ICOT Technical Report: TR-0765

TR-0T765

Less Abstract Sematics tor Abstract
Interpretation of FGHC Programs

by
K. Horiuchi

April, 1992

© 1992, ICOT

Mita Kokusai Bldg. 21F (03)3456-3191~5

" :D I 4-28 Mita 1-Chome Telex ICOT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

T appear in the proceedings of the International Conference on
Fifth (ieneration Computer Systems 1892, Tokyo, June 19892,

Less Abstract Semantics
for Abstract Interpretation of FGHC Programs

enji Horluehi

Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, JAT'AN
horiuchi®@icot or jp

Abstract

In thiz paper we present a denotational semantics for
Flat GIIC. In the semantics, the reactive hehavior of a
goal is represented by a scquence of substitutions, which
are annolated with + or — r]rpr_m']ing, on whether the
bindings are given from, or posted Lo the cnvironment of
the gcal_ Car objeclive in ill'l.*rsrigﬁ,tillg the semantics
is to develop a framework for abstract interprelation
8o, the sernantics is less absirac! enough to allow an
analvsis of various praperties closely related to program
sources. We also demonstrate moded type inference of
FGHC programs using abstract interpretation based on
Lhie semantics.,

1 Introduction

Various work on the semmntics for concurrent logic
languages bas been investigated by many researchers
[Gerth et al 1988][Murakami 1988][Gaifman ef al 1980]
[Gabbriclli and Levi 1990}[de Boer and Palamidess:
14501, One of their main purposes 15 to wdenlily one
program with another syntactically differeny progeamn,
or distingnish between syntactically similar programes.
Awnd, since some researchers ate interssted 1 propertics
like Jully abstructness, Lhey may want to hide mternal
communications rom the semantics or want to abstract
cven observable behaviors moch further.

Sinee our main objective s L analyze a program
unlike the above researchers, we wani to have a [fix-
point semantics suitable to the collecting semantics, on
which our framework of abstract interpretation is based
But once we try to introduce one of their semantics to
a framework of abstract interpretation, the semantics
may e foo abstract to obtain some of the properiics
W redquire.

T this paper we present a denotational fixpoimnt se-
mantics for Flat GHO. In the semantics the reactive
hehavier of a goal i represented hy a sequence of sub-
stitutions which are annotated with 4 or — depending
ot whether the hindings are given from, or posted to the
suvircmment of the goal. The semantics presented here
is less abstract enough to allow an analysis of various
properlies closely related to program sources, e.g., on
owenrrences of symbols in programs or internal comenu-
nications. We also demonstrate moded type inference

of FGH programs wsing abstract interpretation,

We briefly explain the concurrent logie programming
language Flat GHOC and its operational semiantics in
Section 1 alter we introduce the preliminary notions in
the next section. Next we present the fixpoint approach
to the semantics of Flat GHC in Section 4, and then in
Section § we show Lie selaticnship between the fixpoint
gernantics and the operational semantics, After review-
ing a general framework for abstract interpretation, we
show examples of analyzing FGHO programs.

2 Preliminaries

In this section, we introduce the following basic notions
used in thig paper, many of which are defined as vsual
[Llovd 1987}[Palarmidess) 19907,

Definition 2.1 {Functor, Term, Atom, Predicate
ard Expression)

Lot Var be a non empty set of variables, Fune be a set
of functers, Term be a sel of all forms defined an Var
and an Fune, Pred be o set of all predicates and Alom
be a set of all atems defined on Term and Pred.

An ezpression 15 a term, an atom, a luple of expres
sions or a {multijset of expressions, and we denocte a set
of all expressions by Ezp, We also denote the ser of all
variables appearing in an cxpression B by var(7).

Definition 2.2 (Subwiitation)

A substitution § is a mapping frem Var to Term such
that the demaim of & is finite, where the domatn of 8, de-
noted by dom{f), is defined by {V & Var | 8(V) £ VL
The substitution @ is also represented by aset of assign-
ments such that {V—t | Vedom{f) A9{V]) =t} The
identity mapping on Var, called an wdentily substitution,
is denoted by @ The runege of §, denoted by ran(d), = a
cel of all variables appearing in terms sl the right. hand
side of each assignment of 0, ie., Uyegome) vari#(V])-
var(f) also denotes the set of variables dom(#) U ran(#)

When E is an expression, B0 (or (Z)) denotes an
expression obtained by replacing each variable Voan
with #(V). The composition of two substitution & and
o, denoted by 8, is defined as usual [Lassez ef al
1987][Palamidessi 1990]. A substitution & s asswmed
to be always idempotent [Lasser et al 1987]. [ie

dom(f) 01 van(f) — @, where [denotes an cmply set)
And the tesult of composing substitutions is also as-
sumed to be idempotent. The set of all idempotent
substitutions is denoted by Subsf and the set of all re-
namings is denoted by Ren. A resiriction of # onto
var{ E') 15 denoted by #1g

Definition 2.3 (Equivalence Class and Partial
Ordering)}
A pre-ordering < on Subst, called an mstaniration o
dering, is defined as follows: 6, = 2 ifl Jor(f10 = 03],
where 8, 8+, ¢ € Subsl, The equivalence relation wor.t.
an instantiation ordering =, denoted by ~, is defined
as follows: #; ~ 85 iff g g = &), where nE Ren.
And suhstitntions & and 05 are sadd to be m an equiv-
alence class when # ~ fy. A set of the equivalence
clazses of Subst is denoied by Swbst,. .. A partial order-
ing on Swbsty., also denoted by <, is naturally induced
from a pre-ordering < on frp. We denote the eguiv
alence class of a snbstitution & b}r 0., or simply by
#. Given T as the greatest element on = of Subsl;

Subst,.. can be naturally cxtended o S‘uﬂrsf..,T_,. Then

(Subst..,

Definition 2.4 (Most General Unifier)

A most general wnificr {mgu} & of expressions Fy, By
denoted by mgn(Fy, !"’.'gljl iff [0 = Foft and £8° =
Ewf# 28 < ¢ Jor all . Let IV be a set of equations
{s1=t1, ..., sa=ta}. Then mgu(ls;, .. sa}. [t ta])
i also dencted by mgu(l7}. A substitution # can zlsoc
be represented by a set of cquations, denoted by Eg{#},
such that Eq(d) = {N=t | (X —t)=f].

Definition 2.5 {Directed)

Let & 82 be substitutions. Then) and @ are said to
be directed, denoted by 6 s 8y, i ver{®) N var(f;) =
dom(#)) N dem(dy).

=} forms a complete lattice.

Example 2.1 Consider two substitutions #; = {X—
UY—UL 8 ={X—¥)} in an cquivalence class and a
substitution ¢ = { X —f{V), Y «=f(a)}. Then ¢, and &
are directed, but #; and & are not dircctoed.

