost always suspend-
ing, but should respond guickly when messages are
sent. However, most implementations of coneur-
rent logic languages have not been tuned for pro-
cesses with this characteristic. In our earlier pa-
per [Ueda and Morita 1990], we proposed message-
arienied scheduling of goals for sequential implemen-
tation, which optimizes goals that suspend and resume

-

frequently. Although our primary goal was to optimize
storage-intensive (or more generally, demand-driven)
programs, the proposed technique worked quite well
also for computation-intensive programs that did not
use one-to-many communication. However, how to uti-
lize the technigue in parallel implementation was yet to
be studied.

Parallelization of message-oriented scheduling can
he quite different from parallelization of ordinary,
process-oricnied scheduling. An obvious way of paral-
lelizing process-oriented scheduling 15 to execute differ-
ent goals on different processors. In message-oriented
scheduling, the basic idea shuuld he to execute different
message sends on different proeessors, but many prob-
lerne muust be solved as to the mapping of computation
to processors, mutual exclusion, and so on. This paper
reports the initial study on the subject.

The rest of the paper i organized as follows:
Section 2 reviews Moded Flat GHC, the subset of
GUHC we are poing to implement, Section 3 reviews
message-oriented scheduling for sequential implemen-
tation. Section 4 discusses how to parallelize message-
orviented scheduling OF the twn possible methods sug-
gested, Section 5 focuses on the shared-goal method
suitable for shared-memory multiprocessors and dis-
cusses design issues in more detail. Section § shows
tie result of preliminary performance evaluation. The
readers are assumed to be familiar with concurrent
logic langunges [Shapira 1984].

2. Moded Flat GHC and Constraint-Based Pro-
gram Analysis

Maoded Flat GHO [Ueda and Marita 1990] is a subsel
of GHU thal mtroduces oo maode system for the compile-
Lime global analysis of dataflow caused by umfication.
Unification executed in clavse bodies can cause hidi
rectional dateflow in general, but mode analysis tries
to guarsntes Lhat it is assignment to an uninstantiated
variable effectively and does not fail (except due Lo oe-
eur cheek).

Our experience with GHC and K1 [Ueda and
Chikayama 1950} has shown that the full functional-
ity of bidirectional unification iz seldom used and that
programs using it can be rewritten rather easily (if not
automatically) to pregrams vsing unificalion as assign-
ment. These languages are indeed used as general-
purpose concurrent langnages, which means that i s
very important to optimize basic operations such as
unification and te obtain machine codes close to those
oblained [rumn procedural languages.

For global compile-time apalysis to be practical,
it is highly desirable that individual program mod-
nles can be analyzed separately in such a way that
the results can be merged later. The mode system of
Moded Flat GHC is thus constraint-based; the mode

-0

of a whole program can be determined by accumuiat-
ing the mode constraints obtained scparately from the
syntactic analysis of each program clavse. Another ad-
vantage of the constraint-based system is that it allows
programmers to declare some of the mode constraints,
in which case the analysis works as mede checking as
well as mode inference.

The modularity of the analysis was brought by the
rather strong assumption of the mode system: whether
the function symbol at some position {possibly deep in
a data structure) of a goal g is detenmined by g or by
other poals running concurcently is determined solely
by that position specified by a patk, which 15 defined
us follows. Let Pred be the set of predicate symbals
and Fun the set of function symbols. For each pe Pred
with the arity ny, let Ny be the set {1,2,... ny}. Ny
is defined similarly for each f € Fan. Now the sets
of paths ¥ (for terms) and Py (for atoms) are defined
using digjoint union as:

Fe=l Y Ny, Pa=(S M)k B
I Fun pE Pred

An element of £, ean be written as a string {p, 6 (f1,
J1} - Afa. Ja), that is, it records the predicate and the
function symbols on the way as well as the argument
positions selected. A mode is a function from F; to
the sel {in, out}, which means that il sssigns either of
in or oul to every possible position of every possible
instance of every possible goal, Whether some position
is in or cut can depend on the predicale and function
syimbols on the path down to that position. The func-
tion can be partial, because the mode values of many
uninteresting positions that will nut come to exist can
b left wndefined.

Mode analysis checka if every variable generated in
the course of execution will have exactly one oul oceur-
rence (occurrence ab an out position) thatl can deter-
mine its top-level value, by accumulating constraints
between the mode values of different paths.

