ICOTEchnic:ai Report: TR-0764

TR-0764
Resource Management Machanism ol PIMOS

by
H. Yashiro, T. Fujise, T. Chikayama, M. Maisuo,
A. Hori (Mitsubishi) & K. Wada

April, 1992

© 1992, ICOT

Mita Kokusai Bldg, 21F (03)3456-310]~ 5

" :O | 4-28 Mita 1-Chome Telex ICOT 132964
Minato=ku Tokyo 108 Jupan

Institute for New Generation Computer Technology

Resource Management Mechanism of PIMOS

Hiroshi YASHIRO™ , Tetsure FUJISE!, Takashi CHIKAYAMAT,
Masahiro MATSUO!, Atsushi HORI and Kumiko WADAT

t Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
t Mitsubishi Research Institute, lnc.
1-8-1 Shimomeguro, Meguro ku, Tokyo 133, Japan

Abstract

The parallel inference machine operating system (PIMOS) is an operating system
for the parallel inference systems developed mm the Japanese Filth Generation Com
puter Systems project. PIMOS 15 written in a concurrent logie language KL1, which
adds numerous extensions to its base language, Guarded Horn Clauses, for efficient
meta-level execution control of programs. Using such features, PIMOS is designed to
be an efficient, robust and flexible operating system. This paper describes the resource
management mechanism of PIMOS, which is characterized by its unique communica-
tion mechanism and hierarchical management policy,

Hierarchical management of user tasks in a disteibuled fashion is mandatory in
highly parallel systems so that the management overhead of the operating system
can also be distributed to the processors tunning in parallel. The meta-level execu-
tion contrel structure, called shoen, ig provided by the KL1 language and is used for
providing such hierarchical management in a natural fazhion,

In concurrent logic langeages, message streams implemented by shared logical
variables are frequently utilized the media of interprocess communication. PIMOS,
based on this programming style, provides multiplexed streams with flexible control
for communication hefween user programs and the operating system.

1 Introduction

In the Fifth Generation Computer Systems project of Japan, the parallel inference ma-
chines, PIMs, have been developed to provide the computational power required for high
performance knowledge information systems [Goto et al. 1988, Taki 1992].

The parallel inference machine operating system, PIMOS [Chikayama et al. 1988], was
designed to control highly parallel programs efficiently on PIMs and provide a comfortable
software development environment for concurrent logic language KL1.

PIMOS was first developed on an experimental model of parallel inference machine,
called Multi-PSI [Nakajima et al. 1989], consisting of up to 64 processing elements con-
nected via a two-dimensional mesh network. The system was first developed in 1988 and
has been used since then to research and develop various experimental parallel application
software. Later, the system was ported to several models of parallel inference machines
with considerable improvements in various aspects.

*EMAIL : yashiro@icot.or. jp

1.1 Shoen Mechanism

The language in whicl PIMOS and all the application programs are written is called KL1.
KLl is a concurrent logic language based on Guarded Horn Clauses [Ueda 19861 with
subsetting for efficient execution and extensions for making it possible to describe the full
operaling system in it.

The greatest benefit of using a concurrent logic language in writing parallel systems is
the implicit concurrency and data-flow synchronization features, With these [eatures, one
of the most difficult parts of parallel programming, synchronization, becomes automatic,
making software development much easier than in conventional programming languages
with explicit synchronization.

An important addition by the KL1 language to regular concurrent logic languages is
its meta-level execution control construct named shoen. Shoen enables the encapsulation
of exceptional evenls and the description of explicit execution contral over a group of
parallel computational activities, The execution unit of KL1 programs is a preposition
called a goal, which will eventually be proven by the axiom set given as the program.
‘I'his proof process is the execution process of the programs, as it is with any other logic
programming languages. As the proof process can proceed concurrently for each goal, the
goals are fine-grained parallel processes,

As no backtracking feature is provided in concurrent logic languages, all the goals in
the system form one logical conjunction. Thus, if no structuring mechanism is available,
failure in a user’s goal means failure of the whole system, The shoen mechanism provides
a way of granping poals, isclating such failure to a particular group of goals. Such a group
is called a shoen.!

A shoen can be initiated by invoking the following primitive.

execute(Coda, Argv, MinPric, MaxPrio, ExcepMask, Control, “Report)

The arguments Code and Argv represent the code and arguments of the initial goal of
the shoen. This goal is reduced to simpler goals during the execution (or proof] process,
and all such descendant goals will belong to this shoen.