As {.’i‘::b.-rt;m, =} forms a complete lattice, every sub-

set, of Su!r.s!;__ has the lab [leas! wpper bound) and
the glb (greafest lower bound) wora. = Several al-
gorithms for computing the fub and the gl have al-
ready been presented [Lasser cf al 1957][Palamidessi
1990]. In [Palamidessi 1990], two operations: Subst ;. =
Subst;.. — Subst;. are provided, which are called a
parallel composition | and a parallel facforrzafion | This
has shown) T8 = lub(f; #2) and &; [#a — glb{0, 01}

We now review the two operations in [Palamidessi
1990] briefly. Let 8, 85 be (eguivalenee classes) of idem.
potent substitutions. @y 78y is defined mgu(£q(f) U
Egq{d2)). And & | s is defined by using the factor-
1zalton algoerithm which repeatedly replaces the differ-
ent svmbol at the same position in the bindings by a
variable and finally penerates (an equivalence class of

a substitution 5 as the glb(fy, 62) with twe addenda
my.7a. Then, the following property is also shown be-
tween these substitutions: ney = &y and gy = H5,
where oy, o5 are called side substitutions. Here we call
7y {or au) a most general difference (mgd) of 5 [(ov
#1) from 8y (or 8;), and denote it by megd(0;, 02) [or
gl (B, 03]

Definition 2.6 {Compatibility and Complement)
& and #5 are said to be compatible, denoted by) == 8,
iff lub{iy, 02} # T. And they are said to be tncom-
pafible, denoted by & g &, iff leb(é,,8;) = T. A
complemeni of a substitution #,. € Subst;.., denoted
by @. or #, is a set of all (equivalence classes of)
substitutions meompatible with @ which is defined by
{00, € Subst . | 0. 200}

Example 2.2 Consider substitutions 8, = {X —
FlE),Ye f(2)] anad 8y = {.‘G—f{uj,‘:’t—f{b]}. Since the
paraliel composition & 18 18 T, they are incompatable.
And the parallel lactorization & |82 is the substitution
IX—HI), Y —f(V)}, and the most general difference
mgd(y,05) is {U—V'} and mgd(#o, 0,) 15 {U—a, V=b].

3 Flat Guarded Horn Clauses

Now, we briefly recall a concurrent programming lan-
guage Flat Guarded Horn Clauses (FGHC), and then
define the operational semantics of Flat GHC in terms
of a transitton system [Ueda 1990,

3.1 Syntax of FGHC

An FGHC program is a set of fat quarded clauses. A
flat puarded clause (simply, clause) is of the form:

P{EL---:!k} = G:,. .,G,..,|Hl,...,ﬁn.
(&, m,n = 0],

where pis a k-ary predicate symbol, £y, 1} are terms,
and &7,..., Gm, By,..., By are atoms. The atom
plty,. .., 1) is called a head, the head and Gy, .., Gm
arc called o guend and 8y, ... By, is called a body. One
hinary predicate “=" for unifying two terms is prede-
fined by the language, a goal of which is called a unifi-
eatton goal. Each guard goal & must be a unification
vl

3.2 Operational Semantics of Flat GHC

In [Ueda 1990b), Ueda has defined the operational se-
mantics of FOGHC in (ke siyle of Plotkin, Here we
present it by following his definition.

Definition 3.1 (Transition System of FGHC)

A fransilion system of an FGHC program P is defined
by using a cenfiguration and a {ransifion relafton. A
configuration is a pair of the form (B, F) where B is a
multiset of goals and £ is a binding environment of B.
A binding environment E 15 a multiset of equations
with aset of variables V' such that var{B)Uvar{C) C V,
denoted by C V.

A transition relation undes P, denoted by Transg,
is the smallest set of binary relations on configurations,

denoted By - — - such that:

(B, Cy Vi) — (07, V)
{(Byu By, CyVy) — (B U By, G2 1)

(1

HA=HIUG, C:V Uver{(H,G))} = (0, CUC, V')
AL €V — (B, CuC, V' U var(B))

if e P Ine Ren((H =GB = en AV nvar{en) = #)

and k= V00 D Ivar()Y var[ANC,) (2

=1, 0V — (I, O fs=t) V) ()

When ¢y — 2 TITJ.T.:.RP. e —= o 15 said to be e the
transition system of ' or ¢y 15 sad to be reduced o oo
under a program 7. Then, a compustation of a program
F with an initisl goal B is represented by a (possibly
infinite] sequence of transitions m Transp; oy — £z —
. such that op is (3 Bovar{ 8]}, Each
comfiguration o = 1] is called a possible confegurulion
from £

We may use alternative denotations 2, L and =
corresponding to transition rules (1),(2) and (3] respec-
tively if it 15 necessary o identify them. The rcl‘]':‘clve:
and transitive clogure of =, b‘- applvlug = for "7 *,l
ance only, 13 denoted by = {or E' respechively,) or by

= sinply.

i

4 Fixpoint Approach to the Semantics

In this section, we show that a computation of a multi-
get of Hoa[s (7 12 modeled as inL-:rlr:urqu; compitations
of each geal in G and the model can be computed as
thie fixpoint of the semantic function defined here.

4.1 Atom Reaction

We are interested in reactive behaviors between a given
mitial goal and 2 (possibly altered) environment which
may be inplemented by other goals, rather than the
fixed behavior aned the final result induoced from the mi-
tial goal and the initial envirenment. In such a case the
environment {1.e., the other goals) may also be [mone-
tonically) altered by reacting against the initial goal
and/for its subgoals during the computation of the ini-
tial goal.

Here possible reactive hehaviors of initial goal cor-
responding to various environments are depotationally
moedeied by using sequences of substitutions.

Definition 4.1 {Unit Reaction)

A umit reection i@ a substitution with an annotation '+’
or “°, denoted by §% or 8 where § 15 a substitution.
g1 is called an input unit reaction and 87 is called an
putprel unt! reaction. We may denote a unit reaction
without an annotation when we do not need to distin-
gnish inpuf or eutput from cach other. A substitution
obiained from a unit reaction ¢ = &% by removing
an annotation a is denoted by |6 A set of all input

urit reactions -[f.-IH' | e Subst} 15 denated hj" Ur-eac!* '
a set of all output umt reactions {#~ | # € Subst}
is denoted by Ureaci”, and a sel of all unit reaction
Ureaed™ U Dreact™ is denoted by [freact.

Next we introduce special symbaols, called ferminag-
tren symbols, which represent special states in reactive
hehaviors.