(Constraint-based analysis can be applied to analyz-
ing other propertics of programs as well, For instanee,
if we can assume that streams and pon-stream data
siructures do not occur ai the swme position of differ-
ent goals, we can try to classify all the pesitions into

{1) those whose top-level values are limited Lo the list
constructors {cons and nal) and

(2) those whose top-level values are limited to symbols
other than the list constructors,

which is the simplest kind of type inference. Other
applications include the static identification of “single-
reference” positions, namely positions whese values are
not read by more than one goal and hence can be
disearded or destructively updated after use. This
rould replace the MRB (multiple-reference bit) scheme
[Chikayama and Kimura 1987], a runtime scheme

adopted in current KL1 implementations for the same
fruar pro,

3. Message-Oricnted {(Sequential) Implementa-
tinn

In a process-oriented sequential implementation of con-
current logic languages, gnals ready for execution are
put in a gueue (or a stack or a deque, depending on
the scheduling). Omnce a goal is taken from the gueue,
it s reduced s many bines as possible, using last-call
aptimization, until it suspends or it is swapped out. A
suspended goal is hooked on the uninstantiated vari-
able(s) that caused suspension, and when one of the
vatiables is ingtantiated, it s put back into the quens,

M&nﬁagﬂ-nrientﬂd imp]emﬂntatinn has much in
cotmon with process-oriented implementation, but
differs i the treatment of stream communication: It
compiies the generation of stream elements into pro-
cedure calls to the consumer of the stream. A stream
15 an unbounded bufTer of messages in principle, but
message-oriented implementation tries to reduce the
overliead of bullering and unbuffering by transferring
control and messages simultaneously to the consumer
whenever possible. Lo this end, il iries to schedule
goals so thai whenever the producer of a stream sends
a message, the consumer is suspending on the stream
and is ready to handle the message. Of course, this
is not always possible because we can write a program
in which a stream must act as a buffer; messages are
buffered when the consumer 15 net ready to handle in-
COMINE TNessAEes.

Process-oriented implementation tries to achieve
good performance by reducing the frequency of cestly
poal switching and taking advantage of last-call opti-
mazation. Message-oriented implementation tries to re-
duce the cost of each goal switching operation and the
cost of data transfer between goals.

Suppose two goals, p and g, are connected by a
stream s and p is going to send a message to g that
is suspending on 5. Message-oriented implementation
represents s as a two-field communicalton eell that
points to (1) the instruction i ¢'s code from which the
processing of ¢ is to be resumed and {2} ¢'s geal record
containing its arguments (Fig. 1], [Throughout the pa-
per, we assume that a suspended goal will resume its
execution from the imstruction following the one that
caused suspension, not from the first instroction of the
predicate.] 'l'o send a message m, p first loads m on
a hardware register called the communicalion regisler,
changes the current goal to the one pointed to by the
communication cefl of s, and calls the code pointed to
by the communication cell of 5. The goal g gets m
frorm the communication register and may send other
messages in ity turn, Control returns to p when all
the message sends caused directly or indirectly by m

ip sk {ig)
- comm, cell
‘sendar's receivers
ede _1 | ode
sender's receivers |
goal goal
recnrd put get record
mes.'"lj"' Mes.
COMM. T2g.

(hardwars)

Fig. 1. Immediate message send

code lor bulfering
fagh

fxl
comm. cell

i}

receiver's 5
oods -

L LR I} FEEEE R e,

TRCEVEr's [

geal
record

L '''''' queue of |
b”ﬁe‘—L-: buffered elements |

dezoriplar

COMM. reg.
{hardware)

Fig. 2. Buffered message send

hﬂ'\"‘t‘.‘ b'l:l.'!n prnr,r:s.ﬁnd. HHWF!TF_.F. 'ir ™ i.‘\. t.]'l.l-_" Iﬂ.ﬁt mes-
sage which p can send out immediately (1o, without
'II'H.IIL;:II!;_ EUF furl,lu:r IIJ'II:I'_'IJ'I:Ii.I'IE.'\I I[]EEEHEEE]I EL}TI.LTU]]'ll:tll
not return to p but can ge directly te the goal that
has outstanding message sends. Thiz 18 called last-send
aptrmuzation, which we shall see in Section 3.4 in more
detail.

We have ebserved in GINC/KLL programming that
the dominant form of mterprocess commumnication 1s
one-to-one stream communication. It therefore de-
serves special treatment, even though other forms of
communication sach as bruudtust.lug and J:uu]l,'“;a.sting
become a little more expensive. One-to-many eomimu-
nication is done cither by the repeated sending of mes-
sages of by using non-stream data structures.

Techniques mentioned in Section 2 are used to ana-
lyze which positions of & predicate and which variables
in a program are uscd for streams and to distinguish
between the sender and the receiver(s) of messages,

When a stream must buffer messapes, the commu-
nication cell representing the stream points to the eode
for buffering and the descriptar of 2 buffer. The old en-
tries of the communication cell are saved in the descrip-
tor (Fig. 2). In general, a stream muost buffer incoming
messages when the receiver goal 1s not ready to han-
dle them. The following are the possible reasons [Ueda
and Morita 1950):

‘update’ and "search’
commands from the driver

Fig. 3. Dinary search tree as a process

{1} (selective message receiving) The receiver 15 wait-
ing for & message from other input streams.

{2) The receiver is suspending on non-streamn data
(possibly Lhe contents of messages).

(3) The sender of a message may run ahead of the re-

ceiver.

When the receiver r belongs to a cirenlar process

slructure, a message m sent by » may possibly ar-

rive at r itself or may cause another message to be

sent back to v However, unless m has been sent

by last-send optimization, r is not ready to receive

it.

