ICOT Technical Report: TR-0748

TR-1743%

Proof Methods based on Sheet of Thought
in ELVODHILOS

by
H. Sawamura, T. Minami& K. Ohashi

March, 1962

1062 1C0T

Mita Kokusai Bldg. 21F (03134563191 ~5
" :O | 428 Mita 1-Chome Telex ICOT 132964
Minaro-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Proof Methods based on Sheet of Thought
in EUODHILOS*

Hajime Sawamura, Toshiro Minami

International Institute for Advanced Study of Social Information Science (ITAS),
FUJITSU LABORATORIES LTD., 140 Miyamoto, Numazu, Shizuoka 410-03, JAPAN
{ hajime, minami)@iias.flab.fujitsu.co.jp

and
Kyvoko Ohashi

Software Laboratory, FUIITSU LABORATORIES LTD.,
1015 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa 211, JAPAN
kvoko@soft.flab.fujitsu.co.jp

Ahstract

In recent years there has been a growing interest in using computers as an aid for manipulating
formal systems. EUODHILOS is a general reasoning system for a variety of logics which has
an expressive framework enough to represent a wide varicty of logics, aiming at a tractable
formalism for a wide class of users. In this paper, we propose proof construction facilities and
flexible proof methods on sheet of thought (proving methodology in a broader sense) which is
one of the unique features of EUQDHILOS. Sheet of thought is an environment for reasoning
in such a way that proofs are interactively constructed in a tree-form through reasoning forward
or backward, connecting or separating several proof fragments and so on. Taking up the
intuitionistic type theory, we illustrate a proof process led by some of the proof methods and
proving facilities,

* Part of this work was done while the first author was with the Automated Reasoning Project of Australian
Mational University.

1. Introduction

Mathematical methads of the kind studied in logic are extensively used and applied to a broad
class of guestions of a logical nature(e.g., [Turner 84], [Genesereth 87]). Therefore much
research has been devoted to the theory and methodology of compurter-assisted reasoning, and
to building computer systems for proving theorems automatically, for checking proofs and for
developing proofs interactively in specific logical systems(e.g., [Gordon 79], [Ketonen 84],
[Constable 86]).

In recent years, however, there has been a growing interest in using computers as an zid
for manipulating formal systems(e.g., [Harper 87], [Griffin 87], |Felty 88], [Paulson 89]), as
well as in formalizing general formal systems which yields & unified account of a fairly wide
range of logical systems(e.g., [Meyer 76|, [Belnap 82|, [Avron 87], [Meseguer 87], [Feferman
891, [Slaney 90], [Gabbay 90]).

Our system EUODHILOS™ [Sawamura 87, 88, 90, 91] is a logic-independent proof
editor and constructor. More specifically, it is a general-purpose reasoning assistant system that
allows users interactively to define the language and derivation rules of a logical system relevant
for the universe of discourse under consideration, and to construct proofs in the defined
system. Qur approach to & general reasoning system differs from the other ones cited above in
three respects. First, in EUODHILOS one can specify his or her own logic in a more direct and
tractable way than others which require us to learn a formal system or meta-logic for encoding a
logic. Second, much emphases have been placed on reasoning facilities and proof methods
which EUODHILOS should have in order to make proof construction more powerful and
easier. Third, EHODHILOS has a umque reasoning-oriented interface not only for raising user-
friendliness but also helping us conceive ideas for constructing the proofs. Dawson's generic
lugic environment [Dawson 91] is very similar to our approach in many ways, but it only deals
with logics in sequent presentations with all-introduction rules.

So far in the area of reasoning by a computer, there has been little actual work in proof

methods{proving methodology in a broader sense) for reasoning systems. This is in contrast 1o

* This acronym abbreviates the phrase, Every Universe OF Discourse Has Tts LOgical Structure[Langer 25].

the current situation in software engineering. In this paper, as a first step towards proving
methodology or proof engincering, we propose proof construction facilities and flexible proof
methods on sheet of thought which allow us to reason in a natural and efficient way. Sheet of
thought is one of the unique features of EUODHILOS and is an environment for reasoning in
such a way that proofs are interactively constructed in a tree-form through reasoning forward or
backward, connecting or separating several proof fragments and so on.

