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Ahbstract

The THS (Lerne pewriting svstem ) Working Gronp of ICOT! Las been study-
ing applications ol TRSs 1o the intelligent programming systen. s a resolt, we
have iimplenented & TRS generator called Wetes, an experimental ool with the
many funetions required for such a svstem. This paper describes the lealares
of e bis anel soveral r*x[}q'r'nrwrttr\ with it,

1 Introduction

A set of rewrite rules is called a term vewriting svstemn or [R5 The theory of
Tliss has a wide variety of both thearstical and practical applications. It provides
models for alstract data types. operational semantics for functional programming
languages, and inference cugines for automated theorem proving with equality,

The wntelligent programming svstem is an important research topic of Japau's Fifth
Cieneration Compter Syvstem (FGOS) Praject. A lot of evidence sugeests that the
study of TR5: will vield key technologies for the intelligent programming system, in
particular for specification, verification, and synthesis of programs. The Institute for
New Generation Computer Technology (ICOT) organized the TRS Working Group in
1953 to study the theory of TRSs and their appheation to the intelligent programming
svsbern,

Me bis 15 the Brst result of the activity of the working group. It generates a complete
TRS from a set of equations automatically, semi-automatically, or interactively. It is
also an experimental tool with the various functions needed for the study of TRSs.

The kernel function of Metis is the Knuth-Bendix completion procedure, signifi-
cantly improved with better capabilities and operability by the incorporation of many
new facilities, For example, Metis can provide us with several kinds of ordering meth-
odls of termus, but the user can orient an equation with little knowledge of the ordering
miethods and obtain an appropriate rewrite rule that does not violate termination of

MCOT stands for Institote for New Generation Computer Technology
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the TRS. If the equation cannot be oriented Lo either direction, Metis offers the user
several kinds of recipe. [t manipulates inequations as well as equations and provides
special handling of associative-commutative operators in the completion procedure.

Section 2 describes the basic concept of the TRS. Section 3 introduces the fea
tures of Metis in the general framework. and in Section 4, several concrete examples
illustrate how Metis actually works.

2 Preliminaries

[u thiz section. we will introduce the terminology and notation in this paper and
survey well-known properties of TRSs[10].

We will deal with finite sequences of e following two kinds of svmbaols (and
parentheses and commas [or ease of reading ):

(L) A finite set Foof function symbols, and
i) A denumerable set Vol cariabirs,

Wi assunwe the reader 15 tamiliar with the concepts of terms, ground ferms, ocenr-
rences, subfernes, substifubions. wnefiers, and most general unifiers. In what tollows.
we will denote the set of all terins constructed from F and Voby TOF V)L and the se
of all the gronnd terms constructed from F by TOF) The notation =] represents
a terin with « as its subternm. In this context. [s] represents a certain ocourrence of
AN 3[5]. Lhus. 1'[.-;’] denates the term obtamed by replacing the occurrence of = i
fa] with <" Simnlarlv. we will nse the notation fls..... .| to represent a term with
T s, sublerms, and f]=), ..., ' | for the term obtamed by replacing each s, 1o
Hsyooooos,] with &' Substitutions are denoted by the Greek letter 8, possibly with
subscripts and primes.

Definition 2.1 A term rewrddong system {TRS) 1= a Anite set of pairs I v of terms,
An element [+ v of o THS b5 called a rewrele rule

Definition 2.2 Let B be a TRS. A terin £ is sald to be reduced to another term w
with respect to K, il there is a rewrite rule [ — » and a substitution # such that
clf(l)] = 1 and o[#(r)] = u. denoted by | = u. We denote the reflexive transitive
closure of = by =3

Definition 2.3 Let {¢ be a TRS. Two terms w and ¢ are said to be convergent (with
respect to B) i there 35 a Lerm § such that « = ¢ and v = . A TRS 15 said to be
confluent if t; and #; are convergent for any t and for any two reductions ¢ =t and
t =1,