(4)

The receiver examines the buffer when the reason
for the buffering disappears, and handles messages (if
amy) in it

Frocess-oriented implementation often caches (part
of) a goal record on hardware registers, bui this should
not be done in message-oriented implementation in
which process switching takes place frequently.

4. Parallelization

How can we exploil parallelism from message-criented
implementation? Two quite different methods can be
considered:

Distributed goal method. Different processors take
charge of different goals, and each processor bandles
messages senl to the goals it is taking charge of.
Consider a binary scarch tree represented using goals
and streams {Fig. 3) and suppose three processors take
charge of the three different portions of the tree. Each
processor petforims message-oriented processing within
its own portion, while message transfer between par-
tions s compiled into inter-processor communication
with bultering.

Shared-goal method. All processors share all the goals.
There is a global, output-restricted deque [Knuth 1871]
of outstanding work to be done in parallel, from which
an idle processor gets a new job. The job is usually to
execute & non-unification body goal or to send a mes-
sage, the latter being the result of compiling a unifi-
eation body goal involving streams. The message send

-

will usually cause the reduction of a suspended goal. If
the reduclion generates another unification geal that
has been compiled into a message send, it can be per-
formed by the same processor. Thus a chain of message
sends is formed, and different chains of message sends
can be performed in parallel as long as they do not in-
terfers with each other. In the binary tree example, dif-
ferent processors will take care of different operations
sent to the root, A tree operation may cause subse.
quent message sends inside the tree, but they should
be performed by the same processor because there 1s
ne parallelism within each tree operation.

Unlike the shared-goal method, the distributed-
goal methed ean be applied to distributed-memory
multiprocessors as well as shared-memory ones to
improve the throughput of message handling. Ou
shared-memory multiprocessors, however, the shared-
goal method is more advantageous in terms of latency
{ie, responses to messages) because (1) 1t performs no
inter-processor communication within a chain of mes-
sage sends and {2} gnod Inad balancing can be attained
easily. The shared-goal method requires a locking pro-
toeol for goals as will he diseussed in Section 5.1, but
it enables more tightly-coupled parallel processing that
covers a wider range of applications, Because of its
greater technical interest, the rest of the paper is fo-
cused on the shared-goal method.

5. Shared-Goal Implemeniation

In this section, we discuss important Lechnicalities in
impiementing the shared-goal method, We explain the
method and the intermediate code mainly by examples.
Space limitations do not ailow the full description of
the implementation, though we had to sclve a number
of subtle problems related te concurrency control.

5.1 Locking of Goals

Consider a goal p(Xs,¥s) defined by the following
single elause:

pl[A1Xs1],Ys) i~ true |
¥s=[4|¥s1], piXsi,¥s1).

In the shared-goal method, different messages in
the input stream Xs may be handled by different pro-
cessors that share the goal p(Xs,¥s}. Any processor
sending a message must therefore try to lock the goal
record (placed in the shared imemory) of the receiver
first and obtain the grant of exclusive access to it. The
receiver must remain locked until it sends a message
through ¥s and restores the dormant state.

The locking operation is important in the following
respect as well: In message-oriented implementation,
the order of the elements in a stream is not I‘I:PI‘CSEI'IUEE'

spatially as a list structure but as the chronological or-
der of message sends. The locking protocol must there-
fore make sure ithat when two messages, « and &, are
sont in this order to p(Xs,¥s), they are senl to the
recetver of ¥s in the same order. This 1= gouaranteed by
locking the receiver of Ys before p(Xs,¥s) is unlocked.

5.2 Busy Wait vs., Suspension

How should a processor trying to send a message wail
uniil the receiver goal is unlocked? The lwo extreme
possibilities are (1) to spin (busy-wait) until unlocked
and (2) to give up (suspend) the sending immediately
and do some other work, leaving a notice to the receiver
that it has a message to receive. We must take the
foliowing observations into account here:

{a) The time each reduction tukes, namely the time re-
quired for & resumed goal to restore the dormant
state, is usnally short {several tens of CISC in-
structions, gay), though it can be considerably long
soamebimes.

(b) As explained in Section 3.1, o processor may lock
more Lan one goal temporarily upon reduction.
This means that busy wat may cause deadlock
when goals and streams [orrn & circular structure,

Because busy wait incurs much smaller overhead
than suspension, Observation (a) suggesls that the pro-
cessor should spin (or o period of time within which
mest puils can perform one reduction, However, it
should suspend finally because of (b,

Upon suspension, a buffer 1s prepared as in Fig. 2,
and the unscnt message is put in it. Subsequent mes-
sapes g to the buffer until the receiver has processed
all the messages in the buffer and has removed the
bufter. As is evident from Fig. 2, no overhead is in-
carred to check if the message is going to the buffer
or to the receiver. ‘The receiver could notice the ex-
istence of outstanding messages by checking its input
streams upon each reduction, but it incurs overhead to
{normal) programs which do not require buffering. So
we have chosen to avoid this overhead by letting the
sender spawn and schedule a special routine, called the
retransmatier of the messages, when 16 creates a buffer,
I'he retransmilier is executed asynchronously with the
receiver. When executed, it tests if the receiver has
been unlocked, in which case it scnds the ficst message
in the buffer and re-schedules itself.

