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ABSTRACT

4 ynifier 15 a substitution that makes two teris syntactically equal.
I this paper. we diseuss a more semantical nnifier: au eguational
nnifier. which is a substitution that makes two terms equal modulo
a eongrience relation. As a resnlt we will mive s general procedre
that cmunerates a complete set of cquatioual nuifiers for & given
pair of terins nuder a given congrueuce.

1. Introduction

We assmue the reader has elemmentary knowledge ou universal algebra. in particnlar.

ou teru rewriting systews {see [Huet 30], for example ).

Let = be o congruence relation on terms and s, f be terms. A substitntion 8 15 called
a ~-unifier of = and t if <@ = t8. The set of all =unifiers of s and + are denoted
[F<.th. Let Visof) be the set of all the variables ocenrring in s or £, Sinee we are

ouly interested in substitutions for their effect on s and f in this paper. we regard two
wfiers as identical if they differ only on the variables not ocenrring in < or £, so that
we can avold the subtle treatent of the domains of substitutions. Accordingly. we
relativize all notions oun unifiers to Vi s, 7). For example, a unifier # 15 said to be more
general than another unifier ¢ under ~ (denoted # < @) if there is a substitution
such that {rf)ys =~ peo for any variable v € Vi t). A subset C of U[s.t) 1s said to
he complete if. for any @ € ['{s. 1), there exists a unifier # € ' such that §' < §.
Moreover, & complete subset O is called the minimum if # = ' for any #,6" € €' such
that # < ', We write @ = 8 if # < # and 8" < 8. Then, relation = i1s an equivalence
on unifiers and, if the minimum complete set exists, it 1s unigue up to = [Fages 86].

In the case of ordinary unification (or. more precisely. in the case that == is the identity
relation ). unifiability is decidable and the most general unifier always exists for any
unifiable pair of terms |[Robinson 63]. For a general rongruence ~. however, the



existence of the most general noifier s not guaranteed. lu this situation, a complete set
of =~ umifiers plays the role thar the most general unifier plays in ordinary unification:
a representative of all unifiers.

We enll # pair of terms an equation. As well-known, a set of equations presents a
congruence relation. Let R be a set of equations. First of all, we give a definition of
the congruence presented by ® in terins of reduction. A term i is reduced to another
term o' by R (denoted by« = u') if there is an equation (L.r) € R. a context ¢[.
aud a substitution # such that ¢[l8] = v and o[r#] = o', In other words, if a term has
a subtermn matched with the left hand side of an equation. then it is reduced to the
term obtained by replacing the snbternn with the right hand side. We write w < o' if
w=u'orw' = n Thew the congruence presented by R i defined as the reflexive
transitive closure of relation <.

In what follows. we assume that a finite presentation of congruence = s given. We
call problems conceruing ~-umfiers for such an congruence =~ equational unification
problems. The wain eguational nuification problems are the following.

(1) Is ~unifiability decidable?
{20 Does the aaninmn complete set of =-unifiers exist? Canoit be ennnerated?
{3) Ishere s finite complete set ol =fiers?

(4] Is there an efficient procedure to enmerate s complete set of =-unifliers”

It 1= wndecidable u general whether two given terns have a =-unifier. As for the
answers to these probicis on specifie sets of equations, there 15 a wide-ranged survey
by Sickman [Sickman 89) Phe resudt on AC-unification, m which the equation set
consists ondy of the associative and the commmtanive laws, seems to he the most
iuportant fronn a practical point of view, That 15, the minimum complete set of
ACamifiers always exists and it 1= finite and computable [Stickel 81][Fages 84][Huet
78],

In this paper, we address problem (4 for a general set of equations. A procedure is said
to be a complete equational unification procedure if it enumerates a complete set
of ~-nnifiers of given terins » aned £, 1t 1z clear from the definition that, for any terms =
and £, the set [T #h1s reenrsively enmmerable and complete. Therefore. enumeration
of U(s.f) is & comnplete {but not interesting ) equational unification procedure. What
15 iteresting s a wore efficient procedure than simple enumeration of all unifiers.