A shoen has a pair of streams named the control stream and the report stream, which
are represented here by the two argnments Control and Report respectively. The control
stream is used to send commands te control the gross execution of the goals belonging 1o
the shoen, such as starting, stopping, resuming or aborting them as a group. Exceptional
events internal to the shoen, such as failure, deadlock, exception such as arithmetical
overflow, or termination of computation are reported by the messages received from the
report stream (Figure 1).

The two arguments MinPrio and MaxPric specify the priority range of the goals be-
longing to the shoen. PIMOS does not try to control scheduling of each fine-grained
parallel process, but controls them as a group using the control stream and this priority
mechanism.

Shoen can be nested by arbitrary levels. Stopping a shoen, for example, will make
all the children or grandchildren shoen inside it. The argument ExcepMask is used to
determine which kinds of exceptional events should be reported to this particular level of
the hierarchical structure of the shoen.

PIMOS supervises user programs using this shoen mechanism. The exception reporting

IThe shoen mechanism is an extension of the meta-call construct of Parlog [Foster 19288] and can be
considered to be alanguage-embedded version of the meta-interpreters seen in systems based on Concurrent
Prolog [Shapiro 10954)

Control HReport
Stroam Stream

Shoen Ak

y

T

Figure 1: Shoen

mechanism is used to first establish the communication path from the user programs to
PIMOS. An exceptional event to be reported can be intentionally generated using the
following primitive.

raise(Tag, Data, Info)

The argument Tag specifies the kind of event generated by this primitive. This, along
with the mask specified when the shoen is created, determines at which level in the shoen
hierarchy this event should be processed.

The two argumernts Data and Info are passed as detailed information of the event.
The Data argument can be any data, instantiated, uninstantiated or partly instantiated,
while the Info argument has to be instantiated before the event is generated. The above
primitive will be suspended until this argument is completely instantiated to be a ground
tarm without any logical variables,

By mouitoring the report siream, FIMOS cau receive tlie requests from the user as
messages coming from the stream in the following format.

exception(Kind, Eventlnfo, "NewCode, "NewhArgV)

The Kind argcument indicates the kind of exceptional event. In this case, the fact that
the event was intentionally generated can be recognized.

The EventInfo arrument is more detailed information of the event. In the above case,
the Data and Info arguments of the raise primitive will be combined together through
this arpument.

The NewCode and NewArgV arguments specify an alternative goal to be executed in the
object level in place of the poal that generated the event, PIMOS utilizes such a goal for
inserting a protection filter, which will be described later.

1.2 Resources

In conventional systems, memory management and process management are two of the
most important tasks af the operating svetem. In the case of PIMOS, as the underlying
ianguage implementation of KL1 provides primitives for those fundamental resources,
PIMOS do not have to be concerned with such low-level management.

KL1 provides automatic memory management feature including garbage collection, as
is the case with Lisp or Prolog. Thus, basic memory management is automatic in the
language implementation. KL1 provides implicit concurrency and data flow synchroniza-
tion, context switching or scheduling is already supported by the language. Thus, PIMOS

does nol deal with low-level fine-grained process management, but controls larger-grained
gronps of processes using the priority system provided by the language.

As memory and process are managed in the KL1 language implementation level, we call
them language-defined resources. On the other hand, other higher-level resources, such
as virtnal 1/0 devices, are more directly controlled by PIMOS. We call them O5-defined
resources. In what follows, we will concentrate on the management of such O8-defined
Te30UTCas,

2 Communication Mechanism

The basic principles of the communication mechanism are described in this section. 1his
lays the bazis for the foundation of the I'IMOS resource management mechanism.

2.1 Stream Communication

In a parallel environment, efficient management of various resoutces becomes much more
difficult than in a sequential environment. When data in a particular memory area should
not he overwritten while being processed by the operating svstem, the operating system
can simply suspend the execution of user programs in a sequential system. In a highly
parallel environment, this will seriously spoil the merit of fine-grained parallelism, as all
the user processes sharing the memory space must be stopped irrespective of whether they
actually have any possibility of changing the data.

A frequently nsed programming technique in concurrent logic languages is the ohject-
oriented programming style [Shapiro and Takeuchi 1983} Tn this style, a process (actually
a goal which becomes perpetual by recursively calling itself) can have internal data which
cannot be accessed from oulside and shared data containing variables which can be used
for interprocess communication. Interprocess communication is effected by gradually in-
stantiating the data shared between processes. Instantiation corresponds to sending data
and observing it corresponds to receiving the data. When the shared data is instantiated
gradually to a list structure of messages, the siructure can be considered to be a commu-
nication stream. PIMOS also ntilizes this technique for communication between the user
programs and the operating system.