The remainder of the paper is organized as follows. In Section 2, we first describe an
outline of EUODHILOS. In Section 3, various proof construction facilities and proof methods
are described. In Section 4, taking up the intuitionistic type theory[Martin-L&f 84], we illustrate
a proof process led by some of the proof construction facilities and proof methods described in
Section 3. The final section contains an evaluation of our reasoning methods, obtained by

various proof experiments with other logical systems[Sawamura 91].

2. Outline of functional features of EUODHILOS

First of all, we describe an outline of functional features of EUQDHILOS. We think it would be
helpful for readers to understand an overall image of EUODHILOS and the positoning of issues
to be treated in this paper. EUODHILOS supports problem solving in logical methods like this:
Suppose we have a problem of a logical nature and want to solve it with a logic. Then what we
have to do next is to describe the problem and reason about it in our own logic. However the
task of implementing any particular logic on a machine is quite demanding and logics usually
vary with problem domains. In such a sitwation, EUQDHILOS helps us to specify our logic and
to construct a proof in it. In fact, EUODHILOS is a general-purpose reasoning assistant system
that allows vsers interactively to define the syntax and inference rules of a formal system and to
construct proofs in the defined system. In developing such a general reasoning system, we
incorporate three important components:

(1) an expressive and tractable framework to represent a logie,

{2) a powerful and flexible proof construction faciliry, and

(3) a visual reasoning-oriented human-computer interface.

The framework for representing a logic is needed to specify the user's logic which consists
of a language system for symbols, terms, formulas, etc. and a derivation system for axioms,
inference rules, etc. Weli-known definite clause grammar formalism[Pereira 80] is slightly
augmented and employed for specifying the syntax of logical expressions. Once the syntax is
defined, EUODHILOS generates a parser and an unparser for the language, as well as the
internal structures of expressions in the defined syntax[Ohash: 90]. Together with the syntax
debugger and the structure editor for formulas, this greatly lightens a user's burden in setting up

his or her own language.

The derivation system consists of axioms, inference rules, and rewriting rules. An
inference rule is specified in natural deduction stvle in three parts: the derivations of the premises
of the rule, the conclusion of the rule, and the restrictions that are imposed on the derivations of
the premises and the conclusion, such as variable occurrence conditions and substitution
conditions. In our approach, the side conditions of a rule are supposed to be described in terms
of the built-in primitive side conditions and their combinations. Among those primitive
conditions are (a) *t *1s free for *x*® in *P*, (b) *x* 15 not free in *P* and (c) *a*® is an
eigenvarable. Then EUOQDIHILOS can check those side conditions automatically in the proof
process. For other side conditions which can not be handled in this way, we have provided the
interface with a user-programmed side conditions checker for EUODHILOS. A rewriting rule is
specified with a pair of forms before and after rewriting. EUODHILOS antomatically generates
many possible forms of an cxpression which may be obtained by successive applications of a
given rewnting rule. Many well-known styles of logical stipulation can be treated within this
framework - for example, Hilbert's, Gentzen's, equational, and even tableau styles.

The major drawback of reasoning in formal logic 18 that derivations tend to be lengthy and
tedious because of the level of detail required in reasoning. In addition, performing formal
derivations is time consuming and error prone. Using computers for formal reasoning should
help to overcome these problems. EUQDHILOS has various facilities which support the natural
and efficient constructions of proofs in a defined logical system. Foremost among these facilities
15 the idea of a "sheet of thought”; moreover, proofs are in tree form, and various proof methods
are used. A sheet of thought is a field in which we can compose a proof from its fragments,

separate a proof into parts, or reason using derived rules and lemmas which have already been

established. EUODHILOS supports various proof methods related to sheets of thought -
forward reasoning, backward reasoning, mixed forward and backward reasoning, and schematic
proof. The proofs are visualized in tree-form with justifications indicated in the right margin. An
interface with automated theorem provers is also provided for EUODHILOS in order to augment
its reasoning facilities.

To make the system user-friendly and easy to use, we have put a lot of effort into
designing the user interface. EUODHILOS includes a formula editor, font editor, software
keyboard, electronic statonery for reasoning, and other features for ease of use.

Exploiting the bit-map display with multi-window environment, mouse, icon, pop-up-
menu, etc., EUQODHILOS is implemented in ESP (an object-oriented Prolog) on PSI-
I{OD)/SIMPOS. Needless to say, Prolog serves as a good implementation language for theorem
provers and interactive reasoning systems since they directly implement search and unification
which are essential operations for traversing a search space for a proof and manipulating
formulas and proofs. Object-oriented facilities of ESP have played an important role in the
implementation of EUODHILOS as well since it is a kind of generic or meta system in which

each object-logic 13 to be constmucted as an instance object of a logic class.

