ICOT Technical Report: TR-0757

TR-0757

Derivation of the Parallel Bottom-Up

Parser from the sequential Parser

by

K. Takahashi (Mitsubishi)

April, 1992

© 1992, 1COT

Mita kKokusai Bldg. 21F (3)3450-3191 -5

| C OT 4-28 Mita [-Chome Telex 1COT 132064
Minato-ku Tokvo 108 Jupan

Institute for New Generation Computer Technology

Derivation of the Parallel Bottom-Up Parser from the
Sequential Parser

Kazuko TAKAHASHI
Central Research Laboratory, Mitsubishi Electric Corporation
8-1-1, Tsukaguchi-Honmachi, Amagasaki, 661, JAPAN
l:TEF..] 4+81-G-497-T141
takanashi®sys.crl.meleo.cojp

Abstract

This paper describes the derivation of a parallel program from a nondetermin-
islic sequential program using & bottom-up parser as an example,

The derivation procedure consists of two glages: exploitation of AND-parallelism
and cxploitation of OR-parallelism. An interpreter of the sequential parser BUP
[Matsumole cf al 83] is first transformed so that processes for the nodes in a pars-
ing tree con run in parallel. Then, the resuliant program iz transformed so that
a nondeterministic search of a parsing tree can be done in parallel. The for-
mer stage is performed by hand-simulation, and the latier is accomplished by
the compiler of ANDOR-IE, which is an ANDJOR paralle]l logic programming
tanguage[Takeuchi ot al. 89). The finally denived program, written in KL1{Kernel
Language of the FOUOS Froject), achieves an all solulion search without side effects.
It corresponds to an interpreter of PAX[Matsumeoto et al 87], a revised parallel ver-
sion of BUP. ‘T'hiz correspondence shows thal the derivation method proposed in
this paper is effective in deriving efficient paraliel programs.

1 Introduction

Due to the recent progress in parallel machines, the demand for software suitable for
the new parallel architecture bas also inereased. As a result, vigorous research and
development on parallelism are currenily under way. Derivation of a parallel progran
from a sequential program is one of the important issues in this research area.

Generally speaking, it is hard to grasp the behavior of parallel programs, and when
we write a parallel program, we have to pay attenlion Lo the control mechanism such
as synchronization and communication. It is sometimes easier to parallelize an avail-
ahle sequential program than to create a totally new program. However, in this case,
we often cannot fully extract the AND- and OR-purallelism inherent in the original
program, AND-parallelism arises from the parallel execution of conjunclive goals, and
(fi-parallelism arises from nondeterminacy.

In the field of logic programming, early works of committed-choice languages such
as Concurrent Prolog[Shapiro 83], PARLOG[Clark and Gregory 84] and GHC[Ueda 86]
accomplish only AND-parallelism, not OH-paralielism which Prelog supports with a

backtracking mechanism, since wlternatives are abandoned after commitment in these
languages. If one wants to express a nondeterministic phenomenon in these languages,
he/she has to explicitly specifies an all solution search. It not only puts a2 heavy burden
on the programmer, but aleo makes the program hard to understand.

To solve these problems, AND/OR-parallel programming languages which exploit
the advantages of both Prolog and eommitted-choice languages have been developed
[Yang and Aiso 86] |Clark and Gregory 87] [Haridi et al. 88] [Naish 87] [Kliger et al. 8#].

ANDOR-1I[Takeuchi et al. 89] is one of these languages. ANDOR-IT provides a
declarative deseription for nondeterminacy by classifying predicates into two classes:
AND-predicates and OR-predicates. An ANDOR-11 program is compiled into a KL1{Kernel
Language of the FGCS Project) ! program using a ealoring scheme so that both AND-
and OR-parallelism can be achieved efficient]ly. OR-parallelism in ANDOR-IT is aceom-
plished by AND-parallelism in the object program, whereas intrinsic AND-parallelism
amwong conjunclive goals & preserved.

In this paper, we apply ANDOR-II to derive a parallel parser from a nondeterministic
sequential parser. The dedvation procedure consists of two stages: exploitation ANTI-
parallelism and exploitation of OR-parallelism, An interpreter of the sequential parser
BUP[Matsumato ot al 83] is first transformed so that the processes for the nodes inoa
parsing tree can run in parallel, Then, the resultant program is transformed so that a
nondetermimistic search of a parsing tree can be done in paraliel. Uhe former stage 1s
performed by hand-simulation, and the latter s performed by the ANDOR-TT compiler.
The finally derived program, written in KL1, achieves an all solution search without side
effects. It corresponds to an interpreter of PAX[Matsumoto et al 87), a revised parallel
version of BUP 2,

In a PAX svstem, grammer rules are translated into a KL1 program by the trans
lator, and parsing is performed by direct exeeution of the translated program. On the
other hand, in our approach, parsing ig interpretively performed. Paring performed in
these iwo methods show essentially the same behavior. This correspondence shows that
the derivation method proposed in this paper is effective in deriving efficient parallel
PrOgIAMS,

In Section 2, the bottom-up parsing systein BUP is deseribed and the intrinsic paral
lelism is analyzed. In Section 3 and section 4, exploitation of AND-parallelism and that
of OHR-parallelism are deseribed, respectively. In Section §, the correspondence between
the derived program and the PAX interpreter is shown and some issues regarding the
derivation of parallel program from sequential program are also discussed.