From a theoretical point of view, the minimum complete set may be the most mterest-
ing since it is unique and not redundant. However, there is no reality of computation
of the minimum complete set for the following reasons. First of all, the minimum set
may not exist. That is. there may be a complete set O of =~-unifiers with the following
property: for any # € C'. there is a unifier # € C such that 8" < # (that is, 8 < #, bur
# ¢ 8') |Fages 86). Even if the minimum set exists, there may be no procedures Lo
enuinerate its elements, Even if it 1s enumerable, it may need more cost to compute
than other {redundant) complete sets.



Several researchers proposed equational unification procedures based ou narrowing
[Fay 79] and basic narrowing [Hullor 80][Bosco 87]. under the assumption that the given
set of equations {viewed as left-1o-ight rewrite rules) s confluent and terinating.
These are efficient. bur the assinption is seldom satisfied in actual cases, Gallier and
Snyder proposed a uuiversal equational unification procedure [Gallier 87]. but it does
not seem efficient enough for actnal applications.

We propose another general procedure and prove its completeness. We confirmed that
it has little redundancy (and. therefore, hopefully efficient ] in many cases by actual
implementation and experiment usiug simple but real mathematical problems. We do
not diseuss the implementation details in this paper. but Examples 4.1 and 4.2 show
supne watenal of expernnent.

The procedure is based ou a combination of the Kimth-Bendix completion [RKouth
70][Huet 81 {or. more precisely. completion without failure |Bachinair 27]) and nar-
rowing., The procedure applies uarrowing to « and t. while construeting a {possibly
infinite) coufluent and terminating set of cquations {viewed as rewrite rules). Sinece.
as shown in [Huet 81] and [Bachmair 87, & confluent and terminating set can be
ohtained virtually even if the comwpletion process does not terminate, the narrowing
process eventually ewunerates a complete set of unifiers. Moreover, sinee the proce-
dnre is an extension of the Kunth-Bendix completion. it may obtain a finite confluent
and termivating set o the way of equational unification. Onee such a set 15 obtained.
the suhsequent process hecomes ordinary nasrrowing. Therefore, Fay's result [Fay 79]
is viewed as o special case.

The essential idea i= commmon with the refutational theorem proving in first-order
logie with equality proposed by Heang and Rusinowitch [Hsiang 87 [Rusinowiteh 83],
The purpose of this paper 1= nor to claim onginality of the idea but to clain its
naturality and effectiveness and to give a proof of its completeness from the viewpoint
of equational unification.

2. Inference rules for equational unification

In the following discussion, let < he a fixed strong simplification order on terms,
namely. a simplification order [Dershowitz 82] which is total on ground terms. We nse
the lexicographic subterm ordering [Sakai 84| in the examples as such an order. In the
following definitions. we assume that given terms and equations do not have common
variables for simplicity of diseussion.

First we change the concept of reduction by set of equations. Usually, as defined in
the previous section. when an cquation is viewed as a rewrite rule, it is assumed to be
used from left to right only. However, we do not assume this any longer, that is, an
equation is used as a rewrite rule in both directions. Instead, we control the direction
of rewriting hy order =, For this definition of reduction. it is simpler to consider an
equation as an unordered pairs of terms. Therefore, from now on, we regard equations
(I.r) and {r.{} as the same,

To be precise, the definition of reduction is the following: a term u is reduced to
another term o' {denoted « = u') if W' = u and there is an egquation {LT‘} (or its



. . L . ;
equivalent. {r 1)), a context ¢f]. aud a substitution o such that cfle] = v and efro] = v
Let ns denote the reflexive transitive syvinetric closure of = hy =" It is a routine to
verify that =" is o cougruence relation.

