ICOT Technical Report: TR-0756

TR-U736

A Query Evalation Method for Abductive

Logic Programming

by
K. Satoh & M. Iwayama

April, 1992

© 1992, 1COT

Mita Kokusa Bldg. 21F (03)3456-3191 5

|(:D I 4228 Mita |-Chome Telex 1COT 132964
Minmo-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Query Evaluation Method
for Abductive Logic Programming”

Ken Satoh, Noboru Iwavama
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokvo 108, Japan
email:ksatoh@icot.or.jp, iwayama®@icot.or.jp

March 18, 1992, Revised: July 23, 1992

Abstract

We present a query evaluation method for abduction. In artificial intelligence,
abduction has been recognized as important human reasoning and has been applied
in various fields [3]. In logic programming, Eshghi and Kowalski [3] introduce ab-
duction to handle negation as failure and Kakas and Mancarella [5, 6] extend the
framework to include any arbitrary abducible predicate,

We have already proposed a correct hottom-up procedure to compute abdue-
tion. However, this procedure is not suitable for a query evaluation. Although [6]
proposes a query evaluation method by extending the procedure in [3], there is a
problem of incorrectness in the procedure in [3] and the problem is inherited to
the procedure in [6]. Moreover, their procedures can only handle a limited class of
integrity constraints,

Our proposed procedure in this paper is correct for any consistent abductive
framework. If the procedure succeeds, there is a set of hypotheses which satisfies
a query, and if the procedure finitely fails, there iz no such set. We can guarantee
correctness since we adopt a forward evalvation of rules and check consistency of
“implicit deletion™ [8]. Thanks to the forward evaluation of rules, we can also handle
any form of integrity constraints.

1 Introduction

In this paper, we present a query evaluation method for abduction in logic programming,.
Researchers in artificial intelligence have recently recognized that abduction plays an

*This report is an extended version of a paper with the same title that will appear in the Proceedings
of the Joint International Conference and Syvmposium on Logic Programming (JICSLP'92).

important role in various applications such as diagnosis, planning and design (for example,
see [3]).

Eshghi and Kowalski [3] are the first to consider abduction based on stable model
semantics [4] in logic programming. They show the relationship between negation as
failure and abduction. And they provide a proof procedure to compute negation as failure
through abduction for a call-consistent logic program.

This work has been extended intensively by Kakas and Mancarella [5]. They show the
relationship of abductive logic programming with autoepstemic logic, assumption-based
truth maintenance system and updates, and also they extend Eshghi and Kowalski's
procedure to manipulate arbitrary abducibles [6].

In [9], we also give a bottom-up method of computing a generalized stable model [5]
which is a basis of abduction defined by Kakas and Mancarella. Although this method
is correct for any general logic program with integrity constraints, it is not goal-directed;
that is, even if a goal is given, we might explore some irrelevant parts to a guery. Eshghi
and Kowalski’s top-down procedure |3) solves this problem of irrelevant computation to
a query. However, their procedure has a problem of incorrectness for some non-call-
cansistent programs [3, p.231]. This problem is inherited in the procedure of [6].

Here, we provide a query evaluation method that 15 correct for every consistent ab-
ductive framework '. T our procedure answers “ves”, then there is a set of hypotheses
which satisfies a query. If our procedure answers “no”, then there is no set of hypotheses
which satisfies a querv.

Our procedure can be regarded as an extension of Kakas and Mancarella’s procedure [6]
in the following two points.

Forward evaluation of rules:
It is important to nse integrity constraints to exclude undesirable results from abduction.
However, thair procedure manipulates a class of integrity constraints in which therc is at
least one abducible predicate in each integrity constraint.

For example, their procedure cannot handle the following program with an abducible
predicate normal_bird' 2.

Fly(X) — bird(X),normal.bird [X) (1
tnrd(tweety) — (2
non_fly(lweely) — (3
L= fly(X), non_fly(X) (4

e T e et

fly(tweety) seems to be derived with an assuinption normal_bird’ (tweety) from (1), How-
ever, deriving fly(fweety) leads to contradiction by an instance of (4):

L+ fly(tweety), non_fly(tweety).

Therefore, fly(fweety) cannot be derived.

Consistency of an abductive framework mesns that there 1s a generafized stable model for the
framework.

Mpper-case letters, lower-case letters and L express variables, comstants and inconsistency, respec-
tively.

This example shows that we need another method to detect contradiction. In our
procedure, we use a forward cvaluation of rules so that we can check any form of integrity
constraints. In the example above, we first derive fly(tweety) from (1), then check the
integrity constraint L « non_fly(iweety) with a forward evaluation of (4) and find
contradiction.