Pefinition 2.4 A TRS s said to terminate if there is no infinite reduction ¢, = ([, =
Definition 2.5 A term ¢ is said to be irreducible if there is no term u such that
t = u. An irreducible term s such that ¢ = s is called an irreducible form of 1 [with
respect to H) and iz denoted by ] §

If Ris a terminating TRS. then every term ¢ has an irreducible form t]. Moreover.
R is confluent if and only if the irreducible form ¢} is unique. In this case, the TRS
H is said to be complete and the irreducible form ] is called the normal form of L.
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Intuitively, a reduction step represents a computation step. Therefore. termination
ol a TRS means that every computation process finally stops and a certain result (au
irreducible form) is obtained. while confluence of a TRS means that the result is
unigue. For this reason. completeness plays an important role in the study of TRSs
(viewed as compulation mechanisis) and the normal form of a term is sometirnes
called the value of the term.

Historicallv, however. the concept of TRS appeared as a decision provedure of
word problems of wmiversal algebra, where the completeness 15 very significant as
well, because the deadability of the word problems depends on completeness of the
TRS ubtained by converting equational axios to rewrite rules.

Definition 2.8 An cqualivond theovy is a set of pairs £ = f:% of terms satisfving the
tollowing conditions.

(1)t =t for all terms £,

(2 IF £y =~ 1, then #, = f,.

(3 I8 =, ty = tq, then £, = 1.

(L) T8 8y ==ty then 8110 = 8(1,) for anv substication #.
(5 10ty ==ty theu s[t] = <[]y

Any set £ of pairs { = of tevms can be extended to an equational theory by
vonsidering the elosure TUE) of E with vespect 1o the above conditions (L)-(0H). I
other words, the equational theory T'{£) 15 the least congruence including £, The
set £ s called an (equational) ariom syste i of the equational theory T(E) and an
elernent of £ iz called an ariom.

The word problem in an equational theory T involves the determination of whether
t = £ for two arbitrary terms £ and {0 Given an equational theory T, suppose that
there is a complete TRS such that # ~ f, 3F and onlv if £ = ;] [or any two terms
fioand £, Obviously, such a THS can be viewed as an algorithm to solve the word
problem of 7. Knuth and Bendix devised a mechanical procedure to convert an axiom
system B to a complete TRS that solves the word problems of T7TE)[I1 T

Hefore introducing the procedure. let us define critical pairs.

Definition 2.7 Let [} — r; and {; — r; be rewriting rules and s be a non-variable
subterm of I; such that I, and s have a most general unifier 8. Let {; = ¢[s]. The term
t(1;) is called the superposition of {; on s in ;. The pair 8(c[r]) = #(r;) is called a
critical pair between [} — v and {; — vy

We are now ready to introduce the Knuth-Hendix completion procedure.
Procedure 2.8 Kuuth-Bendix completion

Step 0: Set £ to be the initially given axiom system. Set K to be empty. Go to
Step 1.

Step 11 I E is empty, the current value of H is the desired TRS. Otherwise, go
to Step 2.

“We uze the symbaol = for this purpose, and the symbol = i3 taken to mean syntartical identity
in this paper.
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Step 20 Hemove a paie f = u from £, I the rule t — w or u — f can be added to
H without violating termination. acquire it as a new rule and go to Step
3. Otherwise, stop: the procedure is unsuccessiul.

Step 30 Hemove all the rewrite rules { — ¢ from R such that either [ or r is
rechicible by the acquired new rule and append ! = ¢ to £ instead. Go to
Step 1

Step b Append the acquired rule to It Construct all the eritical pairs between
the acquired mile and all the rules in 2 {inchuding the acquired rule itself)
and append them to F. For each equation # = u« in £, find irreducible
foros £ and w] with respect to B.oand set { i~ ul [ 1£ ulf~ue £
to he the new £ Go to Step 1 g

I the procedure terminates successfully, the resulting # s a complete TRS to

solve the word problemn of T{E} for the initially given £

3 Term rewriting systern generator Metis

Metis is a TRS generator based on the completion procedure deseribed in the
previous section. It has a lot ol Tunctions reguired hefore, diring. and alter generation
of TRSs for a verv wser-friendly svstem. I this section, we will deseribe several
characteristic features of Metis.