This above reduction has somewhat different properties from the ordinary left-to-
rght reduection. First, since = s well founded [Dershowitz 82][Sakai 84|, it is always
terininating.  Second. congruence =' may be weaker than the congruence relation
~ presented by the given set of equation. For example. let us consider equation set
{{r+y. y+r}}. Then, reduction = is not terminating in the ordinary sense { defined in
the previons section) sinee u+u’ = w' +v = v+’ = u'+u = andv+w #* w4
for auy variables ¢ and i sinee neither ¢ 40 < w4+ v nor w0 <0+

Tl worad J_;ur:-'!;lfrlu wvolves the decision of no =" Taut ~. However, in ILLATLY Casces. we
can asstume that terms are ground without loss of generality by substituting fresh con-
stants to variables in the terms. For ground terms. the symmetrie closures £ coincide
in hoth definitions of reduction since = s total and. therefore. so do congruences ~
ane =,

Next, we define narrowing, which s somewhat modified of that by Fay [Fay 79| as well.
A terin s said to be narrowed to another term o (denoted o = 0"y if there are a
uon-variable subterm ug of 1, an equation (L r) such that np# = 16 and o £ w = o[rd,
where v = o[uy] and # 15 the most general vuifier of wy and L I necessary, we sullix the
et general wofier. for example. as v <=y o, In what follows. we discuss narrowing
of o pair of terts, A pair is narrowed to auother pair if owe of the ternis is narrowed.
To b precise, notation {uy. ug) =y (u], 0h) means that either vy w4 o) and vzf = u;.

[ [
or wil = u| and vy —p u;.

Let us extend the definition of eritical pairs [Konth 70] as well. Let (I ry) and (5.org)
be equations and o be a non-variable subterm of [, unifiable with 7,. If L1# £ ry# and
1,8 £ r:8. then pair {r|r;|8.r:8) iz called a eritical pair. where l, = ¢ju| and # is the
st general wnifier of ) and v,

Now. we give a wiversal equational nmfication procedure, which mputs a set R of
eruations and terms s, f and outputs ~-unifier of 5 and # for the congruence = pre-
seuted by R Ie is given below in the form of inference rules.

(E R, G.I7)
(EU{{uy uadb ROGUTT)
(EU {{u).u2)}.R.G.U)

E-reduction: — uy = u!, by an equation in R

(EU{{u.ub)} R.G.TT)
f._._E_LJ f{lucu}} RGO
(E.R.G.U)
(EU{{ujuap}. R.G.U)
(E.RU{{uy,u)} .G 1)
(E.RG U {{y,uz.0)},07)
(E.R.GU{(uy. uz, 8, (v} ul o)} 17)

E-gineratiowu: {1y w2} is & critical pair between equations in R

E-deletion:

H-generation:

G-generation:



iy, ue) =g (6. ud) by an equation in R
(E.R.GU {{u.un 8}, U}

(E.R.GU {{uy,ny.8)} .U U {808
# is the most general unifier of u; and vy

[ -generation:

Each inference rule expresses operation to transform the quadraple above the horizen-
tal line to the quadraple below. Both E and R are sets of equations. ( is a set of
triples (1y. 1. 8) (called goals) where «y and v, are terms and # iz a substitution. We
regare triples (. ws, 8) and {ny uy. @) as the sane similarly to equations. ["is & set
of substitutions. At the heginning of the procedure, these are set as follows:

E=R R=0. G={(s.t.e)}. U=0

where ¢ denotes the identity substitution, The procedure enmmerates ~-unifiers of «
and t as elements of U

When one of the inference rules is applied, a guadruple (E. R.G.1U7) 15 transformed
to auother quadmple (E'. RGN0, denoted by (ELR.G.U) F (E' RGN I
necessary. the nmne of the applied inference rule are suffixed to symbol B Let

|:ﬂll|. Ru.f;::- I-|| :l |_ ‘ E|. R|.(.-l'| ' [-| } I_ |:E_§-Hj (;;-Ir-;} F---
be a sequence of applications of the inference rules. We denote | )7 E, by E . Lz, R
v R 47, G by G and Jimy U by U An inference sequence is called fair. if
it satisties the following conditions.