Drefinition 4.2 { Terminal Symbaol)

A feruunation symbel is Lage, Lor, Lor or Lg;, (or sim-
ply by L}, which represent finile sucecess, reducfion
Jailure, unification failure and deadlock respectively.
Then Ureactt denotes [reaed U { Lo, Lor, Lap, Lat}-
J—u‘.:l = |-’ Tfl = |J-"||| = m- and |J-ufi =T

Mow we define various operations on unit reactions
by extending operations on the substitutions defined
abwwve,

Diefinition 4.3 { Operations on Unit Heactions)
Let o he a substitution, ¢ be a unit ceaction aml a
be an annotation of 6. Then doman and range of
unit reaction are defined by dem(f) = dom{]8[) and
ran{d} = ran(|8]}. mgn and mgd of a substitution
g and o unit reaction & are defined by mgu(o, b)) =
mgudd o) = mgul|d), @), mod(d, o) = mgd ([, o) and
mgd(m, &) = mgd{e.|8]). osad and feae iff oealé] or
§|bac.

For a unit reaction & and a sequence of unit reac-
tlons A, & &5 said to be m A M 35(1 <1 < a}ld =
fyfa.), and denoted by 6, £A. Ao emply sequence
of unil reactions i denoted by O,

Definition 4.4 { Reaction Scequence)

A recction sequence is an emipty sequence O, & sequence
of one unit reaction &, or a sequence of more than two
unit reactions & such that W&, 6 € A (1l < i < j =
n A dom(&)Ndem(§;) = 0 A dom{d)rran(d;) = B} A
set of all reaction sequences is denoted by Rseq,

A domain of A€ fiseq is a set of variables such that
(V136 € AV € dom(8))A V& € A(V ¢ ran(d)) }.
var(A) also denotes the set of variables), var{&].
A substitution ¢ and a reaction sequence & are said to
be directed, denoted by o w2 As iff var(e) Novar(d) =
dom(er) 1 dom(A). Reaction sequences Ay and Aj
are said to be directed, also denoted by Ag et Ao, ol
par{ A) M var{Ag) = dom{A,) N dom{Ay).

Wlhen A =6 .. 8, & Heeg and § £ Ureact, a concate-
nation of A and & is denoted by A8 or & A, deflined
by Af =& ... 8.8 or §.A = 86; ... 6a. A sequence of
unit reaction A-# such that A & Rseq and § € Ureact™
is also a reaction sequence. A set of all such reaction
sequences is denoted by Rseqt

Definition 4.7 {Atom Reaction)

An afom reaction is a pair of an atem A € Atom and
a reaction sequénce A £ Raegt, denoted by (A, A),
such that domi{A) © var{A4). lere a set of all atom

reactions is denoted by Areact, 1e., Areact = {{A, A) |
A€ Alom NAE Rseg').

A substitubion # and an atom reaction (A, A) are also
said 1o be directed, denoted by §ea{A, A), il #ea A
Atom reactions (A;, &) and (Az, &s) are said to b
directed, denoted Ly (4, A)ea{dy, Ag) iff AjeadAg.

An equivalence class of I, 1., F.. may be repre-
sented by B, as mentioned in Section 2. When we say
“Ey and Fasuch that) eaEy" whers £, By are substi-
tLlT.I'GH.'i. reaction EEQUENCES OF atom rvacl!.'mrlb:, W [THRAD
that each £ or £y 15 restricted to a subset of £y or
L. such that By & By, EaC Ea and E) pa By,

Let (A, éy .8, 0,{A, & ... &) be atom reactions that
are divected. Then (4, § .. .8;) 15 said to be more
gemeral than (A, 8] .. &) when the following condition
holdd:

(1)if §n .l or 6, €L, then &, = &, and
(2) for all 4 (1 <4< n),
{a) &, & Ureact™ iff 8! e Urenei™,
(b} ds e Ureact™ iff 8 € Ureact™,
() if &, & € Ureact™, then ITf; = T8, and
()il & & € Ureact™, then IT& ~ lub(118_ T8,

where T14; is a composition of substitutions |§;].. (4]
Here we want to explain intuitively what is the notion
that (A, A) is more general than {4, A7) (4, A%
represents a reactive behavior such that a goal A gets
more instantiated bindings from, and posts not more
instautiated bindings to the environment of the goal A,
than the reactive behavior represented by (A, A}

Definition 4.6 {Atom on a Program)

Giver u FGHC program P, an alem on a program P
15 an atom A such that the predicate symbol of 4 ap-
pears in {* {not necessarily at hewd parte) A set of all
atoms on & s denoted by Atom e, and a set of all atom
reactions [A, A such that 4 C Afomp and A e fiseg is
denoted by Areacip.

Now we define the relation Letween atom reactions
and operational behaviors more formally.

Definition 4.7 (Correct Atom Reaction)

When a program P and an atom &y € Alomp arc
given, an atom reaction (Gy, & .. 8,) is called a cor-
rect atom reaction worl a prograun P, when the fol-
lowing eonditions held, where By = {67}, €3 = @ and
Vo = var(Gip), and, for all 41 < ¢ < n}, let Oy, be a set
of cquations such that mgu({y,) ~ |&].

{1} II'n = 0, e, 5153.. .IS,-_ - D, then [Gu. 151 ---t‘;ﬁ} i5
always caorreci,

(2} if &; € [Freaet™ . there exisis n transition
I:Hi....l, Ci—l_ (H] G,;.: lr':_|} gﬁ' {Bl'r G.i:"r,'_l u I:-'EI-T{I.'TJ::IJ'
such that sar{Cs,) NV C var{Gy8) and
By = (B V{HNUB, where (1] = G| B) = ey,
n€ fen and & = mgu(C;_,),

(3)if &; € [react™, there exists a transition
(Biy, Cimit Viet) 'S0 (B, i Vimy Uvar(s=t)} such
that O = Cy_, U Cy, and B, = A, \ {i=s}. or

(4)if &, € {L], at least one of the conditions (1)-(3)
holds for all 1 {1 < ¢ < n = L), and

fa)if &, is Ly, then By _y is @,

(b)if 6 is Ly, then there exists A€ B,_; such that
mgu{Cn_1) # mgu({A=H} U G) for all clauses
such that {H = | B) = cnne Ren and ce P,

[c)if fq is Lyp, then there exists (i=s8)& M, .3 such
that mgu{Cn_1) % mau(t, 5)), or

(d}if &, 15 Ly, then there exists the same transition
g5 in case (2} unless the condition var(Cs,_,)10
Vi € var(Gg®) exists, where B = mgu(Ci_,).

In the following we define the most important atom
reaction i correcl atom reactions.

Definition 4.8 (Most General Courrect Atom Re-
.:'lfh"uﬂ}

Let (4, A} be a correct alom reaction w.r.t. a program
P Then, (A, A} s called a most general correct atom
reaciion w.rd, a program P, dencted by (4, A)~p,
when {4, A} s more general than any other correct
atom reactions (A, A') wrt P,

Example 4.1 Suppose that (A & bobg o p such that
frod0 € Urenct ™ and 85 € Urcaci™. Intuitively we can
explain the notion of a correct atom reaction by consid-
ering a chain of the foilowing transitions:

(G,0)
{G,Ce,) =(By,04)
(B, C3 U Chy) ~+{Ba,Ca)
{E?.C';u} ,:_?II:BQ,C"LJ U'C'r.'i_-_,}

where (= {A} and mgu(s,) ~ [&] (1 < i< 3).