Throughout the paper, familiarity with parallel logic programming languages such
as GHC, PARLOG and Concurrent Prolog s assumed.

2 Preliminaries

2.1 BUP System

In this paper, we will discuss the battem-up parsing system called BUP (Bottom-Up
parser embedded in Prolog)[Matsumoto et al 83]. 1t is a bottom-up left corner parser
for the grammar rules written in Definite Clause Grammar{DCG).

VKL [Chikayama et al. 88] is the language with seme controls added 1o GHC,

*The system developed in a sequenlial language s particularly called SAX{Sequential Analyzer for
syntaX and sermantiC=). Basically SAX and PAX emplay the same algorithm. We use the name "FAX"
thn‘.!uﬂ:nul the paper, since we conslder the system on pn.rnlllnl snvironment

% do :- goalls,[the,man,walk],[]).

£1: goal((P,Q),50,52) :- goal(P,S0,S1),goal(Q,s1,52).
€2: goal(C,5,51) :- dict(F,5,52}, derive(F,52,C,51).

C3; derive(F,5,F,5).
C4: derive(F,52,C,51) :-

rulei{(Lemma <= (F,Rest))),

goal{Rest 52,53}, derive{Lemma,53,C,51).
CE: derive(F,52,C,51) :-

role2((Lemma <= F}), derive{Lemma,$2,C,S51}.

c6: dict(F,[X15],5) :- zrule((F <= [x])).
C7: rulell{a <= (B,C}) :- rule({a <= (B,C)}.
£8: rule2((4 == B)) :- rule({A <= B}), ‘+(B=(_,_)), “+(B=[_J}.

Figure 1: BUP Interpreter

rule{{s <= {(np,vpli). rule{(dat <= [the])).
rule({np <= (det,noun)}}. rule{(adj <= [beautirull)).
rule{(noun <= (adj,noun)}). rule({noun <= [man]}).
rulel(noun <= (noun,relc))). =rulel{noun <= [womanl)).
rulef(noun <= (that,s)}). rulef{verb <= [walks])).
rula{(vp <= (verb,np))l. rule({verb <= [loveal}).
Tule{(vp <= warb)).

Figure 2: Rule Part

In a parsing tree, each node corresponds to a terminal or nonterminal symbol, and
each leaf node corresponds to a terminal symbol, Tn VTP, starting from leaves, parsing
proceeds in a bottom-up manner. When a subtree T is constructed, a larger subtree
tries to grow by establishing itsclf at the root of T on its left corner.

The ordinal BUP systemn is a translator which translates the grammar rules to a
bottom-up parser in which the grammer rules are embedded. Although it enables high
performance, it is hard to understand and also difficult to modify the inference strategy.
It is more snitahle for our purpose to separate the inference part from the rule part and
consider an interpreter. The inference part of an interpreter can easily been written in
Prolog (Figure 1) *. An cxample of the rule part is shown in Figure 2. Although, BUP
also emplays top-down expactation for efficiency, we ignore it for simplicity and focus
only on the essential part 9.

*This interpreter is based on the one provided in [Takeuchi and Furakawa 86].
i Top-down expectation can be treated in the same way.

2.2 Parallelism

Our purpose is to derive an interpreter for a parallel parsing system from this interpreter

by extracting both AND- and OR-parallelism. In a parallel program, we regard cach
node in a parsing tree as a process. Fach process has a communication channel with

its adjacent process, and communicates through this channel by sending a message. As
each node in a parsing tree corresponds to the goal derive, each process performs the
following two types of jobs:

1. rule expansion Fxpand the grammar rule in which the symbol occupies the left
corner of & parsing tree, and pass the information on the current subtree under
comstrention to its adjacent process,

2. subtree completion Receiving information, try to complete the current subtree,

AN D-parallelism arises from the parallel execution of the proceases for the nodes in &
parsing tree. Tnoelause G4, the process which expands a rale for some node oo parsing
tree calls the process for itz adjacent node. These processes should not properly be
called mutually but they should be ereated simultaneously. In order to accomplish this,
we adopl a strategy Lhal processes for leal nodes in a parsing Leee are initially ereated
and allowed to communicate with each other via channels between adjacent processes.

OR-parallelism arises from the parallel search for alternative solutions. There are
three possibilities for the head unification of a goal derive either with clauses €3, C4 or
C5. This search should be achieved without side effects such as Prolog's backiracking
mechanism. Tn order o nnq‘n|]1p[ia|:| lhi,:gl we hdl_}pl. E :glra[,:eg_}- T.]j,a.l. tnuitjplﬂ suy]l]i.innﬁ
due io the nondeterminism are merged in stream form and put into the channels,

3 Exploitation of AND-Parallelism

The first stage is exploitation of AND-parallelism,

In this stage, we generate new clauses by analyzing the program in Figure 1, with
the aid of & well-known anfold /Told techougue [Tamaki and Sato 84).

We expand a proeess network whose node corresponds to each terminal symbaol, and
the information on the current subtree under construetion is flown as a message among
these processes. Mote that the gﬂlmrnr.rl.l JHriag AN still]rrl.n-"l:]r:ﬁ a declarative deseription
for nondeterminacy.

Expansion of a Network

First of J=1.|]J wir a-pr'm:ri define iwo new predica.lus. The one is the pr-::d'u.'at.-r: parse Lo
expa.nd a network at an nitial state, and the other s the pnafli-r.at.n exp Lo represent the
jobs for each node in the network. The arguments of exp denote the identifier of the
process, the input channel and the output channel. Erpl and ezp? correspond to rule
expansion and subtres completion, respectively.