(1) Anv entical pair hetween equations in Ko is contained in Eo .

(2} UZ, N2, E, — 8. In other words. any equation in Fo i removed from E
eventually hy F-reduction, E-deletion. or R-gencration.

(3} Auy goal obtained from a goal in G, and an equation w R, by G generation is
contained in (...

(4} Any substitution obtained from a goal in G by U7 generation is contained in

e

We claim that any fair inference sequence can enumerate a complete set of ~-unifiers
as U, .

Example 2.1

Consider equation set ® = {(z x z,22)}.{1 x y,y)} of equations and terms s = z* and
¢ = 1. where < is the lexicographic snhterm ordering based on total order 1 <*< x



on the function svinbols, Then. the following s a fair inference sequence.
(Ey = {{rxra® (1T xy oy} Ry =0.Gy = {{z%. Le)}. Uy = 1)
(Ev —{{lxpglh By = {{r <, 2®) .Gy = Go. Uy = )
(E, =01, =R U{{1xyy) )G, =G, =W
(Ey = {({1°. 1)} Ry = By Ga = Go. Uy = 1)
=W Ry =R, u{{1I11}}.Gy =G0y =)
~ B Ry = By Gs =Gy UL L[/ U = @)
=0.Ry = B;,.Gs = G5. Us = {[1/:]})

"R generation
F R generatioll
"E -generation
"R gfnf'ral:.iun[ E,
el generation (£5
F r—gﬂleratimlt Ey
Thus. ~-unifier [1/z] of « — 2% and + = 1 15 obtained as an element of Uy in the

above sequence. where notation [1/z] expresses the substitution # such that -6 = 1
and vf = for any variables ¢ other than .

3. Completeness of the unification procedure

First of all. we prove the sounduness of the procedure given in the previous section.

Theoremn 3.1

Let
{:Rhlﬂ- {':-‘-‘-’-f}ln-lﬂ] = {.Eq]..Ru..Gq].I'u] F [E].Rl.Glh ['1 ] b‘ |:E_r1 R;- {;;,i'] I e

be an inference sequence. Then, any element of U 18 an ~=-unifier of < and 1.

Proof: Let =, be the rongruence relation presented by E, U K. Then it 1= easy fo
prove the following by mduction on o

(2} Forany (v n,.8) € G, os# =~y and #6 ~ u,y.
(3] Foramy & c L', s6 ~ 18, .

The proof of completeness of the procedure consists of two parts. First, R s proved
to be contluent by evidence transformation method [Bachmair 86]. Second. narrowing
is proved to he able to trace any rewriting by R,

Hereafter. we use svmbols = to denote reduction in the new sense defined in Section
2, On the other hand, we use syinbols & to denote the symmetric closure of reduction
in the old sense defined in Section 1.

Let R be a set of equations, and ¢ and ¢' ground terms such that g =~ g'. Theu. from
the definition, there is a finite sequence of terms

g=go B g e S gn=4.
Let us define sequences of this form in a more general framework. A sequence g =
Go=10122 - Smgm = ¢' is ralled an evidence of g = ¢' by E and R, if each ¢; is a
ground term and =; is one of the following symbols:



{1} <. which indicates that gi—; & g by E.
{7y <=, which indicates that ¢; = g,-, by f.
(3 =, which indicates that g;_; = g; by H.
An evidence is said to be normal if it has the following form

g=gobm = D gua 2 heg, e edE=nq=9 (mz20nz0)

Now, we will define the weight of an evidence, First, the weight w(g=g") of each step
g=g" of an evidence is defined as follows:

wligegd)=le.d'l. wygsdi={'} wa=g)={g}

where {g.¢'}. {g'}. and {g} are not sets but multi-sets. and are compared by the multi-
set orderiug [Dershowitz 79]. The weight of an evidence is defined as the wulti-set
consisting of the weights of all the steps of the evidence, Note that, since the weight
of a step is a multi-set, the weight of an evidence is a doubly-multi-set (a multi-set
of multi-sets of terms). The set of the weights of evidences 1s well-founded since the
hase order is well-founded. Let us denote the order also by <.