For the shared resources other than goals (such as
logic variables and the global deque), mutual exclu-
sion should be attained by busy wait, because access to
them takes a short period of time. On the other hand,
synchronization on the values of non-stream variables
(due to the semantics of GHC) should be implemented
using suspension as usual.

5.3 Scheduling

Shared poal implernentation exploits parallehsm be-
tween different chains of message sends thal do not
interfere with each other For instance, a binary search
tree (Fig 3) can process different operations on 1t in
a pipelined manner, as long as there is no dependence
between the operations (e.g., the key of a search op-
eration depending on the result of the previous search
operation]. When thete is dependency, however, par-
alle] execution can even Jower the performance because
ol svnchromzation overhead.

Another example for which parallclism does ool
help is 2 demand-driven generator of prime numbers
which is made up of cascaded goals for filtering out
the multiples of prime numbers. The topmest gual re-
ceiving & now demand fron cutside filters out the mul-
tipies of the prime computed in response to the last
demand. HMowcever, unkil the last demand has almost
Been processed, the topmnst goal doesn’t know what
]rr'u:lr:'ﬁ miltiples should be filtered cut, and hence will
e blocked.

I'hese considerations suggest that in order to avoid
ineflective parallelism, it i3 most realistic fo let pro-
grammers specify which chains of message sends should
be done in parallel with others, The simple method we
are using currently 15 to have (1} a global deque for the
wark o be executed in paralle]l by idle processers and
(2) one local stack for each processor for the work to be
executed sequentially by the current processor. Each
processor obtaing a job from the global deque when its
local stack is empty. We use a global deque rather than
a global stack because, if the retransmitier of a buffer
fails to send a message, it must go to the tal of the
deque so it may not be retried soomn.

Each job in a stack/deque is uniformly represented
as a pair {code, env), where code is the job's en-
try /resumption point and env is its environmenl. The
job is usually to start the execution of a goal or to re-
sume the execution of a clause body, In these cases, enw
points to the goal record on which code should work.
When the job 15 to retransmit buffered messages, env
points to the communication cell pointing to the buffer.

When a clause body has several message sends to
be exeeuted in parallel, they will not put in the deque
sepatately. Instead, the current processor executing
the clause body perforims the first send (and any sends
cansed by that send), putting the rest of the work to
the deque after the first send suceeeds in locking the
receiver. Then an idle processor will get the rest of
the work and perform the second message send (and
any sends caused by that send), putting the rest of the
resi back to the deque. This procedure is Lo guarantee
the order of messages sent through a single stream by
different processors. Suppose two messages, o and J,
are sent by a goal like Xs=[a,F1%s1]. Then we have
to make sure that the processor trying to send @ will

5 -

not lock the receiver of Xs before the processor trying
to send o has done so.

5.4 Reduction

This section cutlines what a tvpical goal should do dur-
g one reduction, where by ‘typical’ we mean goals
that can be reduced by receiving one message. As an
example, consider the distributor of messages defined
as follows,

pllalx=], Y=, 22) - true |
¥a=[a17s1], Zs=[al&s1], plis,¥sl,Zs1).

where we assume A& is known, by program analvsis or
declaration, te be a non-stream datum. [(Otherwise
a roamew hat iore L't'l[ll|.l‘|t.‘.‘l:].I'IU‘L'I'.‘I'.:llJl't it NECeSs ATy, by
cause the three ocourrences of & will be used for one-te-
lwo communication.) The intermediate code for abowve
FToETAm s

entry(pl2)
rov value(Al)
get_cr(hd)
gsend_call(A2)
put_cr(idl
send. callfal)

d A3).
exXecute or send_jmp{A3)

The Ai's are eotries of the goal record of the goal
being executed, which contain the arguments of the
goal aned temporary variables. Olher programs may use
Xi's, which are (possibly virtwal) general registers local
to each processor, and GAv's, which are the arguments
of & new goal being created. The label entryip/2)
indicates the initial entry point of the predicate p with
three arguments.

The instruction rev value(Al) waits for a mes.
sape fron the input stream on the first argument. I
messages are already buffered, it takes the first sne and
puts 1t on the communication register. A retransmitter
of the bufler is put on the deque if more messages ex-
ist; otherwise the buffer is made to disappear (Section
5.7). 1 no messages are buffered, which is expected to
be most probable, rev_valoe vulocks the goal record,
and suspends until & message arrives. ln either case,
the instruction records the address of the next instruc-
tion in the communication eell {or, if the communica-
tion cell points to a buffer, 1n the buffer deseriptor).
The goal is uspally suspending at this instriction.