Cg: parse([X|5],In,Dut) :- exp{X,In, IO}, parse(S,ID,Dut).
C10: parse([],In,Dut} :- DutsIn.

C11: exp(X,In,0ut) :=- expl(X,In,Out).
€12: exp(X,In,Out} :=- exp2(X,In.Out).

Tdentification of a Unit Process

In Figure 1, a unit process corresponding to erp is unclear, since derive and goal
are called mutually (clauses €2 and €4) and goal called from derive (C4) may distribute
more than two goal processes {C1) which may call another derive (€2}, Our purpose is
to eliminate this mutual recursion, amd Lo make each onit process perform a job only
with its earresponding symbal,

Unfold clause €1 at its first goal, goal. This goal is called either from the first goal
of clause 21 or from the second goal of clause €4, In both cases, if the first argument is
in the form of (7), then £ is not in the form of (P1, P2}, Thereflore, this goal cannot
unify with clause €1, Thus, it is unfolded only by clause C2. As a result we get the
clause C13,

€13: geall(P,q),50,52) :- dict{F,Sﬂ,l},darivu(P,.ﬁ.,P,S!],gcal(q,S‘l,Sﬂ}.

In clause C4, the former part (rulel) performs rule expansion of a symbeol, and the latter
part(goal and derive) performs jobs of the adjacent symbol. These processes should be
divided into two clauses, Thus, we mtrodies a new definition cont.

=== definiticn
€14: cont{Rest, Lemma,S2,C,51):~ goal{Rest,52,53}, derive(Lemma,53,C,51}.

Transformation process proceeds by using definition C14.

-—— unfold C14 at i1ts first goal

Ci5: cont((P,J),Lemma, 52,C,51) :-
dict(F,52,4), derive(F,A,P,B), goal(Q,B,53),
deriva(Lemma,53,C,51).

C16: cont(Rest,Lemma,32,C,51) :=
dict(F,52,4), derive{F, i Rest,B), derive(Lemma,B,C,51).

=== fold body goals of C15 by Cl4
C17: cont({P,Q),Lemma,S2,C,51) :-
dict(F,52,.4), derive(F,A,F,B), cont(Q,Lem=ma,B,C,51).

-—- fold body goals of C4 by Clé
Ci8: derive(F,52.C,51) :-
rulel{{Lemma <= (F,Rest))), cont{HRest,Lemma 52,C,51).

So far, we have obtained the set of clauses { ¢2,C3,05,C06,C7,08,C13,C16,C17,C18
} and the definition C14.

We cxpect a unit process to perform its job only with the corresponding symbeol and
to leave the other job to the adjacent process. We create a unit process which satisfies
this condition. The unit process exp has two kinds of jobs expl and exp2. We create
ezpl and exp? based on derive and conf, reapectively,

Creation of erpl from derive

First of all, we modily derfve so Lhat it sends the information as an output instead
of calling cont. Secondly, we remove unnecessary arguments of derive. In Figure 1, the
third argument of derive is used only for the terminal condition (the state of obtaining
a complete subtree). This argument s unnecessary for expl, since expl performs only
rule expangion. The rest of the arguments correspond to identifier. inpul channel and
output channel, in that order. Note that derive called from the body part (clause C5)

i5 a new process for an upper concepl and i shoald be able to call both expl and exp2.

Therefore, we replace it by exp.
As aresult of this analysis, we abtain the following new definition for expl.

Ci19: expl(F,52,51) :-

rulel({Lamma <= (F,Rest))), S1=(Kest,Lemma,52).
C20: expl(F,52,51) :-

rule2({Lemma <= F)}, exp(Lemma,s2,651).

Creation of exp? from cond

First of all, we move dict so that it is called when a network is expanded at an initial
stale, In BUP, diel s called only for a tecodnal symbol (e a word ina given sentenee)
and not called for a nonterminal symbal (ie. npper concept). Therefore, dief shonld be
called when the proceses for terminal symbaols are created.

Thus, the clause parse for expanding a network should be modified as follows,

€21: parse'([XI5],In,0ut) :-
dict{F,[X|5],5), exp{F,In,ID), parse'(5,I0,0uz).

Moexemnpts cond from calling diet from its boedy part. Therefore, cont is replaced by
roni’,

C22: cont'(Rest,Lemma, [X|5],F,C,51) :-
derive(F,5 Rust B), derive({Lemma ,E,C,51).

C23: cont'{(P,Q),Lemma, [X|8],F,C,51) :=
derive(F,5,P,B), cont'(Q,Lemma,B,C,51).

Secondly, we unfold each of these clanses at their first goal, derive. They are unfolded
only by clause €3 which corresponds to a subiree completion.

C24: cont’(F,Lemma, [X[8] .F.C,81) - derive(Lemma,5,C,51).
C25: cont'((F,Q),Lemma,[XI5],F,C,51) := comt’(Q,Lemma,s,C,51).

Thirdly, we modify cont’ so that it sends the information as an output instead of
calling cont’.

Next, we remove the unnecessary arguments of cont’. Several arguments become
unnecessary because of unfolding. The fifth argument of cont’ 15 originally used for
the terminal condition, however, this process is already performed by unfolding, The
variable X appearing in the third argument is no longer used. Therefore, we remave
these argumments

Finally, we rearrange the remaining arguments. The fourth argument, F, corre-
sponds to an identifier of the process, the sixth argument, 51, corresponds to cutput
channel, and the rests correspond to input arguments. Derive appearing in the body
of €24 15 replaced by eep, from the previous discussion.