3.1 Well-founded ordering of terms

As can be seen from the above description, a key point of the completion procedure
15 ensuring termmuation of a TRS. The standard wav to assure tetmination of # systetn
15 to introduce a well founded order on the objects of the svaten and show that the
operations in the svstemn always reduce the objects with respect Lo the ovdet.

Well-fonmded orders < on T(F. V) with the following properties are nsually used
on T HSs.

(1) IF ¢y = £, then #(¢,) < #(1,) for any substitntion §.
1:2] ) by = 1y, then -S[t|] - -‘l-[fz].

Property (1} is called stability and (2) monotonicity. If there is a monotonic and
stable well-founded order on T{F, V') such that ! = r for every rule { — r. it is obvious
that the THS terminates. There is a lot of rescarch for such ordering methods, such
as the well-known Dershowitz’s recursive path ordering[4]. The original version of the
recursive path ordering is defined on the set T{F) of ground terms. Here, however,
we extend the definition on the set T(F. V') ol all the Lerms.

Definition 3.1 (Recursive path ordering) Let < be a partial order on the set
of function symbols F. The recursive path ardering < of T(4.V) is then defined
recursively as follows:

(1} For a variable ¢, there are no terms ¢ such that { < o,
(2) For a non-variable term ¢ = g(ty.--- ., ) and a term s, 5 = ¢ il and only i

_4.—.-
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{2-1) there is j such that = =1, or
(2-2) s = f{=.- - 5,) and s; <1 for all ¢ and

(222} f = g and (s, . 35,) < {ty.---.t.). where 2 is the multi-set
ordering{3] induced by <

[ (2220 of the above defimtion, cmployment of the mlti-set ordering s nof
alwavs necessary. [ the function symbol f is varyadic (takes an arbitrary number of
argiments) aud the order of the arguments does not affect the value of the function
{for example. ¥ and |] representing finite sum and product), the multi-set ardering
is probably the most reasonable. However, il the function svmbal f has a fixed anty,
the lexicographic ordering is more snitable in many cases. There may be cases where
the kachinuki ordering(17] is the most appropriate,

Metis can handle anv of these three versions of the recursive path ordering. namely
onilti-set, lexicographic, and kachinuki. The user can employ arbitrary combinations
of them. function by function. As long as the lexicographic order is applied only
Lo function svimbols of fixed arity, any combination defines a monotone and stable
well founded order on TEF. V5 Moreover, if the underlying order < on £ is total and
the lexicographic or the kachinuki orderiug are emploved tor any function svinbol.
then it is a total ordering on the limited domaim T(F) of the ground termss o very
i.ulput’ti-llli PrOEerty as we shall see later,

Melis converts axioms Lo rewrite rules | — ¢ such that § = . Melis allows
the user to define the underlving partial order < on Finerementally during the
completion procedure,  If the user knows hittle about the above vrdering method,
Metis can suggest what ordering is needed on F'in order to orient an equation to a
certain direction. Thus. when both are possible, the user just has to decide in which
direction an equation should be oriented.

3.2 Associative and commutative operators

The weakest point of the Kuuth-Bendix completion procedure is revealed by equa-
tions that cannol be converted to rules withont violating the termination of the
TRY. The most tvpical example of such axioms is the commutative laws. such as
A+ Ii~ A+ A. Encounter with such an equation causes unsuccessful stop in Step 2
of the procedure. Melis has several countermeasures to deal with this situation. The
general measures will be described later.