Check for Implicit Deletions:
We check consistency for “implicit deletions” first observed by Sadri and Kowalski [8]. For
example, consider the following program with an abducible predicate normal.barber! 2.

mani{noeel) — (1)
barber(noel) «— (2)
shaves(noel X)) — man{X), ~ shaves(X, X) (3)
shaves(X, X)) « barber(X), normal_barbert(X) [4)
shaves(casanova, X) — barber(X)), ~ normal_barber'(X (5)

shaves(casanova, noel) seems to be derived with an assumption ~ normal_barber!(noel).
However, if we assume i, an instance of {4):

shaves(noel, noel) «— barber(noel), normal_barber!(noel)

is implicitly deleted since itz body becomes false. Therefore, contradiction occurs from
the instance of (3):

shaves(noel, noel) — man(noel), ~ shaves{noel, noel}.

Consequently, shaves(casanova, noel) cannot be derived.

This example shows that we must consider the integrity of rules deleted by the hypoth-
esis. However, the proposed methods [3, 5] do not check consistency of implicit deletion.
We believe that this lack of check is a major culprit of incorreciness in these methods.
Inversely, we check the implicit deletion in our procedure. So, we can show that if we
assume ~ nermal.barber’(neel), neither shaves(noel, noel) nor ~ shaves(noel, noel) can
be consistently derived in the example above.

Also, our procedure is important in the following respects.

1. If we do not consider abducible predicates, then our method can be used for query
evaluation of every consistent general logic program with integrity constraints based
on stable model semantics.

{J

Cur procedure adopts integrity checking for addition of a rule by accumulating
hypotheses. In some cases, it avoids infinite loops which oceur in other methods of
integrity checking such as [8].

The structure of the paper is as follows. Firstly, we review the definitions of an abductive

{ramework. Then, we show the procedure for query evaluation of an abductive framework

and give some examples. Finally, we compare our method with related researches. For
proofs of the Lheorems, see Appendix.

8 expresses negalion as failure.

2 A Semantics of Abductive Framework

We mainly follow the definition of abductive framework in {5], but we modify it slightly
for notational conveniences. Firstly, we define a rule and an integrity constraint.

Definition 1 Let H be an atom, and Ly, ..., L.(m = 0) be literals each of which is an
atom or a negated atom of the form ~B. A rule is of the form:

i — Ll,.ur.r-z,...,Jr.-m.

We call H the head of the rule and L,,..., L, the body of the rule. Let R be a rule.
head(R), body(R) and pos{) denote the head of R, the set of literals in the body of R
and the set of positive literals in body() respectively.

Definition 2 Let Ly, ..., Ly (m = 0} be literals. An integrity constraint s of the form:
Lo Ly Loyl 4.

We write integrity constraints as the above form so that we do pot have to distinguish
integrity constraints and rules. So, from this point, we do not distinguish rules and
integrity constraints.

Moreover, we impose that rules in a program must be range-resiricled, that is, any
variable in a ruie R must occur in pos(). However, [1| pointed oul thal any rule can
be translated into range-restricted form by inserting a new predicate “doemn” describing
Herbrand universe for every non-range-restricted variables in the rule.

For a given program (with integrity constraints), we define a stable model as follows.

Definition 2 Let T be a logic program and Ty be a set of ground rules obiained by
replacing all variables in each rule in T by every element of 1ts Herbrand universe, Let
M be a set of ground atoms from Tl and TI#T be the following (possibly infinite) program.

T = {H « B, Be| 1] e Ih, . Dy, ~Ay Ay € Ly
and A; @ M for eachi=1,... . m.}

Let man(TI¥) be the least model of 11}, A stable model for a logic program 1" is M iff
M = min(II¥) and L & M.

This definition gives a stable model of T which satisfies all integrity constraints. We say
that T'is consistent if there exists a stable model for T.

For a guery evaluation procedure, it is better to limit ground instances which should
be considered. For example, consider the following program.

p(1,2) — p(2,1) (1)
p(2,1) — ~q(2) (2)
g(X) — p(X,Y}, ~a(Y) (3)

SAlthough we only consider the above form of integrity constraints (denials) in this paper, there is a
transformation from a more general form of integrity constraints to denials as shown in [B].

r(f(1)} = (4)

From the above definition, we have to consider infinite ground rules for (3) because of
the function symbol f in (4). However, it is clear that there is no possibility to make
any instances for p{X,Y’) other than p(1,2) and p(Z,1) to be true, and so, all we have to
consider are actually the following two ground rules.

(1) = p(1,2), ~g(2) (3.1)
Q{Q} - f}{251]+'“‘?{1} {33']

We formalize this phenomenon as follows.

Definition 4 Fet T be a logic program and T be a negation-removed program oblained by
removing all integrity constraints in T and all the negative literals in the body of remaining
rule and min(T~) be the least minimal model of T~ . We define a relevant ground program

Qp for T as follows:
Or={Hw—B,, .., By, ~Ay, ., ~Apn € M| Biemin(T~) for each i=1, ..., k.}

Proposition 1 Let T be a logic program. A set of siable models for T' 1s equal to a sef
of stable models for Q.