At last, we abtain the [ollowing definition for exp2.

C26: exp2(F,(F,Lemma,5},51) :- exp(lLemma S, S1).
C27: exp2(F,((F,Q},Lemma,5),51} ;- 51=(0,Lemna,s},

Addition of Special Processes

At the end of the first stage in the transformation procedure, the processes checking
the termination are added. In C28 and C29, the terms ‘begin® and ‘end’ denote the
beginning and terminal positions in the sentence to be parsed.

% do :- parse([the,man,walks], begin,Out), fin{0ut).
C29: finlend).

€21: parse([xIS],In,0ut) :- dict(F,[X151,5), exp(F.In,I0),
parsa{3,I0,0ut).
ci0: parse([],In,Out) :- Dut=Im.

€11: exp(X,In,Out) :- expl(X,In,Out).
C12: exp(X,In,0ut) :- exp2(X,In,Out).

€19: expi(X,In, 0ut) :- rulel{(Lemma <= (X,.Razt))),
Dut=(Rest,Lemma,In).
€20 expi{X,In,0Out) :- rule2{(Lemma <= X)), exp(Lemma,In,Out).

£26: exp2(X,(X,Lemma,In),Out) :- exp(Lemma,In,Out).
C27: exp2(X,{{X,Rest),Lemma, In),Dut} :- Out=(Rest,Lemma,In).
C28: exp2(s,begin, Out) :- Out=end.

Fgure 3: Transformed Program by Iland-Simulation

C28: axp2(a.begin,Dut} := Out=end.
c29: fin(end).

Figure 3 shows the finally obtained program

The above transformation procedure indicates that the structure of the original
program is so complicated. Transformation is not simple, and we often make large jumps
to obtain a program suitable for parallel execution. However, sophisticated methods
such as unfold/fold technique helps alleviale the difficnlty.

4 Exploitation of OR-Parallelism

The second stage of the transformation procedure is exploitation of OR-parallelism.
This stage is performed by the ANDOR-IT compiler.

4.1 Language ANDOR-II

ANDOR-II is a parallel logic programming language which exploits AND- and OR-
parallelism. In ANDOR-II, predicates are classified into two classes : AND-predicates
and OR-predicates. An AND-predicate is defined by a set of gnarded clauses. An OR-
predicate is defined by a set of non-guarded clauses. A clause of either type can contain
both AND-predicates and OR-predicates in its body part. Fvery predicate in ANDOR-
T must be associated with & mode declaration which specifies each argument as either
input{denoted by "+') or output(’'—"). Similar to flat languages, a goal in a guard part
is restricted to a lest predicate,

An ANDOR-II program for the program in Figure 3 can be generated with a slight
modification {Figure 4). Nondeterministic predicates exp and expl are regarded as
OR.-predicates, and the rests are AND-predicates. As for an unary predicate rule, the

argument has to be divided, since the mode 5f each argument of each predicate 15 either
input or output in ANDOR-IL Given in the form of rule({A <= (B, C}}, the variable
B 15 used for an mmput, while A and © are used for outputs,

The execution of ANDOR-IT exploits hoth ANTE and OR-parallelism as follows,
Dody goals in each clause are executed in parallel. If an OHR-predicate is invoked,
possible worlds are epeated, Each world is painted by a distinct color and AND-parallel
computation proceeds on each world {Figure 5).

The solution abtained on a world is painted with the color of the warld and all
the solutions associated with their colors are packed in stream form, which we call a
colored vector. Some poals have an extra cover called shell to handle these types of
data, If a goal with a shell receives such a colored vector, it creates the worlds each of
which is painted with Lhe color of each element. Computation for each data proceeds
in each colored world and the result is painted with the color of the world, They are
recomposed into a vetor form {Figure 6). Basic computations such as unification and
arithmetie operations are applied only to a tuple of data sharing Lthe sae color

A El.'.l-]Dr may 'hF: fHﬁl'.l'Ed s t.I'IE‘ I:DII'JPth.a.LJI'UTI. PFU‘E'EEJS. Th'ﬂ'tfﬂft, EUEUI j.s mnsid&l‘ﬁd
as a history of the clause selections during the computation.

4.2 Compilation Based on Coloring Scheme

An ANDOR-IT program is compiled into a KL1 program using a coloring scheme. OR-
parallelisrm in ANDOHR-1L =2 realized by AND-parallelism in the object program, whereas
intrinsic AND-parallelism among conjunctive goals is preserved. The fundamental idea
is described in [Takeuchi et al. 89]Takahashi et al. 90

The main job of the compiler is the transformation of OR-predicates and the ereation
of appropriate shells for the poals,

An Olt-predicate is transformed into a deterministic predicate in KL1. Clauses
defining an OR -predicates are realized by AND-parallel execution of conjunetive goals
corresponding to their computations. And their solutions are merged to recompose
a colored veclor. For instance, ezp is transformed as [ollows, where exp Core 1 and
expCore inveke expl and exp?. respectively. C1, C2 denote new colors created by
adding a new color element Lo the corrent calor €

expl_Core(X,In,0ut ,w(C}) :- true |
add Coler_element(C,C1),
add_Coler_slement(C,C2),
expl_Core_1{X,In,0uti,w(C1)),
expl_Core_Z2(X,In,0ut2,w(C2)),
merge{{0utl,Out2} Out).