It is clearly the commutativity of operators Lhat is the main source of the above
failure. In manv cases, comnmlative operators are also associative. Metis has a
specific countermeasure effective only againsi. the commutative laws combined with
ihe associative laws of the same operators. A function symbol is called an AC-
operutorif it satisfies the associative and the commutative law. Mefis is equipped with
an algorithm of special unification for AC-operators (called AC-unification) devised
by Fages[d] and can execute the AC-completion procedure based on Peferson and
Stickel's principle|15].

For example. if Metis is told that + is an AC-operator, then the axioms A+ B ~
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H+Aand (A4 B)+ ("= A+ B+ ') are acquired imphatly and AC-unification and
AC-reduction are activated for +. Thus, Melis can geperate 0 4+ ¥V 4+ (=(X + V) =~
{—X) 4+ 0 as a entical pair belween the same two rules (- X))+ X — 0 by AC-
nnification, since

(=X + X+ + (= X+V))=(=X]+0

and

X+ XN Y - N+ Y =204V +(—(X+Y))
[[it has the rule 04+ .4 — A the ahove eritical pairis reduced to V4 (= X +¥ )~ — X
by AC-reduction.

As shown in the above example. an AC operator is supposed to be a binary fune-
tion symbol and Mefes allows us to uze infix notation for binary function svmbols.
Inside Metis an AC-operator s treated as 1f it were varvadic, For example, the
term £, 4 -+ £, is converted to F{f ... fy) with a varvadic function symmbol +, in
whatever order the operator 4 i= applied to the arguments. The multi-set ordering
12 assumed to he the ordering method for AC-operators unless otherwise specified,
sinee the above trealment makes it the most reasonable ordering as mentioned in {he

previows sect o,

3.3 Orientation-free rules and S-strategy

There are iiany equations. other than commmtative laws. that cannot be converted
o terminating rules. The approach of incorporating special unification algorithms for
such equations has heen studied svstematicallv by Jonannaud and Kirchner[13].

A simple trick to handle non-orentable equations is mtroducing a new function
syinbol,  For example. if the equation A4 =~ A « A cannot be onented in either
divection. a new function svimbol square 15 introduced and the problematic equa-
tion is divided into the two equations 47 = square(A) and 4 = 4 =~ square{ A).
Thus. Metrs can contimue the completion procedure, since both equations can be ori-
ented Jell to right. This technigue seems to be too simple. but the effect is worth
implementation| 11 16].

A more radical remedy fur such equalions is adoption of orientation-free rules. This
remedy is called the unfailing completion procedure/l, 9). Metis is equipped with an
extended version of the unfailing completion procedure called S-strategy devised by
Hsiang and Rusinowitch[8]. The S-strategy has enabled Metis to manipulate not only
non-orientable equations, but also inequational axioms as well as equational axioms.

The S-strategy can be viewed as a kind of refutational theorem proving technigue

for systems of equations and inequations. Before introducing the S-strategy. we will
extend the concepts ol reduction and critical pairs and introduce the concept of
extended narrowing and subsumption. Let us fix a monotonic and stable well-founded
order < on T(F. V7).
Definition 8.2 A term ¢ 1s said to be reduced to another term u by an equation { = r
{or r~=1).1f t = w and there is a substitution # such that ¢[8{l)] = ¢ and cl#(r)| = u.
This reduction is called ertended reduction {by an equation) and is denoted also by
t=ujp
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Definition 3.3 Let !, ~ vy {or vy = 0 ) and 1, 2= vy (or vy =~ 1) be equations. Lef s
be a non-variable subterm of £, such that {, and s have a most general unifier 8. Let
L= cs]. WAL A 8} and (1) £ 8(r,). then the pair #(c[ry]) = #(ry) is called an
ertended eritieal pair between [y = v (or ry = L) and G = g {or vz = 13 )

If every rule [ — r has the property that | = r. the above definitions are natural
extensions of the ordinary reduction by a vule and the ordinary critical pairs hetween
rules. For example. if [ = r. the condition that # = w in reducing ¢ to v weakens
the rewrite power of the eguation { 2 r exactly Lo the same level as that of the rule
| = r, since = is stable and monotonic. Similarly, iF 4 = v and £, = r,. the set of all
extended critical pairs between equations Iy = v and [ = r; is equal to the set of all
critical pairs between rules {; — rp and 1, — ry.