For example, reading a character string from the keyboard can be effected by a program
shown in Figure 2 (afler establishing a communication path by generating an exceptional
event as explained in a previous section). The user sends a message getb /2, thal requests
the reading of N characters. When PIMOS receives the message, it reads N characters
from the keyboard to the variable KBDString (readFromKBD/2). Then, the user receives
the String instantiated to KBDString. As the cdr of the list, ReqT, will be a new shared
variable after this operation, it can be used for successive such communication.

2.2 Protection Mechanism

In a system based on a concurrent logic language, many of the problems that might arise
in a conventional operating system will never be a problem. As the communication path
between the user programs and the system programs can be restricted to shared logical
variables, there is no way for user programs to overwrite the memory area used by the
SYstem programs.

?- pimos{Req), user{Req).

user{Req) :-
true |
Req = [getb(N,String)|ReqT],

pimos{ [getb(N,5tring) |ReqT]):-
tTue |
readFrom¥od (N ,KBDString),
HBDString=3tring,
pimos (ReqT}.

Figure 2: An example of inlerprocess communication between user and PIMOS

With the simple mechanism described above, however, intentional or accidental error
in user programs may cause system [ailure in the following wayvs,

Multiple Writer Problem When both the system and user programs write different
values to the same variable, a unification failure may occur. In aconenrrent language
like KL1, unifications by PIMOS and the user may be executed concurrently. Thus,
this contradiction may cause PIMOS to [ail if it tries to instantiate the variable later.

Forsaken Reader Problem The user program may fail to instantiate the arguments of
the message sent to PIMOS, in which case PIMOS may wait forever for it to be
instantiated.

To solve problems, a filtering process calied the protection filter is inserted in the stream
between PIMOS and the user program. This filter is inserted in the object-level (within the
nzer’s shoen) using the above described NewCode and NewhArgV arguments of the exception
reporting message. To solve the forsaken reader problem, the filter will not send a message
to PIMOS until its arguments are properly instantiated. To solve the multiple writer
problem, the filter will not unify the result from the operating system with the variable
supplied by the user until it is properly instantiated by the operating system (Figure 3).

filter([get(C)|User],08):-
true |
us = [get(C)los1],
wait_and _unify{(C1,C),
filter{User, 051},
wait_and_unify(0SV,UserV) :-
wait (05V) |
User¥ = 0SV.

Figure 3: An example of the protection filter

In the actual implementatlion, such filtering programs are aulomatically generated from
the message protocal definitions.

2.3 Asvnchronous Communication

Stream communication is simple, vet poweriul enough for simple applications, but it does
nol provide sufficient Qexibility and efliciency at the same time when controlling various
[/0) devices.

As communication delay is a crucial factor in distributed processing, it is desirable to
send messages in a pipelined manner for hetter thromghput. To allow this, it is desirable to
allow messages to be sent before being sure that they are really needed and 1o allow them
tor be canceled if they are fosnd to be unnecessary afterwards. 1F only one communication
stream is available between the operating system and the user, Lhis cancellation is not
possible (Figure 4}.

SRR —-

emplete) fneompletel | goyice

. absent sommmand S\ command driver

s E

Biocked!!

Figure 4; Blecked stream

o solve the problem, PIMOS provides another communication path for emergencies,
We call the path abort line. This communication path is implemented as a simple shared
variable. Instantiation of this variable notifies cancellation of commands already sent to
the siream.

Another problem is that, with only ene communication stream from the user to the
operating system, there is no way for the devices to send asynchronous information to
the users. To solve this, besides the above-mentioned two communication paths, a com-
munication path in the reverse direction called the attention line is provided {see Figure
5).

These two “lines” are one-time communication paths in their nature. After they are
used, new paths can be established by sending the reset message described below through
the main communication stream.