The cover of shell is put on goals that might receive a colored vector. There are
different types of shells depending on the data type. The compiler analyzes the goal
which needs a shell and the appropriate shell type ®. Each goal is transformed into one
covered with a proper shell.

For example, take the first clause of parse in Figure 4. Parse receives the output
of exp via the channel], where exp is an OR-predicate. Therefore, the goal parse is
eovered with a shell, and this clavse is transformed as follows.

SANDOR-11 aystem s an-
ather compilation methad which is described in [Takenchi and Takahasdhi 91]. In this method, data
analyuis is not done during compilation but done at the sxecution.

% do :- true | parse([the,man,walks],begin,Cut), fin(Out).

:— mode fin{+).
fin(end) :-= true | true.

i« mode parse(#,+,=),
parse{[X|5],In,0ut) :- true |

dict(F,[115],5), exp(F,In,ID), parse(5,10,0ut).
parse([],In, Out) :- true | Out=In.

:- mode exp(+,+,-).

= or_relation axp/3.
exp(X,In,0ut) :- expl(i,In,Out).
exp(X,In,Out) :=- exp2(X,In,Out).

1= mode a1p1(+,+,-}.

:= or _relation expl/3.

expl(X,In,0ut) :- rulei(Lemma,X,Rest), Out=(Rest,lLemma,In).
expl(X,In,0ut) :- rele2(Lemma,X), exp(lemma,In, Out).

i= mode exp2(+,+,-).

exp2{X,(X,Lemma,In) ,0us) :- true | exp(Lemma,In,Out}.

exp2{X, ((X,Rest} Lamma,In) Out) :- true | Out={Rest,Lemma,Inj).
exp2{s, begin Out) :- true | Cut=end.

:- mode diet(-,+,-).
dict(F,[Xi5]).5) = true | rule(F,[X]}.

1= made .'I.“I.tlﬁlf—.'h—}.

Tulei(A,B,C) :- true | rTulelA,B,CJ.

:= mode nlazf-ﬁ]-

rule2(A,B) :- true | rule(d,B), Bh=[_].

- mode rulel(-,+,-}.

rule({Lemma,np,Best) :- true | Lemma=s, Rest=vp,
rule{Lemma,det,Rest) :- true | Lemma=np, Rest=noun.
rule{lemma, adj, Rest) :- true | Lemma=noun, Rest=noun.
rule{Lemma,noun,Rest) :- true | Lemma=noun, Rest=rale,
rule(Lemma,verb,Rest) :- true | Lemma=vp, Rest=np.

:= mode rulel(=,+).

rule(Lemma,verb) :- true | Lemma=vp.
rule{Lemma, {thel) :- true | Lemma=det.
ruleLemna, {beautifel]} :- true | Lemma=adj.

rele(Lemma, {man]) :- true | Lemma=noun.
rula(Lamna,[naman]] := true | Lemma=noun.
rulef{Lemna, [walks]l) :- true | Lemma=verb.

rula(Lamma, [lovea]} := true | Lemma=verb.

Figure 4: ANDOR-1I Program
]

or_predicate

a - pl, pa.
a:-qi, g2, g3
a:-r.

Color (0

Color (1]

Fignee 5: Computation Medel of ANDOR-11

do:-a, b.
Color 01

b

B1 B2 | B3

plar@l Calard? | colasdl

Al | A2 | A3

celerdl oo inrid fenlardd

400

Figure &: Shell and Colored Vector

10

pugu_ﬂo:a{[KlS].In,ﬂut,u{(")j = true |
dict_Core(F, [X58].5,w(C)), exp_Core(F,In, I0,w{C)),
parse_Shell(S,I0,0ut}.

Shell is a structure which handles a colored vector. It decomposes a set of input
colored vectors into a tuple of values, passes them to the corresponding core processes,
and eollect the output values together to make a set of vectors. Each core process
corresponds to computation with one color. Core processes are executed in parallel and
the solutions are put into output channels as soon as they are generated by fair merge
operalors,

For example, the shell for the predicate parse is defined as follows,

parse_Shell(X, [v(Y,Cy)}|V¥s],Z) :- true |
parse_Core(X,Y,Z1,w(Cy)],
parse_Shell(X,¥s,22},
mBrEBf{ZI.ZZ},'ﬂJ .

puaa_shullfl,[]) 1= true | z=[].

5 Discussion

5.1 Comparison with PAX

The PAX system is a translater from grammer rules written in DCG into a parallel
program such as KL1 in which the rules are embedded. The generated program is a
parscr for the given grammer rules. Tt performs parsing so that AND/OR-parallelism is
fully exploited If an element of a parsing tree is derived, then it needs no retrial, and
parsing without side effects is performed.

The generated parser for the rules in Figure 2 is shown in Figure 7[Matsumoto et al 87],
and the result of parsing a sentence [fhe, man, walks] is shown in Figure 8.

Lit this parsing, Uhe processes for the words in the sentence to be parsed are generated
at an initial state. Hegin is the seed of the data flown among processes. A process
for each symbol receives the information from its left-adjacent process, performs rule
expansion and subtree completion in parallel, merges these results into stream form,
and sends it to the right-adjacent process. For example, the process for the symbol npl
generates noun(X) for an input X, and the process for the symbol np generates the
mecged stream of the results of npl and np2. Therefore, if X is i stream form, the
output of np is a stream whose element contains a streann

In the translated program, Uhe processes to compose/decompose a stream are explie-
itly represented, and the treatment of a failure case is also explicitly represented. It is
tesublesome to write these processes directly. The ANDOR-II compiler also generates
a eode with such treatments from a declarative description.