Definition 3.4 Let [, ~ ry {or v, = ;) be an equation and {; 2 ry {or ry 2 1) be
an inequation. Let s be a non-variable subterm of I such that !y and & have a most
general unifier #, Let {, = ¢[s]. [THL) 2 #(r ). then the inequation #(cr,]) % dir;)
is said to be parrowed from 0 2 vy for vy %0 nsing y = 1y (or ry = 4]
Definition 3.5 An equation f 2= v s said to be subsomed by other equations {) = ry
for ry = ool =y, for e, = L there i a substitution # such that

BB = and BB ) =

Munequation £ w0 is sated to be sabsuied by another mequation [ 2 r (or + 2 0. 0f
there s a substitution # such that #(1) = ¢ and #r) = u

Unfailing completion 14 a modified version of ordinary completion emploving ex-
tended eritical pairs and extended reduction jnstead of the ordinary ones; and the
S-strategy can be viewed as the undailing completion with refutation by extended
NATTOWIE.
Procedure 3.6 (S-strategy) Suppose that a svsiem of equational and inequational
axioms is given together with an equation or inequation to be solved (called the target
Torrvnneda ).

Step 0: Set £ to be the given axiom svstemn plus the negation of the target formula
(Skolemized if necessary ). Set K to be empty. Go to Step |,

Step 1 If E is empty. the current value of /15 a complete set of equations and
imequations deduced from the axioms and the negation of the target for-
mula, in the sense that neither new equations nor new inequations can be
derived. Since R is also consistent, the target formula cannot be deduced
from the axioms. If £ s not empty, go to Step 2.

Step 2: Remwve an egqualion ! 2 v or ineyuation ¢ % u (called the ruling formula)
from £. Go to Step 3.

Step 3: If the ruling formula is an equation, move all the equations { ~ r and all
the inequations [ % r from H to E such that either [ or r is reducible by
the ruling formula and remove all the equations subsumed by the ruling
formula from K. If the ruling formula is an inequation, remove all the
inequations subsumed by the ruling formula from K. Go to Step 4.
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Step 1 Append the ruling formula to 1. Construct all the extended critical pairs
and all the narrowed inequations between the ruling fornmia and all the
equations aud inequations in K. Append them to £. For each equation
D= wor megquation § 2w i £, lind ieeducible forms 0] and w | with
respect to equations in K. If there is an iuequation f % « such that ¢] and
u ) are unifiable. then stop. A contradiction is detected and. therefore,

the target formmla s deduced from the originally given axiom system,
(Mherwise, det the new B be the set of equations 1o «] such that ¢]# u]
not subsumed by any equation in K and inequations 2 u| not subsumed

by any inequation i K. Go to Step |
e unhullug U.H:lplf tion differs from the 5 ~slrakeg uu.|1. e Lhat 1l does nob treat
non-ground meguations. If the ordering = is total on the set T{ ') of all the ground
terins. the S-strategy is logicallv complete and. therefore, so 15 the unfailing comple-

(ATRITH

4 Experiments

4.1 AC-Completion

Let s begin with purely algebraic examples. The first example is the word prob-
letrn ool vineg theory.
Example 4.1 Uit is given an A operator + and a binary operator = (not AC in
general | with the following axioms:

(o4 1=
(2 {=Ay<+ 4 =10
(M i = A+ (Bx(")
(Ll B+ = A0+ B+
9 As(F+ 0 =AxH 4 Ax
We have Wetis run the completion procedure in automatic mode.  Medis obtains
(A« Bye (= A= (Ba)and 04+ A4 = A as the first and the second ruling formulas
aiedd converts them to the rules (A= Bl (" — A« (B+(") and 04 A — A, respectively.
The third ruling formula {—A4) + A4 = 0 can be onented left to right by the recursive
path ordering., if 0 < + or 0 <= —. So Metis asks the user which should be introduced.
[METIS] -> k =
<< Knuth-Bendix (semiautomatic execution) >>
New ri1: (A*B)*C -> A=(B*(C)
New r2: 0+4 -> A
You can orient =A+A -> 0 by the following...
[1] o0 << +
(2] 0 << -
else exit
After selecting 0 < +, we have Metis continue the procedure.