2.4 Multiplexing Communication Paths

It is sometimes mandatory to share some (virtual) resources among several processes.
A typical example is with the terminal device shared among processes running under a
shell. In such cases, only one process should be able to use the device at a time, but
quick switching among processes (when a process is suspended by a terminal interrupt,
for example) is essential for comfortable operation. On the other hand, the pipelining
of I/O request messages is mandatory for better throughput. With only the mechanism
of the “abort” and “attention” lines mentioned above, the aborted requests will merely

stream

Ty .

user device
ProCEss driver

abort

alention

Figure 5 Asynchronous communication with a device

disappear. This does not provide more flexible control, such as suspending a process and
resuming it afterwards,
PIMOS provides the following [/0 mmessages to solve the problem,

reset("Result): The variable Result is instantiated to a term
normal{ “Abort, Attenticn, ID). The arguments Abort and Attention corre-
spond to new abort and attention lines. An identifier for a sequence of commands
subsequently sent on this stream is returned jn the argument ID.

resend(ID, “Status): When 1/0 request messages are aborted using the abort line, the
device drivers remember the aborted messages associated with the identifier. The
resend command tells the device driver to reiry the aborted messages associated
with ID.

cancel(ID, “Status): This cancel message tells the device driver to forget about the
aborted messages associated with 1D

Suppose that a certain device, such as a window device, is shared by two user processes,
A and B. Bach user process has one communication path to the device. The communication
paths connected from the user processes are merged to a “switch” process, which has
anather communication path connected to a “contral” process (Figure i{a)}.

The control process is usually & part of a program such as a command interpreter
shell that lets two or more programs share one display window. When a program running
under the shell is suspended by an interruption, there may remain 1/() messages that have
been already sent from the interrupted program to the device driver but have not been
processed yet. In such a case, the control process suspends the processing through the
abortion line and sends a reset message to the device through the switch process (Figure
Gi{b}}. The suspended messages are kept in the device driver with ID. If the program
resumes communication with the device, the control process commands the switch process
to send a resend message with ID as its argument to make it resume the suspended [/0
requests.

() switch for multiplexing streams

abort reszet ,resand
Process A ======= .t ===mmmaaea
D =1 ID =1
rezet, rezand abort
Procese B ====sscecscceaece=s L.
ID = 2

Exampile: --- : connected communication path
: disconnected communication path
(b} commands belween the swilch and the device driver

Figure G: Multiplexing streams

3 Resource Management Mechanism

All the devices provided by PIMOS have the stream interface described above, with at-
t on and abort lines when required. Thus, management of resources in PIMOS is
. * gement of these communication paths. This section describes the mechanism of the
management b}' PIMOS.

The following are the kevwords lo understand the mechanism.

Task: Tasks are the units of management of user programs. A task consists of an arbitrary
number of goals (fine-grained processes) corresponding to a shoen in the language
level, and forming a hierarchical structure.

General Request Device: The general request device is the top level service agent.
This is the stream user programs can obtain directly from: PIMOS. Request streams
to all other devices are obtained by sending messages to this device.

Standard 1/0 Device: A task is associated with its standard 1/0 devices. Standard
1/} devices are aliases of some devices they are associated with. T'he correspondence
is specified when the task is generated. T'he resource sharing mechanism described
above is attached Lo Lhese tasks.

Server: 1/0 subsystems of PIMOS are actually provided by correspouding tasks called
servers. They are made relatively independent of the kernel of PIMOS, making the
modularity of the system better. The file subsystem is typical of such servers,

3.1 Resource Management Hierarchy

As mentioned above, fasks are the unit of management of user programs. All communi-
cation paths from user program to I'IMOS are associated with cerlain tasks. Resources
obtained by requests through such paths are also associated with the tasks.

Tasks are implemented using the shoen mechanism of KL1. A task is a shoen with
its supervisor process inside the PIMOS kerncl. The kernel controls the utilization of
resources within the task.

Tasks are handled just like ordinary 1/0 devices. A task handler is a device handler
whose corresponding device happens to be a shoen, Tasks are unique in that they may
have children resources. As its consequence, a task can have tasks as its children resources
forming a nested structure. Corresponding to this, task handlers and other resource con-
trolling processes inside PIMOS also form a hierarchical structure, called the resource tree.
This resource tree is the kernel of resource management by PIMOS.

One layer of the resource tree is represented by the task handler and device monitors
corresponding to its children resources connected by streams in a loop structure (Figure
7). Device monitor processes are common with all kinds of devices. Associated with each
device manitar is a device handler, which depends on the category of the device. Device
monitors and device handlers are dynamically created when a new virtual device is ereated
and inserted in the loop structure.

The device handlers can be classified as follows.

Task Handler: A task handler corresponds to a shoen. As described above, usual shoens
whose control and report streams are directly connected to their creator. Those
streams of shoens corresponding to a task are connected to the task handler. The

Figure 7: Resource tree

creator of the task {user programs) can only control and observe the behavior of
tasks indirectly through requests to PIMOS.