Example 4.2 Lel P Le a program

{p(4, B,C)-A~ F(D),C=gla, E) | B=f(a)},

Ay be (X f(I), Zega, V)I*{Y = f{a)}",

Az be (X —f(I7), Ze—g(n, V), Y f(a)}*, and

Ag be (X —f(U)1H{Z —g(a, V), Y —f(a)} .

Then the following two atom reactions (p{X, Y, Z), Aq)
and {p{X, Y, Z), Ag) are correct atom reaction w.r.t. P.
(p{X, Y, 2), Ay} is a most general correct reaction, ie.,
((X,Y,Z), As}rp. But (p(X,Y, Z), As) is not correct
because the configuration ({p{X, ¥, 2}, {X =/}
can not be reduced Lo any configuration under the pro-
gram .

4.2 Fixpoint Semantics
T Lliis sectlon, we present the semantic function alter
defining some operations on reaction sequences and the
sermantic domain. Next we show the least fixpoint of the
fumetion gives Lhe semantics of the programs in the same
way as used in an ordinary fixpoint scmanties theory.
Firstly, we define an application of a substitution
to an atom reaction when they are directed. Let
f# € Subst,. and A = §,8;...6, € Rseqg™ such that
fea . Then an application of o substitution # {0 a re-
action sequence A, denoted by A#, i5 a sequence of unit
reactions 4185 . 4], such that & = mgd(e;, 0;-1) for all
1{l =1 n), where ap = 0 and oy = lub{o;_,,).

Example 4.3 et § be a substitution
{ Ne—M, }'_L'l'fl Z—ﬁ":f"ru b}}.
and & dq be the reactive sequence A same as in Exam
ple 4.2 Then, # and Ay are directed because
:|.'H_r'|:'ﬁ':] M ':'ur'[ﬂ.]_:l = r:l'nm{t?:l n dom{&]J = {;‘f,} ' 2.’}.
Let &p be Iubi@ 6], ie.,
[X MY = L0, & emgia. b)), V —b,
Mefll},Ne—al,
and let ey be lub{oy, 8, 10,
[N fla), Yo fila), 7—pia, b), V—bUw—a
Me-flah, N—a },
Thetefore, the application of & to Ay s
{M— Iy N =TT —a]l {= §{#5), where & =
mgd(, 8) and 85 = mgd(oy, 0.

If 6 & [react™ and & 2 ;- for some 1, then such
an application is not defined, thal is, we can ignore
the resull and romove i from our system. Decause,
although such 2 reduction can net be done by fhe clause
{corresponding 1o the input unil reacticn &), it may
lie done by another alfernative clause. That 15, 1t 1=
not necessary that a redwetton fadure i3 immediately
induced by this apphication. On the other hand, in the
case that & & [Ureact™ and &; 2 o;_; for some 1, AR
s AL, 8y L. This 13 becansc such an application
mevers a wnification fodure immediately,

Diefinition 4.9 {Application to Atom Reaction)
Tet (AL A) be an atom reaction. Then an application of
a substitution & fo an atom reaction (A, A) is (A0, Af),
which 12 also an atom reaction.

Example 4.4 Let ¥ be the same program and
(X Y. Z), 400 be the same atom reaction as in Exam-
ple 4.2, and let # be the same substitution as in Exampie
4.3, Then, the application of & to (p{ X, Y, 2], &), e,
(XY, E00, A8 s
(M, Mg N B M — U} N—a}T{l/—a)}™).

Now the application of # it i, (p(XY, 208 A,9),
intuitively represents a reactive behavior of a goal
plM M g{N,B)) under the program P. In fact, the
atom reactions (piX, Y, 23, A) and {(p{X, ¥V, 720, A8
18 botl correct wort. P

Mext we define possible interleavings of reaction se-
LU ETICES,

Definition 4,10 {(Interleaving)

Possible wnierlegrings of a set of reaction seguences
{.'.."H. . ﬁ.,,]- on a set of wvariables V, denoted by
int{Aq, ..., Apliy, i a set of all reaction sequences LA
defined mductively as follaws, where Ay s 5;&: for each
t [= n) such that Ay is not O:

(1 s e Ureact™ and V' C dom () foe all 1 {1 < ¢ < n},
then A = O and & = Ly, o
i) otherwise, tor some i (1 <1< n),
(a)if & =0,
then 6-4 = I.ﬂf{.l':l'h. + s ,.&.‘-:,&.4.;,. ‘e

I:h:I if & ‘:.J-:'TnJ-HF- ...‘||].. then A = 0O and

r&n:ll'l“
a- = Eil

(e)if & = A} Ly for all § (1< j<mn),then
A = (AT, AL ATE eyl Leue
and & = §;, or
[d)otherwise,
A= il A,
& =4,

Definitinn 4.11 (Semantic Function)

{iiven a program P, we denote & power set of Areactp
by Denp, and let it be a domaedss of the following se-
mantic function. Given a program P and a goal Gy, we
define a semantic function Tpz, © Denp — Denp as
{I’.'l]lﬂ'l.'l."ﬁ:

Tpooll) =
[{Ga, O)JU \
{(s=t,87) | (s=t,O)EI A0 = myu(s,t)ju
(B8, 0) | WA Qpelad(I =G| BlelP(Bie B0
{{A6;a) [(4,0)ein
By, Ag), (Bi6g, Ay el

([By, A hea (B8, AN

ﬂE:':zI[.-‘J.._.az,. . -:ﬁnhuarl:.d:l:l]'l‘-’
{A, 0 L) | (A, OjelaV(H -G HJeP{Fch,;)}

mpu({A=H}UG) and 8, = {7 |05 8,)

B B)argov i) and

where 1, =

The set Denp formes a complete lattice under the or-
dering of set inclusion © with a bottom element § and
a top element Areactp.