3. Proof construction facilities and proof methods in EUODHILOS

In the area of software engineering, much work has been devoted to the issues such as how
programs should be developed formally or informally, and programming environment which
promotes reliable program development. However, less effort has been paid to proof
development methods. In the subsection 3.1, we present proof constuction facilities which
may be expected 1o lead to such important issues as proof modularization, abstract or schematic
proofs, and visvalization of proof structures. These have some resemblance to those which
appear as principles of programming. In the subsection 3.2, various proof styles suitable for
human reasoners are presented . More generally, they are expected to constitute reasoning

(proving) methodology, which reminds us of programming methodology.

3.1 Proof construction facilities

The major drawback of reasoning in formal logic is that derivations tend to be lengthy and
tedious because of the detailed level of derivations required in reasoning. Furthermore,
performing formal derivations is time-consuming and error-prone. Using computers for formal
reasoning can overcome the problems with errors and the time-consuming task. The current
version of EUODHILOS has the following unique facilities which are expected to support

natural and efficient constructions of proofs in the defined formal system.

(1) Sheets of thought

This originated from a metaphor of work or caleulation sheet and is apparently analogous
to the concept of sheet of assertion which is due to C. 8. Peirce [Peirce 74]. He actually
developed an extensive diagrammatic calculus which he intended as a general reasoning tool. A
sheet of thought, in our case, is a field of thought where we are allowed to draft a proof, to
compose proof fragments or detach a proof, to reason using lemmas, etc., while a sheet of
assertion is a field of thought where an existential graph as an icon of thought is supposed to be
drawn. Proving by the use of sheets of thought turns out to yield proof modularization which is
considered important partcularly for proving in the large. It may be beneficial to note that proof
modularization is approximately equal to the concept of program modularization, to borrow the

term of software engineenng.

{2) Tree-form proof

In EUODHILOS, inference and rewriting rules are presented in a natural dedection style

as follows :
[Assumption;] [Assumption,) ... [Assumption,]
Premise, Premise, Premise
Conclusion

together with the speculation of side conditions, where brackets are used to encompass a
temporary assumption to be discharged, ":" denoles a sequence or a subtree of formulas which

is a pant of a proof from the assumption and each assumption is optional. This naturally induces

the construction of a proof into a tree-form proof with a justification for each line (node)
indicated in the right margin. For example, the justification (Al {1,2}) of the following proof
tree says that the conclusion A A B is obtained by the rule named Al from the two premises A

and B, and it depends on the assumptions named 1 and 2 above the premises.

A B
(~I[1,2))

AsrB

Consequently it leads to the explicit representation of a proof structure, in other words, proof

visualization.

(3) Schema (mera) variables

The Schema variables are introduced to EUODHILOS not only for the schematic
specifications of axioms, inference rules or rewriting rules, but also for derived rules or
schematic proofs in general. EUODHILOS is supposed to make the meta and object distinction
at the time of language definition. Then substitution and unification viewed as the common and

primitive symbol operations operate on schema variables, in addition 1o the usual variables.

3.2 Proof methods

In EUODHILOS, a proof is to be constructed interactively and the human reasoner retains the
initiatives in the proof process with the facilities playing the careful assistant role with
responsibility for confirming the viability of each proof step.

The predominant style of interactive reasoning so far has been goal-directed, in other
words, top-down or backward reasoning, whereby the user breaks a goal into subgoals. It is,
however, desirable that reasoning or proof construction can be done along the natural way of
thinking for human reasoners. Therefore EUODHILOS supports the other typical methods for
reasoning as well, They include bottom-up reasoning (forward reasoning), reasoning in &
mixture of top-down and bottom-up, reasoning by using lemma, schematic reasoning, etc.

These are accomplished interactively on several sheets of thought.

(1) Inpur of logical expressions

Derivations begin with inputting any of assumptions, premises, theorems and conclusions
to sheets of thought. Axioms and theorems are inputted simply by pointing one at a time from
the axiom list and theorem database respectively. Then one can expand a proof tree upward or
downward by applying a rule 1o it. It is always possible to test whether formulas at the top of 2

proof tree are axioms or theorems by invoking the test command.