Which 7 1
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[ 0 <¢ + is asserted. ]

New r3: -A+4 -> O

New r4: -(-4) -> A

New r5: ~{(0) => 0

You want to orient
[1]  A=(B+C) -> A=B+A*C
[2] A*{B+0) <= A+B+A*C
else exit

The sixth ruling formla is the left distributive law and it can be oriented i either
direction depending on the ordermgs on function svmbols. Since we instruel M fis
to convert it to the rule A« (B =07 — A B+ A= the svstemn antomatically
introdices + < * as the ordering on function symboaols,

Which 7 1

[ + << * 15 asserted. ]

New r6: A*{B+C) -> A*B+AxC
New r7: (A+B)*C -> A*C4+B*C
New r8: A+ -{(B+A) -> -B

[ + << - is asserted. ]

New r3: -(A+(-B)} -» Be(-4)

The ninth ruling forusba can be converted to the rule —{ A+ (- 8)) » B+ (-1}
if and onlv il + < —. So Mo introduces the ordering withont interact o
New ri0: -(A+B) -» -a+(-B)
Del 8
Dal r8#*
Del r9

New ril: A=0+A=E -> pj=B

New rl2: A0 -> 0O

Del ri1

Del rll=

New rli: O#A+B=j -> B=*A

New rid: O%A -> O

Del ri13

Del rli=

New r15: (=A)*B+A%B -> 0O

Which de you want te orient 7
[1] {-h)*B -> -A%H
[2] (-A)=B <- -A*B
else exit

selact no 7 1

[ - ¢¢ = 15 asserted. ]

New ri6: (-A)=E -> —A#*B

Del rib

Del rio=

New r17: Ax(-B)+A*E -> O
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New ri18: A#(-B) -» -A=*B
Del ri7
Del ri17=
The procedure terminates successfully, Here is Jhe resnlting complete TRS for the
word problem ol rings.
[METIS] -» lis all
<< state listing »>»
Me-- Ring ---"
operators:
+ / AC ( multiset ordering )
0o/ 0
=/
= / 2 ( left te right lexicographic eordering )
orderings:
{0} < "+« {#,-}
noM < {+,%,-}
{+,0F < "= < {*}
{+,-.0}F < &
equations:
Noe equations.
rules:
rl: (A*B)*C -> A=(B=*C)
r2: O+A -> A
r2%:A+0+B -> A+B
r3: -A+A -> O
ri3* A+(-B)+B -> A4+0
rd: -(-4) -> A
r5: -(0) -» O
r6: A*(B+C) -> A=B+AxC
r7: (A+B)*C => A*C+B#(
rid: -(A+B) =-> =A+({-E)
rl2: A=0 -> 0
rid: Q=4 -> 0
rl6: (=A)*E => -p%EH
rif: A=({=B) => =j=R

4.2 Refutational Theorem Proving

Several examples are taken from the theory of A-calculus and combinators[2, 7.
In the theory of combinators. the combinator K = AXY. X and 8 = AXYZ X »
2+ (Y » Z) (as usual we assume that symbols = standing for application of functions
are left associative) are calied basic combinators because all the A-terms without free
variables can be constructed from § and K only.
Example 4.2 Tt is well-known that the identity I = AX. X is represented by S+ K=K.
Metis is given the two axioms K* X Y = XY and S+ X Y+ Z = X+ Z+(Y + 7)) for

10
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K and S 1o derive the identity. The problem can be expressed as I1¥X. T+ X = X,
}ﬁn‘muwﬂqnsmﬁMMHM)HmemNIMm1A**Hﬂ]#$ﬂﬂ]ﬁlﬁth4ﬁdmn
fusetiom ),