The Tpg, (1} is recursively defined by using I as the
unien of four sets of atom reactions each of which rep-
resents the following siluation:

(1} when a unification goal s=1 is called, the binding
mygu(s, t] is posted to the environment,
{2) when a goal A existe, each goal B4, is generated as
a sub-gor! of A and may invoke the new process,
{#)and a goal A affects the environment as 87 followed
by a sequence of reactive behaviors represented by A
which is obtained from interleaving reactive hehav-
iors generated by all sub-goals of A, thal is, A may
perform the computation represented by A after 4
gets the binding ¢, or

(4) when A meets with the binding ¢ incompatible with
all bindings to salve the guard {A=H} UG for all
clauses, A will suspend. This situation is called a
reduction faslure

Lemma 4.1 Let P be an FGHO program and 7
be a goal. The function Yps i= continuous, e,
Tpa{lub(X)) = ub(Tp (X)) for any directed subset
X af ﬂt’!‘lp

Froof: It is proved in a similar way to the proof of
continuity of the semantic function of a standard logie
program. (See pp.37-38 [Lloyd 1987]) B

From Lemma 4.1, Tpg has the least fixpoint,
Up(Tp,c), and p(Trc) = olb{X|Tre(X) C X]. Fur-
t-hﬂfmﬁt‘ﬂ, rfﬂ{TpIG:I = TF.GT"“'

Definttion 4.12 (Topdown Semantics)

Let P be a FGHC program and G be a goal. Then
ifr(Tpg) is called a topdown semantics of P with 7,
and denoted by [F]e.

5 Helation between (perational Seman-
tics and Fixpoint Semanties

In this section, we show that the topdown semantics
defined in Bection 4 iz closely related to the operationsl
sernantics of FGHC intreduced in Seetion 3.

Theorem 5.1 {Soundness} Let # be an FGHC pro-
rram and (g he & goal If (o, A)ap, then (G, AlF
[P]]Gt.'

Froof (A Sketch of the Proof):

Let k& be alenglh of A denoted by |Aj. The proof is
by induction on the length &

If k = 0, then the theorem is trivial since (&, Q) is
alwavs correct

Otherwise, ie, £ = 0, suppose A = A" § such that
AT == 10

IF €7 is a unification goal, then the theorem is trivial,

Otherwise, Gy is a non-unification goal. Now, since
[Cp, A hald, (G, A')~rp holds, By the induction
hypothesis, since |A'] < k and (G, Alp, (Gp, A') €
(Pls,

Hence, from the definition of Tpg,, WA = e
A"} such that (H =G | B)é P and 8, = mgu({4=
HY U G) and VB; € B3(B,6,,A;) € [P)g, and A" €
(A, Andpares,)- Now we have (G, 87 A Jap
and A" € mi{Ay A husrey. Then we can got
A such that (H;#,, A;)~ p by selecting a unit reaction
trom the only i-th argument {i.e, &) inr the definition
of mi.

Suppose that the last transition of (Go, A" 8)~p i=s a
Lransition on a sub-geal of I;0,. Then (B;ify, A6}~ p.

Since k > |A] > [AYF 2 [A], & > A 2 [A6].

By induction hypothesis again, since (B, M ap,
[Eiﬂg, &:8 e[Fls,-

Therefore, from the definition of Te g, , since A =
!.ﬂ![ﬁt,...,.&.,,...,L‘i"‘],{ﬁn,ﬂrts}{;EPIﬁu_ []

In Theorem 5.1 we show that any most general cor-
rect atom reaction (Gp, A wort, a program P is in the
topdown semantics [Pls.. In general it is necessary
to prove the only-if part of the thearem {usually called
Completeness Theorem), and we think this is possible
by introducing a kind of downward closure of (4, A)
by using the “mere general than relation in Section 4.1,
as subsumption relafion in [Falasehi et al 1990], This,
however, is beyond the scope of this paper. Becanse
Theorem 5.1 is sufficient to guarantee the correctness of
the framework of abstract interpretation based on the
topdown semantics sinee we want to use this semantics
as a collecting sermantics,

6 General Framework for Abstract In-
terpretation

In this section we briefly review a general framework of
abstract interpretation for programs whose semantics
can be defined from a fixpoint approach, and some con-
ditions o guarantee that the abstract interpretation is
‘safe’ for the semantics,

When a standard semantics is given by the least fix-
point of some sermantic function, an abstract semantics
iz given hy another semantic function obtained by di-
rectly abstracting the concrete semantic function such
that the sefe relation exists between their two seman-
tics.

G.1 Concrete Fixpoint Semantics

Suppeose that the tweaning of a program P is given by
the least fixpoint of a ({nnrrgig} semantee funciton Tp,
denoted by Ifp(Ue), where T @ Dea — Den is a con-
tinuous function and Den is a powsreet of (1, calied a
conerete domain, such that each elenwent of 7 expresses
aconerete computation state of the program. For exam-
ple, in an ordinary logic program, i= an Herbrand Base.
And Uen forms a complete lattice with ng.'aHI Lo the set
mclusion ordering C on Den. Then, the least fixpoint
of Tp exists and we can get it by Ifp(Tp) = {elw.

Definition 6.1 {Concrete Semantics)

[#] = ifp(Te) is called the least fizpoint semantics of a
program . Especially, we call it the concrele semuntics
of a program F since the semantics is obtained from the
concrete gemantic function Te

6.2 Abstract Fixpoinl Semantics

W define an abstract fixpeint semantics by abstracting
the concrete domain and the concrete semantic funetion
introduced in 6.1,

Definition 6.2 (Abstract Domain)

Given a concrele domain [}, an abstract! domain D is a
finite set of denotations satisfying the following condi-
Lians:

(1) every element of D represents a subset of D,

(2) L} forms a complete lattice with respect to an order
relation C defined an [, and

(3} there exist two monotonic mappings, that is, ab-
straclion o @ LY — 3 and concrefization v D — D
defined as follows: Yo € D i{d = wiy(d))) » ¥d e
D id © y(a(d)))

In erder to define the abstract semantics of a program
£, we should define (or design) & monotonic and contin-
uous mapping of a program P Tp - fen — Den, called
the absiract semantic function, as well as Lhe abstract
domain [, corresponding to the conerete domain 1 and
the concrete semantic funciion Tpe of P. Then we have
to define the abstract versions of various operations,
e.5., & composition or an application of substitutions,
nsed in the definition of 1.

Definition 6.3 {Abstract Semantics)

Ihen the least fixpoint semantics [P] = Ifp(Tp), ob-
tained from the abstract semantic function Tp is called
the abstract semanties of a program P,

Now we claim the termination property with respect
Lo Llie abstract fixpoint semantics.

Lomma 6.1 There exists the least fixpoint ifp(Tp)
of T'p such that Ufp(Tp) = Tplk for some finte k

Lastly, we attach the following acceptable relation be-
tween the abstract semantics and the concrele seman-
tics

Definition 6.5 {Safencss Condition)
A wafeness condition for the absfract semantics b5 as
follows: [”] C ([+]).

Lemma 6.2 If Tplv(d)) € +({Tpid}) for all de L),
then the abstrast semantics Is safe, Lo, a safeness con-

dition helds, where 1 p{vid)) = [Teid) | de~{dl}.