General Request Handler: General request devices are the primary devices provided
by PIMOS. Through them, information on the task itself is obtained and various
other devices [including children tasks) can be created.

Standard I/0 Handler: Standard 1/0 devices are aliases corresponding to some other
device, They provide the resource sharing mechanism described above.

Server Device Handler: Server devices are the most common form of virtual devices
provided by PIMQO5. The device handlers watch the status of the client task and

notify its termination to the server task,

10

3.2 Providing Services

To minimize the “kernel” of PIMOS, the kernel provides its lundamental resource man-
agement mechanism ouly. Other services, such as virtual devices such as files or windows,
are provided by tasks called “servers”,

Figure & shows an overview of the management hierarchy of PIMOS. The basic I/0
system (BI0OS) pravides the low-level /0, but it does not provide the protection mech-
anism. To protect the system, basic IO service is provided only for the kernel. The
kernel provides the above-deseribed resource tree, which provides the resource manage-
ment mechanisim for tasks, Tasks here include both user program tasks and server tasks.

Task

Client | Server

Y Y
lKernel{resouree tree)
]

BIOS

Figure 8: An overview of the management hicrarchy

As described above, communication between the user programs and PIMOS can be
established using the raise primitive. However, this mechanism only establishes a path to
the kernel [the resource tree) and not Lo a server task.

The communication path between a client task and a server task can he established as
follows {see Figure Y, also).

1. To start the service, servers register their service to the service table kept in the
kernel of PIMOS. The table associates service names to a stream to the correspond
ing server. The eode for the stream filter for protecting the server from clients’
malfunction is also registered in the table.

2. The clicnt task establishes a communication path to the PIMOS kernel and requests
a service by its name,

3. The kernel searches for the name in the service table, and il @ matching service s
found, cunnects the client and the server, inserting a protection filter process inside
the client.

Although the above written order is typical, The order of ! and 2 is not essential. Requests
made prior to registration of the service will simply he snzpended.

In step 3, PIMOS inserts a device monitor and a device handler corresponding to the
server device. The device handler watches for termination of the elient task and notifics
it to the server {Figure 10) for linalizing the service provided.

This separation of the kernel and the servers in PIMOS allows flexible configuration
of the system and assures system robustness. Failures in a server will not be {atal to the

11

system; the services provided by the zerver will become unavailable, but the kernel of the

system nol to be aflected.
Table 1 lists standard services in the most recent version of PIMOS {Version 3.2). Each

of these services is implemented using the above client/server mechanism. Various other
servers, sich as database servers, can be added easily and canonically to these standard
BETYVErS.

| name SEMVICE

file N,

{1} register

A
{2} request ‘,-"‘*

lient Task

Seover Task

{3} insertion of
protection filter

Figure 9: Communication between client and server(1)

Table 1: Standard service in PIMOS(Version 3.2)

I_ Name | Service o |
atom | Database of atom identifiers and their unique printable names.
file File and directory service.

module | Database of executable program codes.
_5ccket Internet socket service,
~ timer | Timer service.
user Database of user authentication information.
window | Display window service,

12

device
handler

Client Task

v

/L J

Figure 10: Communication hetween client and server(2)

3.3 Standard 1/0

PIMOS provides a management mechanism for sharing resources, which enables the shar-
ing of resource streams belween a parent task and its children tasks (and subsequenl
children tasks)., When a task is generated normally, standard [/O devices of the parent
task are inherited to the child task. Multiplexing of the request bstream is implemented
as described previously.

Standard I/0 devices are not a usual device but a kind of alias of the device 1t is
aszociated with. Since the proteclion mechanisin of PIMOS, a messages filtering process,
has to konow the message protocol of the stream, the message protocol for the standard
1/ device s restricted to a commeon subset of I/ device protocols.

3.4 Low Level I/0O

in the lowest level, PIMOS supports SCS1 (Small Computer Standard Interface) for device
contral. Each operation to the SCSI bus i provided as a built-in predicate by the KLI
language implementation. For example, a primitive for sending a device command through
the 5051 bus is as {follows.

scai_command{3CSI, Unit, LUN, Command, Length, Direction,
Data, DataP, “Newbata, "TransferredlLemngth, “ID, “Razult, “NewSCSI)

The argument 5CSI should be an object representing ihe state of the SCSI bus interface
device at a certain moment. NewSCSI, on the other hand, represents the state of the device
after sending the command. This is instantiated only after completing the operation and
the value will be used in the next operation, which will be suspended until it is instantiated.
The proper ordering of operations is thus maintained.