The main job of the ANDMIR-IT compiler is the transformation of OT-predicates and
the creation of appropriate shells for the goals. All alternatives for an OR-predicate are
executed in AND-parallel and the solutions are colleeted in stream form. This stream is
decomposed and processed for each element, and the result is recomposed into stream
form by the special structure shell. Those are the same jobs performed by the translated
program of the PAX translator.

It is easy to obscrve that the interpreter derived from the ANDOR-II compiler shows
fundamentally the same behavior as the parser generated by the PAX translator. The
difference is that in the former, solution cbtained in a world is associated with its own

il

% do := the([begin] ,[2),man(D2,03) ,walka(D3 D4}, fin{D4).

fin{lend]) :- true.
othervise.

fin{[_IT1) :- fin(T).

aplX,¥) - ¥Y=[np(X)IT], np2(X.T).
np(X,Y) := npi{X,¥1), np2({X,¥2), merge({Y1, ¥2},Y).

npl(X,¥) := Y=[np{X}].

np2([1,¥) = ¥v=0J.

op2{ [verb (X} IT],¥} :- vplX,¥1), np2(T,¥2), merge({¥1,¥Y2},Y).
ptherwise.

np2([_IT),¥) = np2({T,Y).

vp(ﬂ,‘f] = ¥=[].

vpl(lap(X}IT],¥) :- sentence(X,Yi), vp(T,¥2), merge({¥Y1,Y2},¥).
othervise,

vpl{L_IT],¥) :- wp(T,¥).

det(X, Y} := ¥v=[det(X)].
adj{X,¥) :— Y=[adj(X}].

noun(X,¥} :- ¥Y=[noun{X)|T), noun2({X,T).
noun(X,¥) :- nounl{X,¥1}, noun2{X,¥2), merge{{¥1,¥2},Y).

nouni{X,¥) :- Y=({neun(X)].

noun2{[1,Yy = ¥=[1.

noun2([det(X)[T1,¥Y} :- np(X,¥1), noun2(T,¥2), merge({Y1,¥2},Y).
noun2({fadj(X)|T],Y} :- noun(X,¥1), noun2(T,¥2), merge({¥1,7Y2},¥).
otherwise.

noun2{ [_IT],¥} :- nounZ(T,¥}.

verb(X,¥) :- ¥=[verb(X)IT], vp(X,T).
verb(X,¥Y) :- verbl(X,¥1}, verb2{X,¥2), merge({Y1,¥2},Y).

verb1(X,¥Y) :- ¥=[verb(X)].
verb2(X,¥) :- vpl{X,¥).

aentencel([1,Y) :- ¥=[].

sentencel [beginl ¥} :- Y=[end].
othervisze.

sentence{[_|T],¥) :- sentenca(T,¥).

the(X,¥Y) :- det(X,Y). wvoman(X,¥} :- noun(X,Y).
beautiful (X,Y) :- adj(x,¥}. walks(X,Y} :- verb(X,Y).
man{X,¥Y) :- neun{X,¥), loves(X,¥Y)} :- verb(X,Y}.

Figure ¥: Parscr Cenerated by PAX Translator

12

[begin] the man walks
D1

D2
|_. dét—-id2(D1) D3 D4

—
e id3(D1) —» NOUN—»{d4(D1)—a Verb ———=id8(D2)

A i
|

np2 vp2 VP1—=id9(D2)
Dl Npl— id1 {D1

L. jos(D1)

nd
D1 —» Sentence ——= €

Figure 8 Example of Parsing by PAX

color and multiple solutions are handled in the form of a colored veetor, while in the
latter, each element of the stream is simple data without a color, The reason for coloring
is that when a process has more than one input channel, we have to check whether a
set of data comes from the same world, sinee only the commputation for the set of data
sharing the same color can be permitted. Generally speaking, these possible worlds
may proliferate as computation proceeds and its number is unknown. Moreover, if you
treat the eyelic structure such as a feedback system, this mechanism becomes more
complicated. This causes the essential difficulty in handling AND/OR-parallelism, and
al Lhe same time, it i the main reason for the overhead.

However, restricted to this example of a parser, coloring is unnecessary, since the
number of possibilities can be determined by a statical analysis, all predicates have only
single input arguments, and there is no cyelic structure. An optimized program without
a color s exactly a PAX interpreter,

In the appendix, we show an optimized program of an object program generated by
the ANDOR-II compiler.

5.2 Issues on Program Transformation

To derive a parallel program from a sequential program, the approach explained here
consists of twostages: exploitation of AND-parallelism and exploitation of OR-parallelism.
The former stage can be considered as a process of changing the strategy for extracting
high parallelism. Another approach is a direci compilation of a BUP interpreter by
the ANDOR-II compiler, after shight syntactical modification. In this case, a nondeter-
ministic process of derive is regarded as an OR-predicate and the other predicates as

13

AND-predicates. [owever, the derived program does not extract parallelism *o the full
extent, sinee processes [or adjacent symbols are not ereated simollaneously, bul rather
sequentially.