7 Applications for Analysis of FGHC
Programs

[n this section we show some examples of analyzing
FOHC programe by using abstract interpretation based
on the topdown semantics in Seciion 4, which is an In-
stance of the general framework in Section 6

7.1 Moded Type Graph

The abstract domain presented here is 5o similar to the
cne hased on type graphs in [Bruynooghe and Janssens
1E|_51:':i]_ that most necessary operations on the abstract
dennain will be well-defined similarly to [Bruynooghe
and Janssens 1988][Janssens and Bruyuooghe 1984].

Here we iniroduce a moded type geaph, and show
briefly that a reaction scquence and an atom reaction
ean be abstracted by a moded type graph,

Definition 7.1 (Moded Type Constructor and
Generic Types)

Aln n-ary) moded fype comstructor is a{n n-ary) func-
tion symbol f/n € Fene with a mode annotation + (of
~}. denoted by f}, {or f7) or simply f* (or f7), which
represents a(n n-ary) function symbel f appearing in
input {or cutput} unit reactions (respectively). Four
generte (moded) Iypes are an any type, a variable fype,
an undefined type and an emply {ype, denoted by any,
¥, — and § reapectively, An any ippe represents the sel
of all meded terms, both ¥ and — represent the sel of
variables, and @ represents the cmply sel of terms.

Definition 7.2 (Moded Term and Moded Type)
A moded lerm s a term constructed from moded type
constructors over a set of variables Var. A moded term
reprosents the same term without all mode annotations
such that a moded type constructor with + {or =) cor-
responds to a function symbel appearing in an input
{or an output) unit reaction. A moded type s a set of
moded Lerms.

Definition 7.3 (Moded Type Graph)
A maded type graph is a representation of a moded type,
which is a directed graph such that each node is labeled
with either a moded tvpe constructor, a generic type,
or a special label ‘or'.

The relation between a parent node and (possibly
no} child nodes in a moded type graph € is defined as
follows;

{1} a nude labeled with _fJ}"n or fr{n > U) has n ondered
arcs Lo n nodes, e, has n ordered child nodes,

{2} a node labeled with “or’ has n non-ordersd arcs tan
nodes (n > 2), e, hos n non-ardered child nodes,

(3) a node labeled with a generic type has no child node,

(4] there exists at least one node, called a rool node,
such that there are paths from the root node to any
other nodes in G, and

(5) the number of cccurrences of nodes with the same la-
bel on each path (tom the root nade of G is bounded
by o constant d, called a moded type depth.

Suppnhv that a nede W tries to be newly added as
a child node of A, in a moded type graph G Then, if
the creation of the node N violates the condition (5) in
the above definition, that is, if there exist more than d
numbers of nodes with the same label as N on the path
fram the root node te N, then the new node & will not
be added to G as a new child node of Ny but will he
shared with the farthest ancestor node of Ny with the
same label as N, In such a case, a circular path must
be created, |(Nodes with the same label aren't shaved
wilh each olhes when their nodes are on different paths
fromn root.) The restriction of (3) is the same as the
depth restriction m [Janssens and Bruynooghe 1988
Thev call a type graph satisfying the depth restriction
a restricied type graph, and they have presented an al-
gorithm for sransforning a non-restricted type graph to
restricted one.

A concretization for a moded type graph with a root
node N, denoted by i V), is defined as follows:

{1)y{N}is Var if the label of N is I ar _,

(2) v{ N} is the empty set @ if the label of N 5 @,

(B) (V) 5 {F*(tr, . otn) | G ETNY AD < i € m) i
the label of & is f:rt-, and Ny,.. ., N, are child nodes
of NV,

() (N is {F (ts,. .. dn) [LEF(N)AD <2 < n} if
the label of M is Jl'}'n and Ny, ..., Ny are child nodes
of N, ar

(5} (V) is v(N)U . U= N,) if the label of NV is "or’

and Ny,. .., N, are child nodes of N,

A moded type graph represents a set of moded term,
ie., a moded type, defined by v, A set of all moded
types is denoted by Term.

A moded type graph § can be also represented by an
expression, called a moded fype definttion, like a context
free grammar with {possibly no) non-terminal symbols,
ealled type varigbles, and one start symbol, called a rool

type varable, corresponding to the root node of §, as
in [Janssens and Bruynooghe 1989]. A moded type or
a muode type graph represented by a moded type defi-
nition may be referred to the root type variable.

Example 7.1 'The following graph G is a moded
type graph whoese rool node is labeled with h:,tj:

Then the moded type graph may aleo be denoted by
the following moded type definition:
=kt (V.ml,
n=Ff +{le|.
where 7, 7y i type variahle and 7 is a root type variable.
This moded type definition represents a set of moded
terms:

)= ATV SRV, BT PP)

An abstraction o for a moded term satisfying the
condition {3} in Definition 6.2 is also well-defined in a
similar way to [Janssens and Bruynooghe 1989].

A maoded lype substetution § is a mapping Var to
Term, and is also represented by o set of assignments
of variables to moded types. A coneretization and an
abstraction for a moded type substitution is defined:

¥8) = {8 | VX € dom(8) (t€7(X8) > (X —1)€0)
a(f) = {X —a(X0) | X edom(d)}

And an ordering relation C over maoded type substitu-
tions is defined as follows: 8, C 8, iff v(VE,) C 4(VD,)
for all variables 1V & Var,

A moded type Teaciion sequence A is a sequence of
moded type substitutions £,48, .8, such that

Vil << j<n)(f; Con dom(,) = dom{d;),
and dom{A) is defined dom(&). A concretization for a
maoded type reaction sequence, denoted by (g, ... 8,).
is defined as follows:

{151 coikn | By 8, € Reeg A 11§, ET[E’J],

where 11§; is & composition of substitutions |&,] .. |&).
And an instantiation erdering © on a moded Ly pe re-
action sequence is defined: &, C A iff v(A,) C 7(4A).

Definition 7.4 (Moded Type Atom Reaction)

A moded lype alom reaction 1s a pair of an atom 4 and
moded type reaction sequence such that dem(Q) €
variA). Areact is a set of all moded type atom reac-
tions.

Example 7.2 Let A be a reaction sequence {X —
SV)} (Y—o(2)}- . Then a({X—f(¥)}* (Yg(2))")
is {X =7 }{X —r2}, where 7, and 7y is defined by the
fellowing type definitions:

n = fHV),

2= [T (¥)).

An spplication of a moded type substitution § to a
moded type reaction sequence §, ... 8, is a moded type
reaction sequence &) . &) such that 8 = lub{fi_y, &)
for all 7 (0 < 7 << n) where f; = &

A possible interleaving of moded type reaction se
quences :nf can he well-defined by using the definition
of possible interleaving on a concrete domain in Seetisn
4.2, And Den 15 a power set of dreect.

Now we can define the abstract semantic function
Lperdlen — Den for a program P and a goal & by us-
ing abstract operations and denotations defined above.