[METIS] -» pro ss
<< prove formulas by S-strategy »>
Formula> somefi, all(x, i=x=x }).
Hew r1: A=$1(4) <-/-> £1(a)
Wew r2: k+*A%B -> A
New r3: A <-/-> $1(k=A)
New rd: s=i+B=C <-> A=Ox(B=*()
New rH: sxk*i=E -> B
g##R444 PROVED #dusuns
By e22: $1(s*k*A) =/= §1(s=k*A) (r1lrs)
[ i = s*k=A ]

OFP(s) + 17 found, 13 asserted.
Inequation(s): 6 deduced, 6 asserted.
Rule(s) : 3 generated, 3 remain.
Reduction : 1 steps,

Runtime : 2.082 sec

The tirst rubing formula is the target formula 4+ S0 2 56001 and the second
is the axiom for K, which is oriented left 1o right. The thivd formula is an extended
narrowing from the first using the second, sinee = K+ DeSHK« 1) # $1HK + Al
I'hee fourth is the axiom for 8. which could ot be oriented. Uhe fifth is an extended
eritical pai[‘ bretween Uhe fourth and the seconed, sinee SR s H=K= HJ"I: Ax ) = B,
Using this. a rontradictory narrowing 1s obtained from the fiest vuling formula. By
examining this process. we easily lind all terms of the form S+ K+ A are equal to the
wlentity function. and S+ K « K is werely an instance of such terins,

Example 4.3 Next, we have Mefis try to prove the ixed-pomt theorem: that there
is a Hxed-point tor any combinator if the combinators B = AXYZ, X w (¥ » Z) of
composition of functions and M = AX. X + X of sell application exist. Mefis is given
the axioms B= X *Y 7 = X« (Y« Z) and M+ X = X + X. The theorem can be
expressed as VRSP Fr e P = F
[METIS] =-» list all
<< state listing >>
#--- Fizxed Peint --="

cperators:

* /2 (*)

B /O

m/ 0
orderings:

No orderings.
equations:

el: m*A = A*A (axiom)

e2: bxA*B*C = A=(B«C) (axiom)



A Ohsuga and K. Sakai

rules:
No rules.
[METIS] -> pr =
<< prove equations by S-strategy »>
Formula> all(f, scme(p, f*p=p )).
New ri: $1s4 <=/=> A
New r2: m*=id <=3 A%}
New r3: m*e$i <-/-> %1
[ =/ 2 (left to right lexicegraphic ordering) is asserted. ]
New r4: b#a=B+C -> A#=(B=*()
New r5: m*b#*A+B -> h*(4=BE)
New r6: m*(b*A)}%B =-> A#{bxAxE)
New r7: m*(b*i=B) <-> A=({Bs(b*pxR))
#hisand PROVED #buunag
By ed1l: m*{(b*$1#A) =/= A*(b*$1+A) (ci1%r7)
[ p=n*{b*F1em) ]
CP(s) © 33 found, 26 asserted.
Inequation(s): 3 deduced, 2 asserted.

Rule(s) 5 generated, 5 remain.
Reduction ;4 steps.
Runtime : 4,341 sec

Metos finally tinds a contradictory inequation. The inequation e31 is from rl and
ri. sinee

M+{B«Sls Al =%1+{As(B+%ls 1)) 1o (Bs$l+A)
anel The role o7 as from o2 and . sinee
M+ B l+sHBi=B+AsHeiBs Al = A+« Bs 148

Examining this process of refutation shows us that M = (B # 51 « M) is the value
substitnted to the original vartable A in the ineguality obtained by the negation of
the target formula. In fact. it s a fixed point of 31, since

Sla(M+iBesl«M)j =M=+ (B35l «M)

4.3 Inductive Theorem Proving

Huet and Hullot have developed a method to prove inductive theorems without
explicit induction{12] using a modified version of the Knuth-Bendix completion pro-
cedure.  Their method is called inductionless induction and is effective for many
theorems which usuaily require explicit induction.