‘The instruction get_cr(&4)} saves into the goal
record the message in the communication register,
which the previous rev_value({A1)} has received. Then
send_call{A2)} sends the message in the communica-
tion rtg,'l.ﬁt.t‘.'r T.]'rrrnlp:h Llve second stream. The instruc-
tion send_call{AZ) tries Lo lock the receiver of the
second stream and if successful, transfers contrel to
the receiver Il the recsiver is busy [or a cerlain pe-
rind of time ar 1t isn't busy but is not ready to handle

the message, the message is buffered. The instruction
send_call does not uniock the current goal record.
When control eventually returns, put_cr{44) restores
the communication register and send_call(A3) sends
the next message.

When control returns again, execnte performs the
recursive call by going back to the entry point of the
predicate p. Then the rev_value(A1) instruction will
either find no buffered messages or find soine. In the
former case, rev_value(Al) obvicusly suspends. In
the latter case, a retransmitter of the buffer must have
been scheduled, and =0 rev_valve{k1) can suspend
untii the retransmitter sends a message. Moreover, the
resumption address of the rev_value(A1} instruction
has been recorded by its previous execution. Thus in
either case, execute effectively docs nothing but un-
|l.‘ll:|{i]]g the current guut. This s wh:.' last-send opti-
mization can replare the last two instructions into o
single instruction, send_jmp(A3).

The instruetion send_jmp(A3) locks the receiver of
the third stream, unlecks the current goal, and trans
fers control to the receiver without slacking the return
address. Last-send optimization enables the currcnl
goal to receive the next message earlier and allows the
pipchned processing of message sends. Note thal with
last-send optimization, the rev_value(A1) instruction
will be executed only onee when the goal starts ex-
eeution. The instroctions exccuted for each incom-
ing message are those from get_cr{a4) through send_
jmp{a3).

The abave instruction sequence performs the two
message sends sequentially, However, a variant of
sund_call called send_fork stacks the return address
on the global deque instead of the local stack, allowing
the conbinuation to be processed in parallel, Note that
sand_Tork leaves the continuation Lo anolther proces-
sor rather than the message send itzell for the reason
explained in Section 5.3

We have established a code generation scheme for
general cases including the spawming and the termi-
nation of goals (Section H.5), explicit control of mes-
sage bulering (Section 5.6), and suspension on non-
stream variables. Several oplimdzalion echniques have
been developed as well, for instance for goals whose
input streams are known teo carry messages of lim-
ited forms (e nonerool nodes of & binary search
tree {Fig. 3)). Finally, we note that although process-
oriented sr:hed'ullng and m.cssnge-uri.{!nt.r:ﬂ sc}tcduling
differ in the flow of contral, they are quite compati-
Ble in the sense that an implementation can use both
in running a single program. Our experimental im
plementation has actually been made by modifying a
process-oriented implementation.

5.5 An Example

Here we give the intermediate code of a naive reverse

-G-

The progrom: (1) nreverse([HIT],0) := true
(2} nreverse([], 0] :- true
(3 append([I1J],K,L} :- true
{4) append([], K,L} :- true
gntry{nruvurse.-"?]

rev_value{Al)

I
|
I
l

append(01,[E],0), nreverse(T,01}.

.
[TIM], append(],K ,M).
L.

receive a message from the 15l arg

(the program 15 wsually warting for smcoming messages frere |

check_not_ses{101)

if the message is eos then collect the current comm. cell and gote 101
save the message B in the comm. reg. to the register of the current PE

ger_cr{X3)

commit Clunse 118 selected {no operation)
put_ccixd) ercale a comm. cell with a buffer
push_value(%3} put the messege B miv the buffer
push _eos paui eos into the buffer

g-setup(append/3,3)
put_value{A2, GA3)
put_value{Xd, GAZ)
put_com_variable(AZ, GAL)

ereate @ goal record for 3 args and record the name

sel the Srd arg of append {0 0

zef the nd arg of append fo [H]

create o locked variable 01 and set the 2nd arg of nreverse and the

it arg of append fo the potnber do 01,
asswming that append wwll furn 01 snio a comm. cell soom

g-call

return
label(101)

commlt

send_calll[A2)

procesd

entrylappend/3)
deref(A2)
rev_value(it)
check_net_eos(102)
commit
sendn_jmpi{A3)

erecule append wniil if suspends
unlock the current goal and do the jeb on the local stack top

(Hansze ! ag selected r-qu ﬂpﬂ"ﬂthﬂﬂ}
send ¢os tn the comm. reg. to the recetver of O
deallocate the goal record and reiurn

dereference the 3rd arg L

receive @ message from the fsl arg

if the message 18 eos then collect the current comm. cell and gote 108
Cluuse 3 is selecied {no operafion)

send the recetved message to the receiver of L, where

‘n' means that the instruction assumes that L has been dereferenced

label{102)
commlt

send_unify_jmplAZ,A3)