7.2 An Example of Deteeting Multiple
Writers

Consider that two goals try o instantiate a shared
vaniable to a (possibly different) symbol{s). 1n such
a case, the goals may cause inconsistent asslgninents
ter the same variable, which are called multiple uriters.
Becently, in the family of concurrent logie languages,
several languages have been proposed thal do not al-
low multiple writers, and many advantages have been
discussed [Saraswat 1890][Ueda 19904][Kleinman ef al
1901][Foster and ‘Laylor 1989]. For examples, moded
FGHC presented in [Ueda 1990a) has the following ad-
vantages: (1) an efficient implementulion bascd on a
message-nTiented technigue, (2) unification failure free,
and (3} easy mode analysis, So meded POHC seems
to lead FGHO programmers into a good styvle of FOHC
[PEOErAInIng,.

Although you can write most programs without using
multiple writers, you may want to use them in a few
cases. Stop signal may be one of these examples.

Stop sygnal is a programming technique such that,
whien some geal find the answer to a searching prob-
lemn, the goal broadcasts a stop signal to any other goals
which are solving the same searching problem {or its
sub-problems} and the goal forces any other goals to
terminate their process by inslantiating a flag symbal
to a variable shared by all goals. Several laggings may
occur on different goals ai the same time, or some goal
may broadeast a flag at any stage il 2 flag is not received
but has been sent from other goals. In such cases, mul-
tiple writing problems may ocour

Now we show a method of detecting mutltiple writers
as an application of the moded type inference in the pre-
vious section. The following program implements a very
simple example of ‘stop signal’. A subscript number of
each function symbel is used to distinguish occurrences.
main{T,F) :- true | generate(T),search(T, F).
searchit;{.,a;,.) ,F) :— true | F=d,.
search{_.f5) - true | true.
gearchits{L,by K} ,F) - true |

searchi{l,F),search(R, F).
generate(T} := true | Tsta(L,N.R},genNode(N),
generate(L),generate(R).
genNode(B) - true | N=as.
genNoda (K} :- true | N=hy.

A goal generate(T) generatcs a binary tree with
each node labeled with a or b, and a goal search(T,F)}
searches a node labeled with a. Dudy goals of search/2
share the second argument as a ‘stop signal’. Now we
try to analyze the moded type of a goal main(T,F) by
computing [ﬂmain(T.F} of the abstruct domain for
the moded Lyvpe. Here each meded type constructor
has a subseript number. When we apply f# = {X—af}
to & = {X—aj}, we can get a moded type substili
tion (8)f = {¥—ay,}. This represcnis a maoded type
{%—a"} by engaging 2 to a;. When goals try to en-
gage a moded type constinctor with = toa moded Ly pe
censtructor with —, the goals are muoliiple writers.

In the above program, we can compute the following
maoded Ly pe atom reaction in mmnin(T.F}.

(main({T,F}, ... {F—15}.-.).
Then we can get information such that

(1) the goal main(T,F} may cause multiple writes, and
{2) the problematic goal is 2 unification goal writing 1,
e, in the body of the first clause of search.

Discussious

Mueli research has hesn presented on the fixpoint ap
proaches to the semantics for concurrent logic lan-
guﬁg'ﬁﬁ.

Atuin reactions are essenbially the same as reachve
clauses introduced in reaclive behoavior semantics ['fiaif-
man of ol LBRG] Sinece resctive behavior semanties i
defined by the sell-unfolding of reactive clanses, we cans
not alwave define some reassnable abetraction of the se-
prantice when the semantics is applied to abslract mter-
pretation. ‘Lhat is, the same non-terminating problem
may Docur us i the t‘xal'l‘l].'-']e below. While using our
semnantics, sinee we define by computing sl possible re-
action sequences corresponding to atoms in a body st
cne tine by ind, such a problem does not occur.

Chur semanties distinguishes reduction fadlure from
deadlock as well as anification fesduve, although the op-
rrational semantics of FUHC aay nothing w.r.t. reduc-
tion failure, that is, reduetion failure is regarded as sus-
pension, Then the case that a goal is reduced by no
clause is distinguished from farlure (unification fudlure],
but not distinguished from deadlock. Dut we introdues
reduction failure as a termination symbol In a practi-
cal gystemn of FGHC, reduction failure may be reported
as a system service to users if the system forlunately
detects it at ren time. 1t is helpful to users i redue-
ton failure can be detected simce such fallure causes
deadlock. G, we will want to detect the possibility of
reduction failuee al wnaslysis time too. This is why we
must introduce reduction failure to the semanties.

Tn [de Boer etal 1989], they have presented a de
notatienal and a lixpoiut approach to the semantics for
(non-flat) GHOC. They have presented the declarative se-
mantics based on a fixpoint approach over the semantic
dusmain similar to cur atom reaction. They have men-

tioned that the fixpoint semantics is suund and com-
plete wort. the operational semantics giving only the
results of finite success compuiations. Whereas, since
our approach keeps more information by using the com-
plement of all correct inpul unit reactions and L, it
can be correctly related to the operational semantics
including the cases of deadlock and finite failure.

A few works on abstract interpretation for concurrent
lopic programs have been presented. The approaches of
[Codognet et al 1990] and [Codish ef al 1991] are based
an the operational semantics

L [Cadognel ef al 1990, they have presented a mela-
algorithm for FOP(:) and an abstracted version of it.
They also show the correclness relation of the aigorithm
to the operalional semantics, which is defined by o tran-
sition system simalar to this paper.

In [Cedish ef el 1001], they directly abstracted a
standard transition system semantics, where o set of
confipurations is approximated to an abstract configu-
ration. One of the advaniages of their approach is that
the analysis is simple and easy to prove correct

These two are essentially (he swne approaches and it
ig easy to understand the correspondence to the opers-
tiomal semantics in both approaches,

In the approach of [Codish ef all 1981], the termm-
nation of abstract interpretation may not be guaran-
teed for some programs such that a goal may infinstely
sencrate more and more sub-poals. For example, the
following program is taken from [Codish et ol 1981
They must absiract the demair (Le, configuration] teo
much (called star ahstraction) in order to solve such a
problem, The star abstraction is enough and not too ab-
stract to analyze suspension. Buol it may not be suitable
to call andfur surcess pattern analysis. These problems
may be solved by adopting some ahstraction on goals
other than the star abstraction [Codish 1992].

producer(X) :- true |

t-1{X1,£2), producer(X1), preducer(X2).
consumer (%) :— X=f(ZL X2} |

comoumer (X1}, consumer(X2).

But our abstract interpretation can analyze eall pat
iern of the program, and return the following moded
type atom reaction when the mwided type depth s Lt

(producer (X}, {X— mH{X— m}{X—m})

= i*l:‘—l -

Ty =TT,)

T3 = 17(r3, ma)

Although our pessible inlerleavings may be a hitle
difficnlt to define and understand, these problems can

be solved by the abstraction only on the domain, e,
reactinn sequences.