(2) Forward and backward reasoning

Forward reasoning is often used when we try a proof from initial formulas in a trial and
error fashion. In larger proof development activities, one hopes to conquer a big and complex
task by backward reasoning, dividing it into smaller and simpler ones and then putting the
results together, Generally, a proof will be attained by a mixture of them - partly forward and
partly backward.

In order to deduce forward by applying an inference rule, we usually start a proof by
inputting formulas used as premises of the rule and in a natural deduction setting by further
indicating assumptions to be discharged. Then one may select an appropriate inference rule
from the rule menu which has been automatically generated at the time of logic definition, or
one may input a formula as the conclusion. If one selects a rule, then the system applies the rule
to the premises and assumptions, and derive the conclusion. If he/she gives the conclusion,
then the systemn searches the rules and mes to find one which coincides with this deduction.
EUODHILOS can search the candidates of applicable inference rules to the given premises as
well and hence we may simply choose the intended one. In natural deduction setting of a formal
system, forward reasoning may be done without inputting or indicating assumptions to be
discharged. This implies that at an appropriate stage of a proof, we have to decide which
assumpuon we should discharge. This comes from such a proper form of an inference rule that
assumptions in natural deduction rules may not be necessarily used in the derivations of
premises, Instead, EUQDHILOS helps us doing this task in a natural way. Let us consider the

proof composition from the following two proof trees.

Pl .. (PP o
i (.. (1,20, — (21 [3])
Q PoQ

By simply composing them (see (5) below), we get
(P}t .. [PP

(oI {1, 2]).

PoQ

Then the proposition P in the consequence is not known whether it is PY, P2, or any other P
outside this proof tree. EUODHILOS supports the following discharging method:
(a) If the proposition P in the consequence is meant to be P1(P2), then we choose P1(P?)as a
discharged assumption and get the new proof tree with the new justification (DI {2))((=1 {1]))
respectively.
(b) If the proposition P in the consequence is meant to be any other P outside the proof tree,
then we may simply continue expanding the proof without any action.

In the case of backward reasoning, the reasoning process is converse to the forward
reasoning, so that the intermediate proof may branch off to partially justified proof fragments
and the complete justification of those partially justified proof fragments is delayed until the

completion of a final proof tree.

(3) Schematic reasoning

EUODHILOS allows us to construct an abstract proof in the sense that schema/meta
variables ranging over syntactic domains of an object language are permitted to occur in the
process of the proof, that is, we can make a partially instantiated proof. Such schema variables
are obviously very convenient for having an indeterminate or unknown predicate (such as
invariant assertion in Hoare logic) unspecified temporarily in the proof constructing process.

A schematic proof, however, is not always constructed since the schema variables in the
proof may not be fully instantiated so as to promote further steps. Below we discuss how
schema variables communicate with objects in EUODHILOS. Axioms are represented using

schema variables, but with (possibly) some conditions on them. For example, the first-order

axiom: Vx.(P 2 Q) o (P = ¥x.Q) has the condition that x is not free in P, where P and Q, and
x are schema variables ranging over formulas and individual variables respectively. Note that
such a condition in axioms is viewed as a side condition like those of inference rules. Thus a
proof using this axiom turns ovt to be schematized to the extent that the schema variables P are
instantiated as concrete formulas. In the case of inference rules, a proof process may be banned
by its side conditions unless schema variables are enough instantiated so as to be able to check
side conditions. An alternative to handle these situations would be to delay checking side
conditions until schema variables are fully instantiated. To do so, every side condition which
has been inherited as unchecked during the proof process would have to be kept with the final

theorem which is not actually a theorem, but should be stored as a conditional theorem.

(4) Reasoning by lemmas and derived rules

Theorems constructed on the sheets and validated derived rules can be stored in the
theorem database and derived rule damabase respectively. They are referred to and reused in the
later proofs for other theorems. For large and complex proofs, derived rules are helpful for
preventing proof trees from expanding more than they needs, and avoiding the repetition of the
same subtrees in a proof tree. It should be noted that derived rules sometimes can play a role of
so-called tacucal reasoning[Gordon 79, BE] as well, although we have not yet implemented
tactic and tactical reasoning which seems to be a promising way for large proof development.
After using EUODHILOS systematically and over a long period of time, the theorems turn out

to build up theories.