In order to use the method, ground terms have to be classified into two cate-
gories, namely. constructor terms which are always irreducible and constructed only
of special function svmbols called constructors, and non-constrector (erms which are
alwavs reducible and include a function symbol other than constructors. To prove
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an inductive theorem. we add the statement as an axiom and execute the comple-
tion procedure. The statement is an inductive theorem if the process succeeds to
completion without vielding any rules to rewrite constructor terms.

Metis is given an ordinary definition of the append operation for two lists and two
different definitions of the reverse operation of a list.
[METTS] -» list rule
<< rules listing »>>

“--- Append, Reverse, and Newrev ---

rules:

ri: append([],4) -> A (axiom)

r2: append([AIB],C) -> [Alappend(B,C)] (axiom)

r3; reverse(l[]) -» [] (axiom)

r4: reverse([AlB]) -» append(reverse(B),[A]l) (axiom)

r5: newrevi[],4) -» & (axiom)

ré: newrev([A|B],C) -> newrev(B,[A[C]) (axiom)

If we dbefine [ {rons) and [| (rel] as the constructors. then the above conrlitions

are satished . We add an equation vewree{ L |]) = reversel A and have Mefis execute
the conpletion procedies.
[METIS]-> pr 1
<< prove formulas by inductionless induction >>
Formula> newreviA,[])=reverse(a).
You want to orient
[1] newrevw(A,[l) -» reverse(h)
[2] newreviAi,[]) <- reverselA)
else exit
Which ™ 2
[ newrev << reverse is asserted. ]
New r7: reverse(d) =>» newravid,[])
You want to orient
[1] append(newrev(A,[]),[B]) -> newrev(A,[B])
[2] append(newrev(A,[]),[B]) <- newrev(A,[B])
elae axit
Which 7 1
[ newrev << append is asserted. ]
New r8: append(newrev(A,[]),[B]) -> newrev(A,[B])
(RP append(“newrev(A,[B,C])",[D]) = newrev([C,BlA]l,[D]) )
New r9: append(newrev(4,[B1),[C]} -» newrev(a,[B,Cl)
(RP append("newrev(A,[B,C,D])",[E]}) = newrev([C,BIA],[D,E]) )
New r10: append(newrev(A,[B,C]),[D]) -> newrev(A,[B,C,D])
(RP append(“newrev(A,[B,C,D,E]}",[F]) = newrev([C,BIA],[D,E,F]) )
By showing the formulas:

(RF appendinewrec{ A (B, C|).[D]) = newree([C. B|ALL[D]] )
(RP append{newrev( A, [B, (. D)) [E]) = newrev([C, BIA].[D,E]] )
(BFP append(newreel A BCUDUEN [FTY = newree((C.BIAL[D.E.F]), )

_13._
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Mrelis suggests that the infinite critical pairs may be generated and. therefore, the
procedure may not terminate. The general lorm of these forrmulas is

append{newrer( A B B[00 = newrev( By, ... By AL C])
and it can be redoced to
appe ned{newrver( A [ By B ) O] = seewrenlA B B, ().
This formula suggests that the lenuna:
append{ncwrer( AL B C)) = newreol Alappend{ B.[C]))

would he useful. we add it.

[METIS/INDUCTION]-> new 1

<< intreduce a new lemma >>

Lemma > append(newrev(i,B), [C])=newrev({Ai, append(B,[C])).

New ri1l: append(neuwrav(A,B),[C]) -> newrev{A, append(B,[C]))
#¥##Ren PROVED wosutdss

CP(s) .+ 10 found, 4 asserted.
Rule(s) : 5§ generated, § remain.
Reduction ! 24 steps.
Auntime : 2.765 sec

The completion terminares and. therefore, hoth the target statement and the
lemima inserted on the wav are proved to be ngduetive theorems.
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