The above proposition actually holds for any logic program, but if we impose a pro-
gram to be range-resiricted, we can construct {lp directly from T~ without considering
instantiation of variables with every elements in Herbrand Umverse.

Example 1 Let T be the above program (1), (2), (3) and (4).

Then, min(T™) is {p(1,2),p(2, 1), ¢(1),(2), 7(f(1))} and so, Q7 becomes (1), (2), (3.1),
(8.2) and (4. '

Qp has only one stable model which is equal to the unique stable model for T, that is,

{p(1,2),p(2,1),q(1), 7(f{1)}}-

Now, we define an abduetive framework.

Definition 5 An abductive framework is a pair (T, A) where A is a set of predicate
symbols, calied abducible predicates and T is a set of rules each of whose head is not in
A.

We call a set of all ground atoms for predicates in A abducibles. As pointed out in [5], we
can translate a program which includes a definition of abducibles to an equivalent frame-
work that satisfies the above requirement. Moreover, we impose an abductive framework
to be range-restricted, that is, any variable in a rule’of a program must occur in non-
abducible positive literals of the rule.

Now, we define a scmantics of an abductive framework.

Definition 6 Let (T, A) be an abductive framework and @ be a set of abducibles. A
generalized stahle model M(©) is a stable model of T U {H «— |H € ©}.

3

We say that (T, 4) is consistent if there exists a generalized stable model M (9] for some
©. The similar proposition to Proposition 1 holds for an abductive framework.

Proposition 2 Let (T, A} be a logic program and 1"~ be an abducible-and-negation-removed
program obtained by removing all negative literals and abducibles in the body of each rule
in a program T. We define o relevant ground program {Ir for (T, A} as follows:
{r = {H — Bh-“'rBi'rCi:'“:c;h"‘“Al! ceey ™Am € HT'
B,emin(T~) for cach i=1,....k and C,...,C; are abducibles.}
Then, a set of generalized stable models for (1", 4} is equal to a set of generalized stable
models for {0, A).

3 Query Evaluation for Abduction

Before showing our query evaluation method, we need the followmg definitions. Let [be
a literal. Then, [denotes the complement of .

Definition 7 Let T be a logic program. A sel of resolvenis w.rl. a ground hieral | and
T, resolve(l,T) 15 the following sel of rules:
resolve(l,T') =
{{L—1Ly,..., L8] | is negative and
HeLi, Ly eT and I = Hf by a ground substitution gyu
{(H =T, . Lict, Lijty ooy L)
HeLi,...Ly € T and | = L;# by a ground substitution 8}

The first set of resolvents are for negation as failure and the second set of resolvents
corresponds with “forward” evaluation of the rule introduced in [8].

Example 2 Consider the following program T.

p(1,2) < p(2,1) (1)
p(2,1) = ~q(2) (2]
g(X) — p(X,Y), ~q{Y) (3)

Then, resolve(~q(2),T) is a set of the following rules:

pl2,1) with the literal in the body of (2)
L+~ p(2,¥),~q(Y) with the head of (3)
g(X) — p(X,2) with the second literal in the body of (3)

Definition 8 Let T' be o logic program. A set of deleted rules w.r.t. a ground liferal |
and T', del{l,T'), is the following set of rules:
del(l,T) = {{H —Ly, ..., L;)0|)

HeLy,....Ly €T and { = L;# by a ground substitution ¢}

Example 3 Consider the program T in Erample 2. Then, del(g(2),T) 15 a set of the
following rules:

p(2,1) — ~q(2) from (2)
g{X) «— p(X,2), ~q(2) from (3)

Ohur query evaluation procedure consists of 4 subprocedures, derwe(p, A}, literal_con(l, A},
rule_con{ R, A) and deleted.con{ R, &) where p is a non-abduaible atom and A is a set of
ground literals already assumed and [is a ground literal and / is a rule.

derive(p, A) returns a ground substitution for the vaniables in p and a set of ground
literals. This sct of ground literals is a union of A and literals newly assumed during
execution of the subprocedure. Other subprocedures return a set of ground literals.

The subprocedures have a select operation and a fail operation. The select operation
expresses a nondeterministic choice among alternatives. The fail operation expresses
immediate termination of an execution with failure. Therefore, a subprocedure succeeds
when its inner calls of subprocedures do not encounter fail. We say a subprocedure succeeds
with (0 and) A when the subprocedure successfully returns (£ and} A.

The informal specification of the 4 subprocedurcs is as follows.

1. derive(p, A) scarches a rule R of p in a program T whose body can be made true
with a ground substitution # under a set of assumptions A. ‘lo show that every
literal in the body can be made true, we call derive for non-ahducible positive
literals in the body. Then, we check the consistency of other literals in the body
with T and A. Note that because of the range-restrictedness, other literals in R
become ground after all the calls of derive for non-abducible positive literals.