(5) Commection and separation functions on sheets of thought

(a) Connection by complete matching

Two proof fragments can be connected through a common formula cccurring in them
when one of them is a hypothesis and the other a conclusion. The process begins by selecting
the two formulas and invoking the proper operations. As a result, the proof fragments are
connected into the one proof fragment. Schematically, This amounts to attaining the following
inference figure which is viewed as one of Tarski's consequence relation common in all logics

[Tarski 56].

10

I' |- C (on a sheet of thought) A C¥ |- A (on a sheet of thought)
AT Z |- A (on a sheet of thought)

where I, A and £ might represent sequences of formulas (possibly empty), and A and C denote
formulas in some defined logical system.

{(b) Connection by the use of a rule of inference

This is essentially a forward reasoning and may be called a distributed forward reasoning,
The process is similar to the above except that the connection is done from proof fragments
scattered on several sheets of thought through an appropriate rule of inference. Let us take an

example schema of modus ponens:

I |-A DB (onasheet of thought) A |- A (on a sheet of thought)
I'A |- B (on a sheet of thought)

with the same proviso, adding that B represents a formula.

{c) Connection by unification

Two proof fragments can be connected through two unifiable formulas occurring in them
when one of them is a hypothesis and the other a conclusion. The process begins by selecting
the two formulas and invoking the proper operations. As a result, the proof fragments are
unified to the most general proof fragment. It is, however, noted that the unification can be
done through schema variables mentioned above.

Besides, connection methods such as analogical matching, instantiation, etc., would
become extremely beneficial to intelligent reasoning system, which is left as a future subject.

{d) Separation

The separation is converse to the connection by complete matching. The separation
process begins by selecting a formula occurring in a sheet of thought and invoking the proper
operations. As a result, the proof fragment is detached into the two fragments. Schematically,
This amounts to the converse to the connection by complete matching above, In natural
deducion setting of a logical system, the assumption numbers are automatically managed by the
system. We will illustrate this by separating the following proof tree at the location of formula

B.

[A]l [ASBP
(=1 [1,2))

B
— (.. {1, 2]
C D]
o (L {1.2.3])
E

We then get the two proof trees on a sheet of thought as follows.

(B}
[A] [A o BJ? —— (.. {4])
— (=1[L,2)) and C [DP
B —_ (.. {45}

(6) Automated reasoning

In principle, there can be no mechanized way of provability and it will be up to the
human, with the machine's help, to discover a proof. However, an interactive system like
EUODHILOS depends too much on user involvement in reasoning. Some automated aspects
should be incorporated in the reasoning process. Two promising ways to solve this problem
may be taken into consideration. First, tactic and tactical reasoning are expected to provide
flexibility in controlling the search for proofs. They also allow for blending automatic and
interactive theorem proving techniques invented so far in one environment. Second, filling the
gap between the scattered proof fragments on several sheets of thought would be easier than
traversing a full proof search space.

For the present, we have provided for EUODHILOS an interface with automated facilites
such as automated theorem provers, theorem database retriever, term rewriting systems, and so
on (see Figure 2 in Section 4 below in which the button "PROVERS" interfaces with outside
facilities). A rewriting rule of EUODHILOS is semi-automated in such a way that users set the
number up to which the rewriting rule is applied to an initial expression. Then EUODHILOS
automatically generates many possible forms of the expression which may be obtained by

successive applications of the rewriting rule,

(7) Drafting proofs
It would be quite usual to take many days for a proof to be completed, in particular for a

large and complex proof. EUODHILOS has not only a theorem database but also a work area

12 -

for temporarily storing scattered proof fragments on sheets of thought which have not been

fully justified yet, but some of which may turn out to constitute a final proof.

4. An illustrative example in intuitionistic type theory

In this section, along the line of computer session is shown a concrete proof process using
some of those proof construction faciliries and proof methods discussed in the previous section.

EUQDHILOS starts with the following logic/theory menu window (Figure 1) which
displays the entries to creating a new logic, designing new symbols, logic calculator, ending the

systemn, and various logics already defined.