9 Conclusions

We have presented a denotational semanties for FGHC
which 15 less abstract semantics and is suitable as a ba-
sis for abstract interpretation. Since the senantics is
{I.E".r]l]ﬁ'l'.!].In:," EL rl)’.[.'lf.'li nl DPPEUELE‘]:I o1 akonn r{-'l.lEL]f.'lIl‘_-i whir_'h
represent the reactive behaviors of atoms, we can easily
develop a program analvsis system only to abstract a
{possibly infinite) domain to a finite domain. We have
also demonstrated moded type inference of FGHC pro-
B,

Acknowledgments

I thank Kazunori Ueda and Michas] Codish for valu-
able comments and suggestions and the referees for their
helpful compnens

References

[Bruynooghe and Janssens 1983] Bruynooghe, M. and
G, Junssens, “An Instance of Abstract Interpreta-
lion Integrating Type and Mode Inferencing”, Froc.
of the 3th International Conference and Symposium
on Logle Programming, B A Kowalski and K. A
Bowen {eds), pp.669-683, 1988

[Codish and Gallagher 1989] Codish, M., 1. Gallagher,
“A Semantic Hasis for the Abstract [nterpretation
of Concurrent Logie Programs”, Technical Report
C588-20, November, 198%.

[Codish et al 1991 Codish, M., M. Falaschi and K.
Marriott, “Suspension Analysis for Concurrent Logic
Programs™, Proc, of the &th International Conference
on Logic Proagramming, Furukawa, K. (ed.), pp.ddl-
Ada, 14691

[(.-:Ddl'sh]992] Cﬂdish. :'vf.: pt‘?'.‘.‘uuuf commiunicatlion,
Feb, 1992

[Codognet et al. 1990] Codognet, C., P. Codognet and
M. M. Corsini, “Abstract Interpretation for Cencur-
rent Logic Languages”, Proc. of the Norih American
Conference on Logie Programming, 8. Debray and M.
Hermencgildo (eds.), pp.215 232, 1990,

[de Boer cf al. 1939) de Boer, F. S, J. N, Kok and
C. Palamudessi, “Control Flow versus Logic: a de-
notaticnal and declarative model for Guarded Horn
Clauses”, Proc. of Mathematical Foundations of
Computer Science, A. Krecamar and G. Mirkowska
{eds), pp.165-176, LNC5-379, Springer-Verlag, 1989,

[de Boer and Palamidessi 1965{] de Boer, . 5., and C.
Palamudess, "Coneurrent Logic Programming: Asyn-
chronism and Language Comparison”, Proe. of the
MNorth American Conference on Logic Programming,
5. Debtay and M. Hermenegildo {eds.), pp.175-104,
1He0.

[Pﬁ]ﬁ.‘irhi et al 1939] Falaschi, b G, Levi, M. Martelli,
. Palamidessi, “A Model-theoretic Reconstruction
of the Chperational Semantics of Logic Programs”,
Universita di Pisa, Technical Heport TH-32 /89, 1989

[Falaschi et al. 1990] Falaschi, M., M. Gabbrielli, .
Levi and M. Murakami, “Nested Guarded Horn
Clauses”™, Inlernational Jowrnal of Foundations of
Computer Science, Vol.I, no. 3, pp.249-283, 1990,

[Foster and ‘laylor 1989] Foster, L and 5. Taylor,
“Steand: A Practical Parallel Programming Toal”,

10

Proc, of the North American Conference on Logic
Progranuuing, E. L. Lusk and B AL Overbeek {eds),
pp-AYT-H1Y, 1984,

[Gabbrielli and Levi 1990] Gabbriell, M. and G. Levi,
“Unfolding and Fixpoint Semantics for Concurrent
Constraint Logic Programs”, Proc, of the 2nd In-
ternational Conference on Algebraic and Logic Pro-
grams, LNCS, Nancy, France, 1990,

[Gaifman et ol 1989 Gaifinan, H M. 1 Maler and E.
Shapire, “Reactive Behavior Semantics for Coneur-
renl Constraint Logie Programs”, Proc. of the North
American Conlerenee on Logle Progeamrming, E. L.
Lusk and R A Overbeck (eds.), pp 5b1-569, 1985,

[Gerth ef af, 1988] Gerth, H., M. Codish, Y. Licht-
enstein and E. Shapiro “TFully Abstract Denota-
tional Semantics for Concurrent Prolog”, Proc. of Jrd
Anmual Cenference on Logic in Computer Science,
IEEL, pp.d20-X35, 1965,

Janssens and Droynooghe 1989] Janssens, G and M,
Bruynooghe, “An Application of Abstract Tolerprela
tion: Integrated Tvpe and Mode Inferencing”, Report
CWEG, Katholieke Universiteit Leuven, April, 1989,

EK]HiIJ!IIHIl el al E[l!]l] Kirinman, A, Y Moscowite,
A Proueli and B, Shapire, “Communication with Th-
rected Logic Variables”, Proc. of the 8th Annual
ACM Symposicin on Principles of Mrogramnung Lan-
guages, pp.221-232 1941,

[Lassez ef af 1087] Lassez, J. L., M. J. Maher, and
k. Marriett, “Unification Hevised”, Foundations
of Deductive Databases and Logic Programming,
Minker, J. {ed.}, Morgan Kauwfrnann, pp. 587-625,
1987,

[Levi 1888} Levi, ., “A New Declarative Semantics
of Flat Guarded Horn Clanzes", Technical Report,
ICOT, 1938

[Lloyd 1987] Lloyd, 1.W., “Foundation of Logic Pro-
gramunimg”, Second, Exterded Edivion, Springes-
Verlag, 1087.

[Murakari 1988] Murakami, M., “A Declarative Se-
mantics of Paraliel Logle Programs with Perpetual
Froccsses” | Proc, of the Internabional Conference on
FGOS'8E, pp.374-388, Tokyo, 14082

[Palamidessi 1990] Palamidessi, C., “Algebraic Proper-
ties of ldempotent Substitutions”, Proc, of the 17th
ICALF, pp 386-399, 1950,

[Faraswat 1990] Saraswat, V. A., K. Kahn and J. Levy,
“Janus: A Step Towards Distributed Constraint ['ro-
gramining”, Proc. of the North American Confer-
ence on Logic Programming, 5. Debray and M.
Hermenegilde (eds.}, 1590

[Ueda 1980a] Ueda, K. and M. Mornita, “New Imple-
mentation Technique for Flat GHC", Proc. of the Tth
International Conference on Logic Programming, 1.
H. I, Warren and P. Szeredi {eds), pp.d-17, 1980

[Ueda 1090L] Ueda, K., “Designing a Concurrent Pro-
granuning Language”, Proc. of an International Con-
ference organized by the TPS] to Commemorate the
Atk Anniversary: Infolapan’@), pp87-94, Tokyo,
1990,