2. literal con(l, A) checks the consistency of a ground literal [with 7" and A. To show
the consislency for assuming [, we add [to A; then, we check the consistency of
resolvents and deleted rules wrt. [and T.

3. rule.con(R, A) checks the consistency of a rule R with T and A, Il R is not ground,
we must check the consistency for ground instances of R. Bul by Proposition 2,
it. is sufficient to consider every ground instance Rf in Qlpyqry. We can prove the
consistency by showing that either a literal in body(R6) can be falsified or body(120)
can be made iruc and head{ Af) consistent.

This procedure can alsa be used to check integrity for rule addition.

4, deleted con(R, A) checks if a deletion of R does not cause any contradictions with
T and A. To show the consistency of the implicit deletion of K, it is sufficient to
prove that the head of every ground instance R@ in Sy * can be made either true
or false.

Thanks to the range restrictedness, we can compute all ground instances of a rule A
(if they are finite) in Q0 {or Qryry). For this, we compute every SLD derivation of a

SNote that Qpyppy = O since R is an instance of a rule in T.

-
i

derive(p, A} p: a non-abducible atom; A: a set of hterals
begin
if p is ground and p € A then return (g, 4)
elseif p is ground and ~p € A then fail
else
begin
select R & T s.t. head{ R) and p are unifiable with an mgu ¢
if such a rule is not found then fail
Hpi= A, 6 =10, By i= pos(HE), 1 =
while B, # {} do
begin
take a literal I in B,
if derive(l, &) succeeds with {o;, &i41)
then 6,4, = 8,0;, Biy1 = (B; — {1})o:, 1 := 1 + 1 and continue
end
&= -Ig.l'
for every ! € neg(R8) U abd(Ré) do
begin
if literal_con(l, &) succeeds with A4,
then ¢ := i 4+ | and continue
end
if literal_con(pé, A;) succeeds with A’ then return {4, A')
end

end {derive)

literal_con(i, A} I: a ground literal; A: a set of literals
begin
ifle M then return A
elseif [= | or I € A then fail
else
begin
Mgr={l}ui,i:=0
for every Il € resolve(l, T} do
if rule_con(f, A;) succeeds with A,
then ::= 14+ 1 and continue
for every R e del{l,T) do
if deleted_con(K, ;) succeeds with A4
then 1 := 1+ 1 and continue
end
return A;
end (literal.con)

Figure 1: The definition of derive and literal.con

rule_con(R, A} R: arule; A: a set of Iiterals
begin
Ap=A,1:=0
for every ground rule Rf € Qyyr do
begin
select {a) or (b)
(a) select | € body(RE)
if | & pos(RA) U abd(RE) and literal con(l, A,) sncceeds with Ay
then i :—= i+ 1 and continue
elseif | € neg(R#) and derive(l, A) succeeds with (g, 811}
then i := 1+ 1 and continue
(b) A? = A =10
for every | £ body(iif) do
begin
if I € pos(RE)
and derive(l, Al) succeeds with (g, A7)
then 7 := j + 1 and continue
elseif | € neg(RE) U abd(R}
and literal_con(l, A?) succeeds with AY
then j := 7 4+ 1 and continue
end _
if hteral.con(head(HB), A7) succeeds with &4
then i := i+ | and continue
end
return &
end (rule.con)

deleted _con{fl, A} R: a rule; A: a set of literals

begin
Mpi=A,1:=1D
for every ground rule Rf € iy do
begin

select {a) or (b)
(a) if derive(head(RO}, &;) succeeds with (¢, Aip)
then i := 14 | and continue
(b) if literal_con(~head(RE), A;) succeeds with Ay,
then i 1= i 4 1 and continue
end
return A,
end (deleted con)

Figure 2: The definition of rule.con and delefed_con

query which consists of all non-abducible positive literals in body(R) to the abducible-
and-negation-removed program T~ (or (T'U {R})7).

Example 4 Consider T and the second resolvent of resolve(~q(2),T) in Ezample 2. Let
B be the second resolven! and Ty be T U {I}. In order to obtain possible ground instances
of B in Cy,, we compule every SLI derivation of a query T = p(2,Y} to the program T .
Then, since only the returned substitution from SLD derivation is {Y/1}, we have the
following ground instance in {17, for f:

1l pl:z' IJSNQ{]-:'

Now, we describe in detail the subprocedures in Figure 1 and Figure 2. In Figure 1,
¢ denotes empty substitution and 0,0; expresses a composition of two substitutions #;
and o;. Also, we denote 2 set of non-abducible positive hiterals, non-abducible negative
literals, and abducibles {either negative or positive) in a rule 1 as pos(fi), neg(&) and
abd{).

If we remove deleted-con and do not consider resolvents obtained with “forward”
evaluation of the rule, then this procedure coincides with that of Kakas and Mancarella
[3). That is, our procedure is obtained by augmenting their procedure with an integnty
constraint checking in a bottom up manner and with an implicit deletion checking.