Clause § 15 selecied {no operaiion)
make sure that messages send through X are

forwarded lo the receiver of L, and return

Fig. 4. Intermediale code for naive reverse

program (Fig 4). In order for the code to be almest
self-explanatory, some conumnents are appropriate here,

Suppose the messages my, .., fg are sent to the
goal nreverse(In,Out) through In, followed by the
cos (end-of stream) message indicating that the stream
is closed. The nreverse goal generates one suspended
append goal for each my, creating the structure in
Fig. 5. The ith append has as its second argnment
a bufler with two messages, my; and eos. The final ess
message to nreverse canses the second clause to for-
ward the eos to the most recent append geal holding
mi,,. The append holding my,, in response, lets different
{if available) processors send the two buffered messages
my and eogto the append holding g ;. The message
m,, is transferred all the way to the append holding m,
and appears in Out. The following eos causes the next
append goal to send m,,_y and another cos.

=]

The performance of nreveree hinges on how fast
each append poal can transfer messages, For each in-
comning message, an append goal checks if the message
is not eos and then transfers both the message and con-
trol to the recetver of the output stream. The message
remains on the communication register and need nol
be leaded or stored.

The send_unify_jmp(r;,ra) instruction is used
for the unification of two streams, Arrangements are
made so that next time a message is sent through vy,
the sender is made to point directly to the communi-
cation celi of ro. If the stream ry has a buffer (which is
the case with nreverse), the above redirection is made
te happen after all the contents of the buller are sent
to the receiver of ry.

It is worth noting that the multiway merging of
streams can transfer messages as cfficiently as append,

20s
min] _
mifk+ 1] mik] | mffe- 1]
'} 4 o ET I
Ina‘a‘u‘ana F—nll-lappard o amcndl—a----l.l-lrﬂ:pen;]a—mti

Fig. 5. Process structure being created by
nreversel lmy,...,m,]1,0ut)

5.6 Duffering

As discussed in Section 5.2, the producer of a stream s
creates a buffer when the receiver 15 locked for a long
time, Iowever, this iz a rather unusual situation; a
buflers is usually created by 5's recoiver when it remains
unready to handle incoming messages after it has un-
leeked itself. Here we re-examine the four reasons of
buffering in Section 3:

[1) Selective message receiving, This happens, for in-
slance, in a program that merges two sorted streams
of integers into a single sorted stream:

omerge [A1X1], [BI1Y:],2) - A< B |
Z=[alz1], omergeixi, [E|¥v1],21).

omergel [A|X13, [BIY1],2) :- A»=B |
Z=[B121], omerge([AlX1],¥1,21).

Two numbers, one from each input stream, are neces-
sary for @ reduction. Suppose the first number & ar-
rives through the first stream. Then the poal omerge
chiecks if the second stream has a buffered value, Since
it doesn't, the goal cannot be reduced. So it records
& in the goal record and changes the first stream to a
buffer, because it has to wait for another number B ta
come throngh the second stream. Suppose B(> A) ar-
rives and the first clause is selected. Then the second
streamn should become a buffer and B will be put back.
The first stream, now being a buffer, is checked and a
retransmitter is stacked if it contains an element; other-
wise the buffer is made to disappear, Finally A is sent to
the receiver of the third siream. The above procedure
is admittedly complex, but this program is indeed one
of the hardest ones to cxecute in a message-oriented
manner., A simpler example of selective message re-
celving appeats in the append program in Section 5.5,
its second input stream buffers messages until the non-
recursive clause 15 selected.

(2) Suspension on non-sircam data, The most likely
case is suspension on the content of a message {e.g.,
the first argument of an update message to a binary
5331":-1‘ LrEﬁ‘-:I. “rllell it E‘Jid f':":‘.'i"r'ﬁ fIUI" a strearm &
a message that is not sufficiently instantiated for re-
duetion, it changes s to & bufler and puts the message
back to it, A retransmitter is hooked on the uninstan.
tiated variable{s) that caused suspension, which will be
imvoked when any of them are imstantiated.

(3} The sender of a stream running ahead of fhe re-
cerver. [L is not always possible Lo guarantee that the
sender of a stream does not send a message before Lhe
receiver commences execution, though the scheduling
policy tries to avord such a siluation. The simplest so-
lution to this problem is to initialize each stream to an
empty buffer. However, creating and collecting a buffer
incurs certain overhead, while a buffer ereated for the
above reason will recsive no messages D most cases. So
the current scheme defers the creation of a real buffer
until a message is sent. Moreover, when the message is
guaranteed to be received soon, the put_com_wvariable
instruction (Fig. 4) is generated and lets the sender
Lusy-walt wnld the receiver cxccutes rev_value,

{4) Crrewler process structure. When the receiver sends
more than one message in response Lo an Incoming
message, sequential implementation must buffer subse-
guent incoming messages until the last message is sent
out. In parallel implementation, the same effect is an-
tomatically achieved by the lock of the goal record, and
hence the explicit control of buffering is not necessary.