From the viewpoint of program transformation, it is important to justify the trans.
formation meihod, Some method such as the unfold fTold method preserves the minimal
Nerbrand medel during the transformation and guarantees termination. However, in the
case of transformation from a sequential program to a parallel prograsn, it is generally
hard to justify the transformation in this sense, since the structure of the program is so
complicated. In this case, it is reasonable and enough to take such a transformation into
account that can derive the program which preserves the 1O relation of the original
program,

Accomplishing nondeterminacy 15 also an important issue, If one writes a declarative
program, il tends to have more nondeterminacy. Several methods have been reported
regarding the denvation of a parallel program from a nondeterministic sequential pro-
gram [Ueda #6b] [Ueda 87] [Tamaki 86] [Takeuchi et al. 89]. A layered-stream method
proposed in [Okumura and Matsumoto 8] is a kind of programming paradigm in which
recursively defined data structurs called lavered stream is used. All the values in the
same layer gives alternative solutions to the same subproblem. Althongh a layered-
stream achieves high parallelism, it s burdensome for a novice user to write a prograim
using this paradigm. For a program such as the parser discussed here, for which coloring
15 unnecessary, coler can be removed, and the optimized program 18 equivalent to one
which s written using a lavercd-stream method. Therelore, ANDOR-IT which provides
a declarative tir.m:riplinn is a{lvaulaﬁ&nus for the same class of prnhlemﬁ.

6 Concluding Remarks

In this paper, we described the derivation of a parallel program from a nondeterminis-
tie sequential program using a bottom-up parser as an example. An interpreter of ihe
sequential parser BUP is first transformed so that processes for the nodes in a parsing
tree ean run in parallel. Then, the resultant program is transformed so that a nondeter-
ministic search of a parsing tree can be done in parallel. The former stage is performed
by hand-simulation and the latter stage is performed by the ANDOR-1I eompiler. The
finally derived program in KL1 achieves an all solution search without side effects, which
corresponds to an interpreter of PAX.

In a PAX system, grammer rules are translated into a Prolog program by the trans-
lator, and parsing is performed by direct execution of the translated program. On the
other hand, in our approach, parsing is interpretively performed. Paring performed in
these two methods show essentially the same behavior. This correspondence shows that
the derivation method proposed in this paper is effective in deriving efficient parallel
Programs,

For future works, we need more applications to evaluate this transformation method.

Acknowledgements

The author would like to thask Dr. A, Takeuchi of Sony CSL for helpful cormments. This
research was done as a subproject of the Fifth Generation Computer Systems (FGCS)
project. She would like to thank Dr. K. Fuehi, Dircctor of ICOT, for the opportunity of
doing this research and Dr. K. Furukawa, Vice Director of ICOT, and Dr, R. Hasegawa,
the Chief of Fifth Laboratory, for their advice and encouragement.

14

References

[Chikayama et al 88] Chikayama,T., I1.5ato and T.Miyazaki, “Overview of the Parallel
Inference Machine Operating System({PIMOS)," Proc. of Tnt. Conf. on Fifth
Generation Computing Systems, pp 745754, 1988,

[Clark and Gregory 84] Clark,K.L. and 5.Gregory, “PARLOG: Parallel Programming
in Logic,” Research Heport DOC 81/16, Imperial College of Science and Tech-
nology 1984,

[Clark and Gregory 87] Clark,K.L. and 5.Gregory, “PARLOG and Prolog United”
Proc. of 4th Int. Conf. on Logic Progromming, pp927-961,1987.

[Haridi et al. 88] Haridi,S. and P.Brand, “ANDORRA Prolog - An Integration of Prolog
and Committed Choice Languages,” Proc. of Int. Conf. on Fifth Generation
Computing Systems, pp.745-Th4, 1088,

[Kliger et al. 88] Kligee,S., E.Yardeni, HK.Kahn and E.Shapiro, “The Language
FCP(;.7),)" Proc. of Int. Conf. on Filth Generation Computing Systems,
pp.T63-TT3, 1984,

[Matsumoto et al 83] Matsumolo.Y ., H.Tanaka. I.1Tirakawa H.Mivoshi
and H Yasukawn, “BUP: A Dottem-Up Parser Embedded in Prolog,” New
Generation Computing, pp.145-158, Vol 1, No.2, 1983

[Matsumoto et al 87] Matsumote,Y, “A Parallel Parsing System for Natural Language
Analysis,” Mew Generation Computing, pp.83-78, Vel.5, No.1, 1987,

{Naish 87] Naish,L., “Parallelizing NU-Prolog," Logic Programming, Proc. of Sth Int,
Conl and Symposiom, pp. 1546- 1564, 1988,

‘Okumura and Matsumoto 83) Okumura,A. and Y.Matsumoto, “Parallel Programming
by Layered-Stream Methodology,” pp.224-231 Proc.of Symposium on Legic
Programming, 1987,

[Shapiro 83] Shapiro,E., “A Subset of Concurrent Prolog and Its Interpreter,” ICOT
TH-0mE, 1983,

[Takahashi et al. 871 Takahashi K. and A Takeuchi, “Ceneration of T*arallel Parser by
ANDOR-IL: An Inference System for Concurrent Systems,” Proe. of 4th Na-
tional Conference of Japan Socicty for Software Seience and Technology,
pp-423-426, 1987(In Japanese),

[Takahashi et al. 90] Takahashi K., A.Takeuchi and T.Yasui, “A Parallel Prohblem Salv-
ing Language ANDOR-II and Its Parallel Implementation,” 1COT TR-538,
169490,