HE nage ¥F
** foni_editor **
** ralculator **
HE]t *W

category_theory
dynamic_logic
general_logic
halting_problem
higher_order_logic
Hoare_logic
inductive_proof
intensional_logic
Inmiitionistic_type_theory
modal_logic
predicate_logic
relevant_logic

Figure 1. Logic/theory menu at start-up

Selecting an entry on the logic/theory menu brings forth a presentation of the corresponding
logic. EUODHILOS views a logic as consisting of the following basic items and environment:
logic information, software keyboard, syntax, inference rules, rewriting rules, axioms, denved
rules, provers, theorem database, proof sheet called sheet of thought, as can be seen in Figure

2.

— 13 —

[obwntiomistie _evpe theor

INFORMATION
SOFT_KEYBOARD
SYNTAX
INFERENCE_RULE
REWRITING_RULE
AXIOM
DERIVED_RULE
PROVERS
THEOREM
PROOF
L2 Fm L2

Figure 2. Basic items of a logic

In this section, we take up a subset of intuitionistic type theory [Martin-L&f 84][Backhouse 88]

and exemplify a proof construction process of a constructive proof in it.

4.1 Specifying a logic

We begin with specifying the language system to be used in intuitionistic type theory(see
[Sawamura 92] for the details of representing a logic in EUODHILOS). If we need special
symbols for our Janguage, we can casily design them using the font editor and assign them to the
software keyboard. Then we proceed to specifying the syntax of logical expressions in terms of
definite clause grammar(DCG) formalism. This 1s slightly augmented with special constructs to
handle logical concepts such as variable binding, scope and so on[Ohashi 90]. The full syntax
definition of a subset of intuitionistic type theory is given in Figure 3. The language definition

basically consists of three parts: an object language, a meta language and an operator definition.

SYNTAX : Intuitionistic type_theory
save make test structure print reshape exit

% Meta_language
meta_term --> meta_terml;
meta_type -> "A""B",
meta_terml --> "F'"a"I"b";
meta_variable -> "X";

%5 Object_language

judgement --> term, "€ ", type;

term --> bind_op,variable,"."” terml|
term, " " terml
(" rerm,")"
=" terml
il (" erm, ") ine”, (" term, ")
variablelconstantl
meta_term1,"(",term,")"Imema_term;

type --> type, 2", typel
type,"v " typel
"=" typel
(" type, ")l
basic_type;

variable --= "x""[";
constant --= "¢"I"d";
basic_type --="p"I"L",
bind_op —>"A";

% Interface between meta and object languages

type --> meta_type;
varable —-> meta_varable;

operator

et tytleft "o left; Metleft; A e
predicate

“1nl" "inr”, meta_term L.

Figure 3. Syntax of intuitionistic type theory

It is noted that the syntax definition for the meta language is provided for defining
inference rules schematically, and the operators have precedence in the indicated order and the
predicate, e.g. "inl" in the term "inl(x)", are listed simply by themselves or the nonterminals by
which they are denoted. Let's take a look at the principal expression called ‘judgement’ in
intuitionistic type theory, which is defined to be a string generated by the following clause
(rule);

judgement --> term, "€ ", type ;

15 -

where the nonterminal “term” is an expression in A-calculus and the nonterminal "type” is a
proposition in the well-known "propositions-as-types interpretation”. The judgement reads "the
term is a proof of the type (the proposition)”. It can be seen that the judgement is naturally and
well described in the framework of definite clause grammar formalism (DCG) and that it's
almost the same as the usual context-free grammar formalism (CFG). Once the logical syntax
has been defined like this, then a (botwom-up) parser for it which constucts the internal
structures of expressions is automatically generated as well as its unparser(see [Ohashi 90] for
the details of the algorithms). The parser and unparser generated are internally used in all the
succeeding phases of symbol manipulations., Here we can test whether the language just
specified is what we intended or not, by using our syntax debugger and the structure editor for
formulas[Ohashi 90].

An inference rule is specified in natural deduction style in three parts: the premises of the
rule, the conclusion of the rule, and side conditions. The side conditions are the restrictions that
may be imposed on the derivations of the conclusion from the premises and assumptions, such
as variable occurrence conditions and substitution conditions. Then EUODHILOS can check
those side conditions automatically in the proof process. In EUODHILOS, a deductive system
is represented simply in such a descriptive apparatus that is usually used in a logic textbook
without relying on any other descriptive framework, as can be seen in Figure 4 where four
inference rules are specified. These are the rules for function introduction and elimination, and

the two rules for v—introduction.