The retransmission of a buffer created due to the
reason (1) or (3) s explicitly controlied by the receiver.
When a buffer is created due to the reason (2) or by
the sender of a stream, a retransmitber of the buffer s
scheduled asynchronously with the receiver.

3.7 Mutual Exclusion of Communication Cells

The two fields of & communication cell representing a
stream 4y be updated both by the sender and the
receiver of the stream. For instance, the sender may
create & buffer and connect it to the cell when the re-
ceiver is locked for a certan period of time. The re-
ceiver may set or update the cell by the rev_value
instruction, may create or remove a bufler for the cell
when buffering becomes necessary or unnecessary, may
execute send unify_jmp and connect the stream to
another, and may move or delete the geal record of its
OWTL.

This of course calls for some method of mutual ex-
clusion for conmmunication cells. The simplest solution
would be to lock & communication cell whenever up-
dating or reading it, but locking both a goal recard
and a communication cell for each message send would
be too costly. It is highly desirable that an ordinary
message send, which reads but does not update a com-
munication cell, need not lock the communication cell.

However, without locking upon reading, the follow-
ing sequence <an happen and inconsistency arises:

[1} the sender follows the paint.et in the second field
{the environment) of the communication cell,

(2) the receiver starts and eorpletes the updating of
the communication cell {under an appropriate lock-
ing protocol}, and then

Table 1. Performance Evaluation (in seconds)

binary process tree
(5000 operations)

MmAlve Teverse
(1000 elements)

Language Processing (search) (update)

GHC 1 PE {no locking) 1.25 1.83 .23 (245 kRPS)”
1 PE 1.38 2.10 3.27 {164 kRP35)
2 PEs .78 115 243 (207 kHPS)
3 PEs .55 081 1.71 {294 KRPS)
4 PEs .44 0.63 133 (377 kRFPS)
5 PEs 0.36 0.5 1.10 (456 kKRPS)
& PEs .43 046 096 (523 FRPS)
T PEs IRk 044 0.85 (591 KRPS}
8 I'Es 033 .36 0.77 (652 kRPS)

(! (recursion) cec =0 0.7l 0.72

C (iteration) ce -D s .35

(* kilo Reductions Per Second)

(3} the sender locks the (wrong) record r (the goal
record for the Teceiver or a buffer for the communi-
cation cell} obtamed in Step (1) and calls the code
pointed to by the first field (the code) of Lhe ap
dated communication eell.

‘Fhis ean be avoided by not letting the receiver up-
date the second field of the communication cell. The
receiver instead stores intn the record r the poioter p
to the right record, The receiver accordingly sets the
first, field of the commumnication cell to the pointer to a
code sequence (to be called by the sender in Step (3))
thaot notifies the sender of the existence of the poinier

‘Thie sender can now access the right record pointed
to by p via the wrong record r, but it is stil] desirable
that p is finally written into the second field of the com-
munication cell so that the right record can be accessed
direetly next time. This update of the communication
cell must be done before the sender is unlocked and the
cemtrol is completely transferred to the receiver.

For thiz purpose, we tuke advantage of the fact that
the Lhyte lock of a record can take states other than
‘locked” and “unlocked’. When the lock of a record has
one of these other states, a special routine correspond-
ing to that state runs before the goal record of the
sender is unlocked. This feature is being vsed for up-
dating the second field of a communication cell safely.

. An Experimental System and TIts Perfor-
MANGE

We have almwst finished the initial version of the
abstract machme instruction set for the shared-goal
method. An experimental runtime system for per-
formanee evaluation has been developed on Sequent
Symmetry, a shared-memory parallel computer with
SUMHz B0386's. The system is written in an assem-
bly language and C, and the abstract machine instruc-
tions are expanded into native codes antomatically by

a loader. A compiler from Moded Flat GHC to the
intermediate code is yel to he developed.

The current system employs a simple scheme of
parallel execution as described in Section 5.3. When
the gystem runs with more than one processor, obe
of them acls as a master processor and the others as
slaves. They act in the same manner while the global
deque is non-erpty, When the master fails to obtain a
new job from the deque, it tries lo detect termination
and exceptions such as stack ovecflow. The current sys-
tem does nol care alont perpetually suspended goals;
they are treated just like garbage cells in Lisp. A slight
overhead of counting the number of goals in ‘the sys-
tem will be necessary to detect perpetually suspended
goals [Inamura and Onishi 1990] and for to feature the
shoen construct of KI1 [Ueda and Chikayama 1980],
bt it should scarcely affect the result of performance
evaluation described below.

Locking of shared resources, namely logic variables,
goal records, communication cells, the global deque,
ete., is done using the xchg (exchange) instruction as
usual,

Using Program I, we measured (1) the processing
time of 5000 update operations with random keys given
to an empty binary ires aud (2) the processing time
of 5000 search operations {with the same sequence of
keys) to the resulting tree with 4777 nodes. The num-
ber of processors was changed from 1 to 8. For the one-
processor case, a version without locking funlocking op-
eralions was tested as well. The numbers include the
execulion time of the driver that sends messages to the
tree. The result was compared with two versione of (se-
quential) O programs using records and peinters, one
using recursion and the other using iteration. The per-
formance of nraverse (Fig. 4) was measured as well.
The results are shown in Table 1.