Theorem 3.2

Let

i Ey = ]?RU =W G, U F(ECR.GLT =L ES. Rg.{rﬂg,[fz} Fo---
be a fair inference sequence. Then. R 1w o confluent set of equations for o wor. i
ground ferma.

Proof: Tt is sufficient to prove that, for any gronnd terms g and ¢' such that ¢ >~ ¢'.
there exist a normal evidence of g ~ ¢' by E and R (Since the evidence 1s normal.
it expresses reduction of g and ¢' to the sine term by Ra.) Let g and g’ he arbitrary
ground terms such that ¢ = ¢'. Then, there is an evidenee of g = ¢' by Ey and [,
which is also an evidence by E and R, of course. Let § be an evidence by E aud
R with minimal weight. We prove that ¥ is normal. First we prove that § contains
no steps of the form

clu 8] & clulb A

where (i, u;) € E, for some 1. Suppose that such a step exists. From fairuess
condition (2), for some j such that ¢ < J. equation {u),us) must be deleted from
E,: that is, inference rule E-reduction, E-deletion, or R-generation must he applied
to {u;, uy). If it is E-reduction, {i;,u) € E, {or {(n.uy) € E;) for some « such that
wp = u {or ny = w by R;). Therefore. by replacing the step of form {A) with two
steps

clui8] & club| < clusf] (or cfuy 8] = clud] < cluafl),

we can obtain a new evidence §'. Comparing the weight of the steps, that is. {c[u 8],
cluzBl} in § and {e[u,8]. c[ubl}, {clusb]} (or {c{u,8]}, {c[ub]., cluzb]})in §'. we can casily

see that w(¥'} = w(9), which contradicts that § has minimal weight. If the inference
step is E-deletion, u; must be equal to uy. Therefore, by simply removing the step of



form (A ). we can obtain a new evidence, which again contradicts that § has imimimal
weight, If the inference step is B-generation, B, contains equation {uy. ua). In this
case, the step of form (A) can be replaced with

ol 8] = c[uafl] or  efu 8] = c|uab]

since = 1= total for ground terms, and a contradiction follows, Next, we prove that §

comtains no steps of the form
hy=h=h, (B}

Suppose that there are steps of form (B}, in which term A s reduced in two ways, say,
to hy by equation (. v} € R, and to hy by equation {/y.ry) € R;. There are several
cases. Firet assume that the reduced parts do not overlap, that is b by oand by have
forms o118, 1,8,], c[ri8) . 1:8;]. and e[l 8. rafs]. T this ease, by replacing the steps of
forin (B) with
by = vl"'[.l"|lq|, P-;H',.:] = h'g

we can obtain a new evidence, which contradicts that § has minimal weight. Next
aesuine that the redueed parts overlap. Sinee the diseussuom is synunetrical, we can
assutue that b= dle[l 8] = d[L0,). by = dle[r1 8] and b, = d[r8,] without loss
of penerality, If 18 occurs at & variable position in ;. we can easily arrive at a
contradiction similarly to the non-overlapping ease. Otherwise, {c[r18;]. 728} 1= an
mstance of a eritical par of equations (.o} and (1. e From farmess condition (1),
the critical pair st be in some £y Then by replacing the steps of foru (B) with

by = dlelr i8] & dlrafy] = by,

we atrive at a contradiction again. Thus. we have proved that € coutains no steps of
form (A) or (B). Such an evidence is clearly normal. ||

It there 15 a nornal ovidence
== S T heg, = =g =g (Cl

we can always convert it to a one-wav reduction sequence of pairs of termis of the
following form:
{Qﬂ-g:}} =po S P = = g = {'ih"l"::'- ()

In each step. either the left or the right element of pairs is recluced. 1 what follows,
sequences of form (C7) are called pormal evidences instead of those of form (C) for

sitnplicity of discussion,
A substitution & 1s said to be irreducible if v~ 1= irreducible for any vanable ».