We can show the following theorems for correctness of suceessful derivation and finite
failure,

Theorem 1 Let {T', A} be a consistent abduciive framework. Suppose derive(p,{}) suc-
ceeds with (6, A). Then, there erists a generalized stable model M(8) for T such that ©
includes all positive abdueibles in A and M([©) = pb.

This theorem means that if the procedure dertve(p, {}) answers “ves™ with (6, A), then
there is a generalized stable model which satisfies pf. However, we cannot say in general
that we make pf true only with positive abducibles in A, because there might be some
hypotheses which are irrelevant to a query but which we must assume to get consistency.

The following iz a theorem related to correetness for finite failure.

Theorem 2 Let (T, A) be an abductive framework. Suppose thai every selection of rules
terminates for dertve(p,{}) with either success or failure. If there erists a generulized
stable model M{(Q) for (T, A) and e ground substitution § such thal M(2) = pf, then
there i2 a seleclion of rules such thal derive(p, {}) suceeeds with (8, A) where @ includes
all positive abducibles in A,

This theorem means that if we can search exhanstively in selecting the rules and there

iz a generalized stable model which satisfies a query, then the procedure always answers

“_}"ﬁ” .

With this theorem, we obtain the following corollary for a finite failure.

La

derive(q(V),{})
select q{V — p(V, Y1), ~q(¥1)
derive(p(V, Y1), {})
select p(1, 3} —p(2,1)
derive{p(2,1).{})
select p(2,1) — ~q(2)
lit.con{~q(2), {1)
TUfﬂMHPl 1)), {~q(2)})

O =1 Sh O b 22 b3

lit-con(p(2,1), {~q(2)}) ;
rufc_.r:mI{{p (1,2)), {p(2,1), ~q(2)}) 10
lit-con(p(l, 2), {p(2, 1), ~q(2)}) 1
lit_con(q(1), {p(1,2),p(2,1),~4(2)}) 13

rftf-cm [q{X:]*—P{J‘n’nl} ~g(1}),{g(1),p(1,2),p(2,1),~q(2}}) 14

rule.con{{g(2) « ~4(1)),{q{1),p(1,2),p(2,1), ~q(2)}) 15
rulecon((L o P[E,YJL ~q(Y3)}, {a(1), p(1,2), p(2,1), ~a(2}}) 16
rule.con{{g(Xy) — p(X4,2]), {(1),p(1,2),p(2,1), ~a(2)}) 17

HLGW{F{Z ”1 {?{1}1 p(1,2),p{2,1}, ”‘I{?}}} 18
H]’.-Cﬂﬂ{ﬂ{l,?), {QEI}:pELg]:p{E! 1]:""'?':2}}} 19
litcon(~q(2), {q(1),p(1,2), p(2, "“fI (2)}) 20
litcon{q(1}, {g(1}, p(1,2}, p(2 1"1 (21 2

ANSWER
V =1 under {g(1),p(1,2),p(2,1), ~g(2}}

Figure 3: Calling Sequence for derive(g(V),{})

Corollary 1 Let (T, A) be an abductive framework. If derive(p,{}) fails, then for every
generalized stable model M{O) for (T, A) and for every ground substitution 6, M(©) | pé.

When the procedure derive(p, {}) answers “no”, there is no generalized stable model
which satisfies the query. Also, this corollary means that we can use a finite failure to
check if the negation of a ground literal is true in all generalized stable models since finite
failure of derive(p, {}) means that every generalized stable model satisfies ~p.

4 Examples

Example 5 Consider the program T in Ezample £ and an abductive framework (T,0}.
Then, Figure 3 shows a sequence of calling procedures obtained for derive(q(V),{}).

In Figure 3, we firstly search a rule whose head is unifiable with q(V) (Step 2) and try
to make the body of the rule to be true (Step 3~20). There are two literals in the body,
p(V,Y,) and ~g(Y;). We find a ground substitution for p(V,Y;) (Step 3~19) and then
show consistency of ~g(2) (Step 20).

11

derive(f(1),{})
select f(t) « b(t),nd'(t)
derive(b(t), {})
selact b{i} —
Lit_eon(b{t), {})
rule—con((f(t) — nb'(t)), {b(t)})
lit_con(~nbt{1), {b(t)})