The Unit and LUN arguments designate a specific device connected to the SCSI bus.

13

Arguments Command and Directien are used to control communication on the SCSI bus.
The argument ID is used for command abortion, whose mechanism is similar to one de-
scribed previously.

Since the KLl processor needs garbage collection, real-time programming in KL1 is
basically impossible. On the other hand, physical operations on SCSI require real-time re-
sponse. The above primitive only reserves the operation and actual operation will be done
eventually, with lower level real-time routines. Explicit buffers are used to synchronize the
activities of their lower level routines with KL1 programs. Other arguments, Data, DataP,
NewData, TransferredlLength are used to specily such buffers,

3.5 Virtual Machine

As all the communication between the user programs and PIMOS is initiated through the
control and report streams of the shoen which implements the user task, a user program
can emulate PIMOS and make application programs run under its supervision. This is
useful for debugging application programs.

The same technigne can also be used to debug PIMOS itsell by writing a BIOS emu-
lator, as all the other parts of PIMOS communicate with BIOS through paths established
using the shoen mechanism. Figure 11 depicls an actual implementation of a virtnal
machine on PIMOS. As the virtual machine is a usual task in PIMOS, the protection
mechanism of PIMOS prevents failures in the version of PIMOS being debugged on the
virtnal machine from being propagated to the real PIMOS. This facility has been conve-
niently used in debugging the kernel of PIMOS.

o Physical machine —
Virtual machine
o (task) N

Task

Kemel(resource tree)

BIOS sirmulator
L)

Kemeliresource tree)

BIOS

. .

Figure 11: Virtual machine on PIMOS

14

4 Conclusion

The resource management scheme used in PIMOS based on the concurrent logic language
KL1 iz described. It depends heavily on the meta-level control mechanism called shoen
provided by the language for efficient hierarchical resource management.

PIMOS itself has a hierarchical structure, consisting of a kernel and server tasks, This
structure enables a flexible system confliguration and reinforces the robustness of the sys-
temm.

The system consisting of parallel inference machines (Multi-PSI and recently PIM)
and earlier versions of PIMOS has been heavily uwsed in research and development of
experimental parallel application software for about three and a half vears already, proving
the feasibility amd practicality of implementing an operating system in concurrent logic
languares,

Acknowledgement

Many of researchers of 10T and ather related research groups. Too numerous to be
listed here, participated in the design and implementation of the operating system itself
and development tools. We would also like to express our thanks to Dr. 5. Uchida, the
manager of the research department of ICOT, and Dr. K. Fuchi, the director of the ICOT
rescarch center, for their valuable suggestions and encouragement. .

References

[Chikayama et al. 1988] T. Chikayama, H. Sato and T. Miyazaki. Overview of the Parallel
Inference Machine Operating System (PIMOS). In Proceedings of the International
Conference on Fifth Ceneralion Compuler Systems, ICOT, Tokyo, 1988, pp. 230-251.

[Foster 1988] 1. Foster. Parlog as a Systems Programming Language. Ph, D. Thesis,
Imperial College, London, 1988,

[Goto ef al. 1938] A. Goto, M. Sato, K. Nakajima, K. Taki and A. Matsumoto. Overview
of the Parallel Inference Machine Architecture (PIM). In Proceedings of the International
Conference on Fifth Generation Computer Systems, [COT, Tokyo, 1088, pp.208-229,

[Nakajima et al. 1989] K. Nakajima, Y. Inamura, N. Ichivoshi, K. Rokusawa and
T. Chikayama. Distributed Implementation of KL1 on the Multi-PSI/V2. In Proceedings
of the Sizth International Conference on Logic Programming, 1989, pp.436-451.

[Shapiro and Takeuchi 1983] E. Shapiro and A. Takeuchi. Object Oriented Programming
in Concurrent Prolog. In New (Feneration Computing, Vol.1, No.1{1983), pp.25-48.

[Shapiro 1984] E. Shapiro. Svstems Programming in Concurrent Prolog. In Proceedings
of the 11th ACM Symposium on Principles of FProgramming Languages, 1984,

[Taki 1992] K. Taki. Parallel inference machine PIM. In Proceedings of the International
Conference on Fifth Generation Computer Systems, ICOT, Tokyo, 1992,

[Ueda 1986] K. Ueda. Guarded Horn Clanses: A Parallel Logic Pregramming Language
with the Concept of a Guard. Technical Report TR-208, ICOT, 1986.

15