Theorem 3.3  [Hullot 80]

Let w be a term {or pair of termas) and A be an irreducible subatitution. Then, for any
sequence of reduction
ul =gy =g = = g,.

there 12 a sequence of narrowing

W=l g, Wy g o g, Ug



and a sequence of irreducible substitutions oy, 0. vy such that
g =uy (i=0.1,....n)

el
H = iy = H” l'_ln{,'-ll = ... = Eu [+ IR GH“_| L+ 3 R

Iu the original form of the above theorem, the concepts of reduction and narrowing are
tlie conventional left-to-right-only ones, the set of equations is assumed to be confluent
and terminating, and substitution # is assumed to be nonnal. However, the above form
of the theorewn can also be proved in the same way as the onginal.

Now. we are ready to prove the completeness of the ~-unification procedure.

Theorem 3.4

Let B be a st of equations. < and t be ferme, and
{0, {i.l‘.f}xm = (Fy. By Go Uyl HLELRLGL T E lE'pRz.Gz..E'_-.r] F

be a fair inference sequence. Then, U e a complete set of ~-unifiers of < and f.
That 12, for any =-untfier @ of » and t. there is a substitution 8" € U, more general
than H.

Proof: By replacing vaniables in <# and #6 with fresh constants, we can assiue that
«f aned M are growsd terms without loss of generality, Moreover, by replacimg f e
value of # at each varinble with its normal form w.r.t. B . we can assue that # s
wredneible. Sinee s# ~ 8. there 15 a tertn b oaned a normal evidenes

(s 1) = py = py = o0 = py = (hoR)
bv B.. Then, fromm Theorem 3.3, there is a sequence of narrowing by R
{-‘-f} = {-‘iu-fu} gy {-“1-*!} gt e, '[-‘*m"rr}

atud o sequenee of rreducible substitutions ¢, ¢, e, sueh that po = (04 0 (0=
L. ) sl
A=py=Hyoy =---=fo---08, | ow,.

From fairness condition (3). we can easily prove by induction that, for each ¢, (s,.1,. 80
ccof_y )€ Gaol i particular, {5, 4, Hp 008, y) € Gog. Sinee 5,00, = h = 00,
sy ani #,, are unifiable. Let ¢+ he the most general unifier of 4, and ¢,. Then. from
fairness condition (4), 8 = 80 -- 0 8,_, o ¢ € U,. which is more general than

:ﬁuﬂ""jglr-lﬁ‘”‘.‘n' I

As shown in Theorem 3.2, the ~-unification is an extension of the Knuth-Bendix
completion procedure, In particular, if R, = R.. for some i, a finite confluent and
terminating set of equations is obtained after a finite number of steps of inference,
Then. the subsequent process can be assumed to consist only of G-generations and U-
generations since the other rules cause no essential change in f;, G, and [;. Therefore,
the procedure can be viewed as an extension of Fay's procedure. Moreover if G, = G
for some j {in fact, Example 2.1 is this case), we can obtain a finite complete set [/, of
~-unifiers of = and t. Note that. even in this case, U, is not necessarily the minimum
complete set.



4, Tmplementation issues and examples

There are a lot of things to he considered for efficiency in actual implementation of
the procedure discnssed 1o the previons section.

If the proof of Theoremn 3.2 15 exanined. it cau be easily seen that the inference rules
E-reduction and E-deletion do not contribute to the completeness of the procedure.
In faet, these rales are introduced for efficiency. To improve officicney further, the
following inference rules should be taken into consideration. If these rules are given
priority over e ﬁi'llk'l‘ﬂtiﬂll rules. thev will save a lot of tirme h} ok applying nseless
inferences.