INFERENCE RULE: Intuitionistic_type _theory
name: A-1

[He Al
F(X)e B

AXFX) e AoB

** gide condition™®*

16—

INFERENCE RULE: Intuitionistic theo
name: A-E

aeA Fe ADB

Feae B

** side condition™*

INFERENCE RULE: Initionistic_type _theory
name: ml-1

ae A

inl{a) e AvB

gide condition**

INFERENCE RULE: Inmitionistac_type _theory
name: nr-i

be B

inr(b) € AvEB

** side condition**

Figure 4. Inference rules of intuitionistic type theory

All of these rules have no side conditions with them. The A—introduction rule means "if the
premise F(X) € B (meaning F(X) is a proof of B) is derived under the assumption x € A
(meaning x is a proof of A), then we can derive that AX.F(X) is a proof of A 5 B". Then the
assumption "[X & A]" encompassed by brackets is discharged from the assumptions on which
the conclusion "AX.F(X) € A D B" depends.

A rewriting rule is specified with a pair of forms before and after rewriting. Figure 5

specifies the definition "-A = A © 1" as a rewriting rule.

REWRITING _RULE: Intuitionistic_type_theory
name: def

Aol

~A

Figure 5. Rewriting rule

—17

In EUODHILQOS, a rewriting rule can be applied in both directions: downward and upward,

according to the user's indication.

4.2 Constructing a proof in the specified logic

The logic (formal system) of intuitionistic type theory has been settled. In this section, we
illustrate the construction of a simple proof in this logic under our flexible proof construction
facilities and methods. A proof is interactively constructed in tee-form on proof sheets called
sheets of thought, through reasoning forward or backward, connecting or separating several
proof fragments and so on. Here we'll show how to construct the theorem "—(p v ~p)",
which is the double negation of the law of exciuded middle.

First of all, suppose we have a sheet of thought containing a partially constructed proof
fragment, which would turn out to be a part of the final proof. As can be seen in Figure 6, the

conclusion in this tree is obtained under the assumpton 2 as the dependency list {2) shows.

SHEET_OF THOUGHT: Inmitionistic_tyvpe_theory

xe pl’
7 (inl-I {1})
lfe(pvipz>l))>1] inl(x) e pvip o l)
(o-E (2, 1))

feinl(x) € L
(A1 {2))

Ax. feinl(x)e po L

(inr-T {2])
inr(Ax. feinl{x)} e pv (p 2 L)

Sheet |

Figure 6. A proof fragment on sheet of thought
On this sheet, first let us copy the assumption "fe (pv (p> 1)) > L " numbered 2 into the

right hand side of the proof tree. Copy can be done by selecting the expression to copy and

clicking the place to be copied by mouse. The result is shown in Figure 7.

.1_8_

SHEET OF_THOUGHT: Intitionistic_type _theory

[Mp]1

5 (inl-I {1})
fe(pvipol)>d] inlix) e pvip o1)
(=>-E (2,1}

feinl(x) & L

(A-1{2})

Ax. feinl{x)e po L

(inr-I (2}) 2
inr(Ax. feinl(x)) e pv(p2> 1) [fe(pvipol))2 1]

Sheet_1

Figure 7. Copying an expression

Then apply the implication-elimination rule to the two lowest judgements. Application of a rule
can be done by selecting judgements to be applied and choosing a rule to apply from the rule

menu, As the result we get the judgement "feinr(Ax. feinl(x)) € 1", as shown in Figure 8.

SHEET OF THOUGHT: Inmitionistc_type_theory

(xep)
(inl-I (1])

[fvEl[l:lv(1::::IJ.}}:7IJ.:|2 inl{x) e pvip oL1)

(=>-E (2,1}
feinl(x) = L

(A-1(2]))
Ax. feinl(x)e po L
------- (inr-I {2)))
[fe(pvipzLl)ol]
: — (>-E {2)}
feinr(hx. feinl(x)) e L

Sheet 1

Figure 8. Application of a rule (>-E}
Next if we apply the A-introduction rule to the lowest judgement under the assumptions

numbered 2, then we obtain the judgement "Af. feinr(Ax. feinl(x)) € (pv(p> L) 5 1) >

1", as shown in Figure 9.