[Takeuchi and Furukawa 86) TakeuchiA.and K.Furukawa, “Partial Evaluation of Pro-
log Programs and lts Application to Meta Programming," Proc. of IFIP
Congress 86, -1 Kugler{ed), North-Halland, pp.415-420, 1988,

[Takeuchi et al, 8] Takeuchi,A., K. Takahashi and H Shimizu, “A Parallel Problem
Solving Language for Coneurrent Systems,” Concepts and Characteristics of
Knowledge-Based Systems, M.Tokoro,Y.Anzai and A Yonezawa(eds.),North-
Helland, pp. 267-296 1985,

[Takeuchi and Takahashi 91] Takeuchi A, and K.Takahashi, “An Operational Semantics
of AND- and OHR- Parallel Logic Programming Language, ANDOR-II” LNC5-
461, Concurrency: Theory, Language, and Architecture, pp.173.209 Springer-
Verlag, 1980,

[Tamakt 8G] Tamaki H., “Stream based Compilation of Ground I/O Proleg into
Committed-choice Languages,” Proc.of dih Int. Conf. of Logic Programming
P 3T6-393, 1987,

[Tamaki and Sato 84] Tamakidl and T.Sato, “Unfold /fold Transformation of Logie
Programs,” Proc. of 2od Int, Conf. en Logic Programming, pp.376-393,1987.

[Veda 86] Ueda K., “Guarded Horn Clauses: A Parallel Logic Programming Language
with the Concept of a Guarnd,” 1C0OT TR-208, 1986,

[Veda 86h] Teda, K., “Making Exhaustive Scarch Programs Deterministic,” Proc. of 3rd
Int, Conf, on Logic Programming, LNCS 225, Springer, pp. 270282, 1986,

[Ueda 87] Ueda, K., “Making Exhaustive Search Programs Deterministic, Part 11" Proc.
of 4th Int. Conf, of Logic Programmeng, pp. 356-375, 1987,

[Yang and Aiso 86] Yang R. and H.Aiso, “P-Prolog: A Parallel Logic Language Dased
e Foclusive Relation,” Proc of 3rd Tut. Conl of Logie Programming, . 255

209, 1986,

16

APPENDIX

#in Shell{[],0ut} :- true | Out=[].
fin_shell{[&1B],0ut) :- true |
fin_Core(A,R), fin_Shell(B, As), merga({h, Ra},Out).

fin_Core({end,Result) :- true | Result=success.

ctherwiszs.
fin_Corel_,Result) :- true | Result=[].

parse_Shell(a,[81C],D) :- true |
parse_Cora(A,B,E], parse_Shell{A,C,FJ, merga({E.F},D}.
parse_Shell(A,[],E) :- true | E=[].

parse_Core([X|S],In,0ut) :- true |
dict_Cere(F, [X15],5]. exp_Core(F,In, IO}, parse_Shell(S,I0,0ut).
parse_Core([],In,Out} :- true | Out=Ia.
othervise,
parse_Corel_,_,C} :- true | c=0.

exp Corald ,B,C) :- true |
exp_Core_1{A ,B,F), exp_Cora_2(4,B,C) ,merge({F,G},D).

exp_Core_1(A,B,C) :- true | expl_Core{d,B,C).
exp_Core_2(A,B,C) :- true | exp2_Core(4,B,C).

expl_Core(A,B,C) :- true |
expl_Core_1(A,B,D), expl_Core_2{A,B,E), merge({D,E},C),

expl_Cora_1(X,In,0ut) :- true |
rulel_Core(Lemma, X, Rest), Out=[{Kest,Lemma,In}].
axpl_Cora_2(X,In,0ut) :- true |
rule?_Core{Lemsa,X), exp_Core(Lemsa,In,Out).

exp2_Core(X,(X,Lemma,In), Out) ;- true | exp_Core(Lemma,In,Out).
exp2?_Core(X,{(X,Rest) ,Lemma,In), Out) :- true | Out=[{Rest ,Lemma, Tn)].

exp2_Core(s, begin,Out) :- true | Dut=[end].
otherwise.
exp2_Cere(_,_,0ut) := true | Out=[].

dict_core(F,[X15]1,5) :- true | rule_Core(F,[x]).

rulel_Cors(4,H,C) :- true | rule_Core(k,B,C}.
rule?_Core(h,B) :- true | rule_Core(a,B), B\=[_].

rule_Core(Lemma,np,Rest) - true | Lemma=s, Rest=vp.
rule_Core{Lemma,det,Rest) :- true | Lemma=np, Rest=poun.
rule_Coref{Lemma,adj,Rest) :- true | Lemma=noun, Rest=pnoun.
rule_Core{Lemma,nsun,Rest} ;- true | Lemma=poun, Rest=ralc.
ruls_Core{Lemma,verb,Rest} :- true | Lemma=vp, Rest=np.

17

rule_Core({Lemma,verb) :- true | Lemma=vp.
rule_Core(Lemma, [thel) :- true | Lemma=det.
rule_Core(Lemma, [beautifull) :- trus | Lemma=adj.
rule_Core(Lemma, [(man]) :- true | Lemma=noun.
rule_Core(Lemma, [woman]} - true | Lemma=noun.
rule_Core(Lemma, [walks]} :- true | Lemma=verb.
rule_Core(Lemma, [loves]} :- trie | Lemma=verb.

18