=1 Th Ih o= L3 b2

del con({ f(t} « b(t),nbt (1)), {~nb! (1), b(1}}} 8
derive(f(t), {~nb'(t). B{1)}) Q
select f{t) «— b(t),nbl(1) 10
derive(b(2), {~nb!(1), (1)) n
lit_con(nd(t), {~nbl(t),b{t)}) = (ail (back to 8} 12
lit_con(~f(t), {~nbl(t), b(1}}) 13
rule_con{{ L « b{t),nd* (1)), {~f(1}, ~nb' (1), ﬁl[t}}:l 14
delcon((L — f(t),nf(t)),{~f(t), ~nb(t).b{(t)}) 15
lit_con({nb(t), {~f(t), ~nbl(t),b(t)}} =fail {back to 6} 16
lit-con{nbl(t), {6(1)}) 17
rule-con((f(2) « b(t)), {nd"(),4(t))) 1S
lit_con(f{1), {nbi(1), b{1)}) 19
rule_con({L «— nf(t)), {F{t),nbt (1), b(t)}) 20
lit_con(~ £ (2), {/(£), mbl(2), (1)) 21

rule_con([L «=), {~nf(t), f(£),nbl(t),b(t)}) —»fail (back to 20) 22

derve(n f(t), { f(t), nb (1}, b(t)}) 23
select nf(t) — 24
lit_con(n f(t), { /(1) nb (2}, b(2)}) 25
rule_con((L — f()), {n (1), F(£),nb(£), b(2)}) —>Fail 2%

Figure 4: Calling Sequence for dertve(fly(tweety), {})

While finding a substitution for the first literal p(V, Y1), we check consistency of ~g(2)
(Step T~17). To show its consistency, we check three resolvents for ~g(2} shown in
Example 2 (Step 8, 16 and 17).

Thiring the check for the first resolvent, we check implicit deletion of an instance of
rule (1) deleted by ¢(1) {Step 14) in order to show consistency of g(1) (Step 13). In this
case, we have a non-ground deleted rule and so, we compute every ground instance in a
relevant ground program. There is only one such ground rule (g(2) « p(2,1}, ~g(1)) and
since ~¢(2) has been already assumed, Step 14 succeeds,

Similarly, at Step 16 and 17, we have non-ground rules and so, we compute ground
instances in a relevant ground program. Such instances are {1 — p(2,1),~g(1)) for Step
16 and (g(1) — p(L,2)) for Step 17. Both steps succeed since g(1) and p(1,2) has been
already assumed.

Finally, we check consistency of (1) (Step 21) and get a ground substitution of {V/1]}
for g(V).

Example 6 Consider the following program T and an abductive framework (T, {normal _bird’}).

Fly(X) + bird(X),normal bird'(X) (1)
bird(lweety) «— (2)
nm;_ffy[twsety} — {3)
Lo flylX), non_fly(X) 4)

Then, Figure § shows a sequence of calling procedures obtained for derive(fly(tweety), {})
by lefi-most depth-first search ®.

In Figure 4, we firstly try to search the rule for f{t) and find the rule (1) (Step 2} and try
to make the hody true. Then, we check consistency for one of the literal bt} in the body
(Step 5~15) and assume ~nbi(t} at Step 7. After showing consistency of ~nbi{t} {Step
7~15), we try to make the other literal nb'(t) in the body of the selected rule at Step 2,
but we fail {Step 16). Then, we backtrack and assume nb'(t) instead (Step 17). Since nb!t
is an abducible predicate, it is sufficient to show consisteney of nbf(t). However, to show
its consistency, we must show consistency of f(t) (Step 19). Unfortunately, contradiction
occurs by the integrity constraint (4) (Step 20~26) and therefore, we cannot conclude

(1)

5 Related Work

5.1 The procedure of Kakas and Mancarella

As stated in Section 3, il we do not check the consistency for implicit deletion and we do
not consider the “forward” evaluation of rules, our procedure is identical to that of Kakas
and Mancarella [6). Allhough “forward” evaluation of rules is used mainly to forward-
check the integrily constraint, it is also necessary for implicit deletion check. This is
because a rule might Le deleted by both an assumed literal itself; and also by other
literals derived from the assumed literal. Therefore, the whole procedure is necessary for
consistency checking of an abductive framework; and also of a general logic program even
without integrily constraints.

5.2 Integrity check method of Sadri and Kowalski

Sadri and Kowalski [8] propose an integrity check method by augmenting the SLDNF
procedure with “forward” evaluation of rules and consistency check for implicit deletion.
Although we use also the same techniques, our method differs from theirs in accumulating
hypotheses during integrity check. The technique of hypothesis accumulation enables us
to prove the eonsistency for addition of rules for a wider class of logic programs more than
with their method. For example, consider the following program:

p e~ (1)

SIn Figure 4, f, b, nb', nf and £ mean fly, bird, normalbird', non_fly and tweety respectively.

13

q 4= ~p (2)

To check the consistency for addition of p, they invoke a query — p and see if it finitely
fails. However, their procedure enters an infinite loop, whereas rule_con((p +),{}) of our
procedure succeeds in showing the consistency for addition because of the accumulation
of hvpotheses.

Moreover, their method guarantees consistency for addition of a rule not for every
general logic program, but for a limited class of logic programs which contain no negative
literals in the body of each rule. On the other hand, if rule.con(R,{]} succeeds, we
can guarantee that & is consistent with the current program even if it contains negative
literals in its body.