The results show good {if not ideal) parallel
speedup, Lhough for search operations on & binary
tree, the performance = finally hounded by the sequen-

tial nature of the driver and the root node. Access

contention on the global deque can be another cause
of overhead. Note, however, that the two examples aee
indesd harder to execute in parallel than running inde-
pendent processes in parallel, becanse different chains
of messape sends share goals, Nobe also that the binary
tree with 4777 nodes is not very deep.

The binary tree program run with 4 processors out-
performed the optimized recursive C progran. The it-
erative (0 program was more than twice as fast as the
recursive one and was comparable to the GHC pro-
gram run with 8 processors. The comparison, however,
would have been more preferable to parallel GIIC if a
larger tree had becn used.

The averhead of locking funlocking was aboul, 30%
in nreverse and about 10% in the binary tree pro-
gram. Since nreverse s one of the laslest programs
in terms of the kRDPS value, we can conclude that the
overhead of locking/unlocking is reasonably small on
average even if we lock such small entities as individ-
ual goals.

As for space efficiency, the essential difference be-
tween our implementation and C implementations is
that GHC goal records have pointers to input streams
while C records do not consume memory by being
pointed to. The difference comes from the expressive
power of streams; unlike pointers, streams can be uni-
fied together and can buffer messages implicitly

ne may suspect that message-oriented implemen-
tation suffers from: poor locality in general, "This is true
for data locality, because a single message chain can
visib many goals. However, streams in process-oriented
implementation cannot enjoy very good locality either,
because a tail-recursive goal can generate a long list of
messages. Both process-oriented and message-oriented
implementations enjoy good instruction locality for the
binary tree program and nreverse.

Comparison of performance between 2 message-
oriented implementation and a process-oriented Lnple
mentation was reperted in [Ueda and Morita 1990] for
the one-processor case.

7. Conclusions and Puture Works

The main contribution of this paper is that message-
oriented implementation of Moded Flat GHO was
shown te benefit from small-grain, tightly-coupled par
allelismm on shared-memaory multiprocessors. Further-
more, the result of preliminary evaluation shows that
the absolute performance is good enough to be com-
pared with procedural programs.

These results suggest that the programming of re-
configurable storage structures that allew concurrent
access can be a realistic app]it‘.a.ﬁun afl Moded Flat
GHC. Programmers need not werry about mutual ex-
clusion necessitated by parallelization, because it is
achieved automatically at the implementation level. In

procedural languages, parallehzation may well require
major rewriting of programs. To our knowledge, how ta
deal with reconfigurable storage structures efficiently in
non-procedural languages: without side effeets has pot
been studied in depth.

We have not yet fully studied language constructs
and their implementation for more minute control over
parallel execution. The current scheme for the control
ol pa:.'!]ﬁr:li'.—'.m 5 a Fiil[iP]!:' extension Lo the sequenl,ia.[
system; 1t worked well for the henchmark Programs
used, but will not be powerful enough to be able to tune
the performance of lurge progeams. We need a notion
of prionity that should be somewhat different from the
prionty construct in KLT designed for process-oriented
parallel exceution. The notion of fairness may have Lo
be reconsidered also. KL1 provides the shoen (manor)
construct as well, which is the unif of execution control,
exception handling and resource consumption control.
How to adapt the sheen constroct to message-oriented
implementation 1s another research topic.

Acknowledgments

The asthors are indebled Lo the anonymous referces
for helplul comments.

References

[Chikayama and Kimura 1987] T. Chikayama and
Y. Kimura, Multiple Reference Management in
Flat GHC. In Froc. 4th Int. Conf. on Logic Fro-
gramming, MIT Press, 1987, pp. 276-293

[Inamura and Onishi 1990] Y. Inamura and S. Onishi,
A Detection Algorithm of Perpetual Suspension in
KL1. In Proc. Seventh Int. Conf on Logic Proo
grammung, MIT Press, 1990, pp. 18-30.

[Knuth 1973] D. E. Knuth, The Art of Computer
Programming, Vol I (2nd ed.). Addison-Wesley,
Heading, MA, 1973,

[Shapiro 1988] Shapiro, E., The Family of Concurrent
Logic Programming Languages. Computing Sur-
veys, Vol 21, No. 3 {1989), pp. 413-510.

[Ueda and Morita 19890] K. Ueda and M. Morita, A
New Implementation Technique for Flat GHC. In
Proc. Seventh Int. Conf on Logic Programming,
MIT Press, 1990, pp. 3-17. A revised, extended
version to appear in New Generadion Computing.

[Veda and Chikayama 1990] K. Ueda and T. Chikayama,
Design of the Kernel Language for the Parallel In-
ference Machine. The Computer Journal, Vol 33,
No. 6 (Dec,, 1980), pp- 494-500,