(E 1 {I:-!h.u_:-}}_.“{;_[':l
(E Uy, )} RGTTY
(E.R.GU{{o uyt)}. 1)
(E.R.GU {{uy.ul. 80107
(E. RGOl e 83117
(E.R.G.T7)

#is reducible by B or an element of [ s more general than #

(E.R.G.UU{R}
(E.R.G.TTY

# 1= vedueible b B oor an elewent of T s more general than #

R-reduection: iy = )y by an equation in f

G-reduction: iy = uy, hy an equation in R

G-deletion:

[ -tleletion:

The reader cau clearly see the role of R reduction and G-reduction. Rules ¢-cdeletion
ancd -deletion play a sitnilar role to that the basic narrowing plays in Hullot's proce-
dure [Hullot 20]

Even if the above inference rules are also employed, the procedure is still complete. To
prove its completeness, however. the evidence order and the limits need more subtle
treatiment, and this would introduce a simple but long disenssion. which we have
avoided in the proof of Theorem 3.2. For example, if R-reduction is employved, R
must not he defined as |- R, but as |72 ;T':‘ R,. since H; is no longer increasing,.
We will show several examples of ~-unifications iu combinatory logic. In the examples,
we use the strong simplification order < based on lexicographic subterm ordering.
Terms of the form #{---{=(r.y).---}. o) are abbreviated to the form ry.-- 2 in the
following inference sequence.

Example 4.1

An identity combinator i is defined as a combinator with property ¥r iz = r. Here,
we show the example of automatie construetion of 1 from s and k by ~-unification.
Let R be {{sryz, rz(yz)}. (kery.r)} (that is, consist of the defining equation for s and
k). and let us try to ~-unify s = ec and + = ¢. Function symbols are ordered as

— 11 -



o k=8
(Ey = {(sayz.orziyz)). (kry o} Ry =0.Gy = Hreoee) LU =)
(Ey = {{soyz,oz(yzp b By = {{key o) )Gy = Go. L) = 0)
(E, = e By =1 U {{segzoeziyz ) | Ge =Gl = Ly
l'E-f.':f?nvmmuﬂE:‘ = {{skry. y)}. Ry = Ry. Gy = G2 Uy = 1)
(Ey=e. Ry = Hy U {{skry.y)}. Gy =G, Uy = 1)
(Ev = ¢.Rs = Ry. Gy = Gy U {{e. e fskafe]} LU =0)
[Eﬁ = f.Rﬁ = Rr,-.{rrﬁ, = C';r,,-E.'n = {[Ekifr‘]}l

F R-generation

"R generatiom

F R-generation
" generation
F [M-generation

Thus. identity combinator sk is obtained as the term substituted to o,

Rewark: Strictly speaking. an =-unifier of re and ¢ is not necessarily an identity
combinator. sinee it may depend on e (that s, the term substituted to ¢ may contain
¢ as its subterm). If we want to restrain suchi a unifier from being generated, we should
~-unify vefe) and ofe). Note that disequation ve{v) # c(v] is the Skolem form of the
negation of formula Yo rr = o

Example 4.2

Newt let us trv the mockingbivd problem [Swmllyan 85]. A mockingbird is a cowbinator
m with property ¥r mr = . The problem is to construet a fxed point of a given
combinator ¢ from m. b, and ¢ itsell, where b is a composition combinator. which has
property Vo ¥y ¥s beys — r(yz) A fixed point of ¢ is defined as s combinator f owith
property of — f.

We set Ey to be {{mr, ra) (byzw.glzwe ) b Ry to be § Gy to be {{ee v el |oand Uy
to he B and execute the ~-unification procedure. We do not trace the details. but a
fied point of ¢ is obtamed through the following process.

(1) New equation {m(by: ).yl =(byz))) is obtained as a critical pair of equations
(e, ) and (byze. gyl i)} by E-generation.

(23 New goal (m(be: ). zibez ) [2(bes)/v]) is obtained from goal (cv, v, ¢} and equation
{mibyz), gl ziby:))) by G-generation.

(3) Finally. we can generate ~z-unifier [mibem)/v] of e and ¢ from the above goal
(m{bcz). z(be:). [z(bexy/e]) by [-generation, aud m(bem) is a fixed point of ¢
i farct.
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