5.3 Poole’s Theorist

Foole [T] develops a default and abductive reasoning system called Theorist. Our method
differs from Theorist in the following points.

1. The basic language for Theorist is a first-order language whereas we use a logic
program. So, in Theorist, a contrapositive inlerence musl be considered, while in
our setting, it is not necessary. Instead of thal, however, we must consider the
consistency checking of imphcit deletion.

2. Assumptions in Theoris! correspond with normal defaults without prerequisites in
Default Logic, whereas in our setting, rules in a logic program can he regarded as
arbitrary defaults. So, our procedure deals with a default theory with only arbitrary
default rules and no proper axioms. '

6 Conclusion

In this paper, we propose a query evaluation method for an abductive framework. Our
procedure can be regarded as an extension of the procedure of Kakas and Mancarella by
adding forward evaluation of rules and consistency check for inplicit deletion.

We think that we need to investigate the lollowing research in the future.

1. In our method, a literal { for literal con(l, A) must be ground. This restriction
imposes a program to be range-restricted. However, if we can manipulaie non-
ground hypotheses, range-restrictedness is no longer necessarv. Therefore, we would
like to investigate a direct treatment of non-ground hypotheses.

2. We should investigate the computational complexity of our procedure and compare
it with our bottom-up procedure for abduction [4].

14

A cknowledgments

We thank Katsumi Inoue from ICOT, Bob Kowalski from Imperial College, Tony Kakas
from University of Cyprus, Phan Minh Dung from AIT, Chris Preist from HP Labs. and
anonymous referees for instructive comments.

References

[1] Manthey, R., Bry, F., SATCHMO: A Theorem Prover Implemented in Prolog, Froc.
of CADE'SS, pp. 415 — 434 (1988).

(2] Elkan, C., A Rational Reconstruction of Nonmonotonic Truth Mantenance Systems,
Artificial Intelligence, 43, pp. 219 - 234 (1990}.

(3] Eshghi, K., Kowalski, R. A., Abduction Compared with Negation by Failure, Proc.
of TCLP’89, pp. 234 — 254 (1989).

[4] Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic Programming,
Proc. of LP'8S, pp. 1070 - 1080 {1988).

[5] Kakas, A. C., Mancarella, P., Generalized Stable Models: A Semantics for Abduction,
Proc. of ECAI’90, pp. 385 — 331 {1990).

[6] Kakas, A. C., Mancarella, P., On the Relation between Truth Maintenance and
Abduction, Proe. of PRICAI'90, pp. 438 — 443 (1990},

[7] Poole, D., Compiling a Default Reasoning System into Prolog, New Generation Com-
puting, Vol. 9, No. 1, pp. 3 - 38 {(1891).
[8] Sadri, F., Kowalski, R., A Theorem-Proving Approach to Database Integrity, Foun-

dations of Deductive Database and Logic Programming, (J. Minker, Ed.), Morgan
Kaufmann Publishers, pp. 313 - 362 (1988).

9] Satech, K., Iwayama, N., Computing Abduction Using the TMS, Proc. of ICLFP 91,
pp. 505 - 518 (1991).
Appendix
We need the following definitions and lemmas to prove Theorems.
Definition 9 Let A be a set of literals. F(A) is a sef of rules defined as:
I.p—aifpeh or
2, Le—pif~pcA

Definition 10 Let T be a logic program. A set of ground atoms M is a finite grounded
model for T 1f the following are satisfied.

1M is a model of T

13

2. M can be written as a scquence of ground atoms (py,py,...,pn) such that each p;
has at least one ground instance of a rule in T, R;, such that head(R;) = p; and
pos(H;) C {p1,...,ps-1} where py,...,pj-1 are the element of the sequence up to j —1
and (neg{H;)N M) = 0. We say a scquence of such rules for a ground atom p; is a
sequence of supporting rules for p; and especially a sequence of supporting rules for
Py (B, Ha, 0 Ba), 18 & sequence of supporting rules for M.

We can prove the following lemma by extending {2, Theorem 3.8].

Lemma 1 Let T be a logic program. A set of ground atoms M is a fintte grounded model
Jor T if and anly if M is o finite stable model for T

To show Theorem 1, we need the following lemma.

Lemma 2 Let {T', A} be an abductive framework and Q¢ be a relevant ground program
Jor T and A be o set of hiierals such that F(A) 1= consistent.

1. Suppose derive(p, A) succeeds with (0, A") and let R be o set of rules in 07 which
are checked during the execution. Then, pas(A') {a set of positive literals in A')
is a generalized stable model M{Q) for (R U F(A), A) where © s equal to a set of
abducibles occuring positively in A’

=]

Suppose literal con(l, A) succeeds with A" and let R be ¢ set of rules in {y which
arc checked during the cxecution. Then, pos(A’) is a gencralized stable model M(Q)
for (RUF({1} UA), A where © is equal to a sct of abducibles occuring positively
in A

3. Suppose rule_con(R, A) succeeds with A" and let R be a set of rules in Qi py which
are checked during the ezecution. Then, pos(A'} is a generalized stable model M(0)
Jor (ROUF{A), Ay where © 15 equal to a set of abducibles occuring positively in 4.

4. Suppose deleted con(il A) succeeds with A and let W be a set of rules in (I which
are checked during the ezecution. Then, pos{A') is a generalized stable model M{@)
for (RUF(A), A) where © 15 equal to a set of abducibles occuring positively in A

Proof of Lemma(Sketch): Let @ be a set of abducibles occuring positively in A'. By
imduction of the number of calls of subprocedures during the execution, we can show
that pos(A’) is a stable model by proving that pes{A') iz 2 model of RUF(A U) (or
RUF({{}UAUB) for literal_con) and there is a sequence of supporting rules for pos{A’)
imRUF(AVE) (or RUF({{} UAUO) for literal_con). L

Proof of Theorem 1: Suppose derive(p, {}) succeeds with (#,A), but for every gen
eralized stable model M{Q) for (T" 4}, M(Q) ¥ F(A). By Proposition 2, for every
generalized stable model M{©) for (7, A), M{©) E F(A).

Let W be a set of rules in {y which are checked duning the execution. Let Ty be a
set of rules in B with a hiteral [such that | € A and ¢ A and let Ry be ® — Ry, Then,
every rule in T, satisfies the following conditions.

I

|. There exists a literal { . the body such that le A

9. Let the head be p. Then, p € A or § € & since deleied _com {or the rule has been
invoked.,

Let T, be a set of rules in (13 — T with a literal { such that leAorleAandlet Ty
be {3 — R — Ty. Ther, every rule in T} satisfies the following conditions.

1. For every literal [in the body, { § A and 1 & A since otherwise, the rule has been
checked.

9. Let the head be p. Then, p € A since if p € A, rule_con for the rule has been
invoked. -

By the above lemma, there Is a generalized stable model M@ for (R, A). From the
assumnption, there is no generalized stable model for {07, A) which subsumes M'(©').

This means that there is no generalized stable model for {R; U Ty, A) which subsumes
M'(@') since if there is such a model M", every rule in R, U Ty is satisfied by M" and
this contradicts the assumption.

Suppose there is a generalized stable model for (7%, A) then there is a gencralized
stable model for (R,U T, A) since there is no common ground atoms between Ty and 15,
and {Ry, A) itself has the generalized stable model M'{©'). This contradicts the above
result. Therefore, there is no generalized stable model for (Ts, A).

Then, any rule in O — T, cannot save inconsistency of (Tp, A} even if it is added since
any rule in {17 — 13 does not have any ground atom in I3 as its head. Therefore, there is
no generalized stable model for (017, A) and this contradiets the consistency of (T, Ay, 0.

Proof of Theorem 2: It is sufficient to show the following. O

Lemma 3 Let (T, A) be an abductive framework end & be a set of literals such that F{A)

i5 conststent.

1. Suppose that derive(p, &) terminates for every selection. If there exists a ground
substitution 6 and a generalized stable model M(@®) for (T U F(A), A) such that
M(O) k= pl, then there @5 a selection of rules for which derive(p, &) succeeds with
(8, A7) and M(0) | Fl4").

]

Suppose that literal_con(l,A) terminates for every selection. If there exists a gen-
eralized stable model M(O) for (T U F(A), A) such that M(Q) = 1, then there is a
selection of rules for which literal_con(l, &) succeeds with A" and M(9O) = F(A').

3. Suppose that rule_con(f,A) terminates for every selection. If there exists a gen-
evalized stable model M(©) for (T U F(A), A) such that for every ground rule,
R € Qyumy, M(Q) = I, then there is a seleclion of rules for which rule_con(R, A)
succeeds with A" and M{9) | F{A').

17

4. Suppose that deleted_con(R,A) terminates for every selection. If there exists a
generalized stable model M(©) for (I'U F({A), A}, then there is a selection of rules
for which deleted con(R, A) succeeds with A’ and M(0O) = F(A').

Proof of Lemma(Sketch): Since each subprocedure terminates with every selection
of rules, we can use induction of number of the longest calls of subprocedures among
selections.

For 1, if there is a ground substitution @ and a generalized stable model, M(©) which
satisfies p#, then there is a sequence of supporting rules in {Iy for pf by Lemma 1. Let
R be a rule at the tail of the sequence where is a rule in 7. By the assumption of
induction, we can show that for each literal in the body of R, we can have a seleclion
of rules which make each subprocedure call succeeds with a part of # and a part of A",
Therefore, we can construct a selection of rules and A’ for derive(pf, A) by combining all
of these selection of rules and hypotheses for each literal in the body. Then, we can lift
up this ground rule R6 to R

Others can be proved in a similar way O,

18