— 19_

SHEET =QF_THUUGHT: Intuitonistic_type_theory

xe)
Gnl-I (1)

[fe (pv{p::l})::l]z inlix) e pvip ol)
(=>-E (2,1))

feinl(x) € L
A-1{2))

(inr-1{2})
inr(Ax. feinl(x)) e pv (p> 1) [fe (pvip2l)>l]

Ax. feinl(x) e po L

2
(=>-E (2D

A1}

feinr(Ax. feinl(x)) e L

Af. feinr(Ax. feinl(x)) € (pv(p> 1) 1) ol

Sheet_|

Figure 9. Application of a rule (A-I)

Obviously the assumptions have been discharged as the empty justification [] shows.
‘We have almost arrived at the desired conclusion. But in order to make it simpler, first let
us copy the conclusion on a new sheet (see in Figure 10) and then apply the rewriting rule def

as & definition of "~" to it.

SHEET_OF_THOUGHT: Intuitionistic_type_theory

[Af. feinr(Ax. foinl(x)) € (pv(p> L) L) 51]°

Sheet_2

Figure 10. Copy of the lowest judgement on a new sheet of thought

In doing so, we set the rewriting counter to 3 because the right hand side of the expression
seems 1o deserve rewriting up to three times. EUODHILOS generates possible forms of the
expression obtained by successive applications of this rewriting rule. Thus we get "Af.

feinr(Ax. feinl(x)) € ~~(p v ~p)", as shown in Figure 11.

—_ ZU_

SHEET_OF_THOUGHT: Inwitionistic_type_theory

[Af. feinr(Ax. feinl(x)) € (pv(p> L) 21) > i]'j’
_ (def {3])

Af. feinr(Ax. feinl(x)) € ~~(p v ~p)
Sheet 2

Figure 11. Result of a rewriting rule def

At this stage, we can connect the two proof fragments into one by indicating the
conclusion in the sheet | and the assumption on the sheet 2 because they coincide with each
other. To do so, first we choose the two judgements to be connected and then just double click
the left mouse button.

Readers may wish to try the proof along with the following line. Suppose we have
already had another sheet of thought containing a schematic goal like this, "F € ~~(p v ~p)’,
where F is a meta-variable which stands for an unknown term to be instantiated later. This
judgement obviously can be expanded backward from bottom 10 top by using the rewriting rule

named "def”, as shown in Figure 12.

SHEET_OF THOUGHT: Intuitionistic_type_theory

Fe pvipo Lol ol
(def (4))

Fe =~=(pv-p)

Sheet 3

Figure 12. A schematic proof

As you may have noticed, the assumption is analogous to the result in the previous proof
fragment, so let's instantiate to the meta-variable F the term "Af. fsinr(Ax. feinl(x))". Then we

get the instantiated proof fragment like this;

— 21

SHEET_OF_THOUGHT: Intuitionistic_type_theory

[A£. feinr(hx. feinl(x)) € (pv(p> L) o 1) > 1
(def {4})

Af. feinr(Ax. feinl(x)) € ~—(p v ~p)

Sheet 3

Figure 13. Instantiation of a proof tree in Figure 12

At this stage, we can connect these proof fragments into one as before.
In this manner, we have finally reached our desired proof. The sheet of thought in Figure
14 displays the whole proof tree for it and thus we've shown that the double negation of the

excluded middle cannot be refuted in intuitonistic type theory.

SHEET_OF_THOUGHT: Intuitionistic_type_theory

[x € P}
- Gnl-I {1})
fe (pvip21)>1]? inlx) epvip oLl
| =>E{2,1))
feinl(x) € L
(AT {2])
Ax. feinl(x) e po L
- (inr-1 {2])
inr(Ax. feinl(x)) € p v (p = 1) [fe (pvpol)s P
- (>-E [2])
feinr(Ax. feinl(x)) e L
(A1 (]

Af. feinr(Ax. feinl{x)) € (pv(p> L) o -J.} ol

_ (def {])
Af. feinr(Ax. feinl(x)) € ~~(p v ~p)

Sheet 1

Figure 14, A proof tree of the law of double negation of the excluded middle

5. Concluding remarks

This paper revealed proof construction facilities and flexible proof methods on sheet of thought

(proving methodology in a broader sense), one of the issues involved in the construction of an

interactive yet powerful general reasoning system for a variety of logics. It should be noted that
one of the points in this paper is that our proof construction facilities and proof methods are not
tailored to any specific logics, but designed in a generic way and hence can be applied to
various logics as well.

We have applied EUODHILOS to various types of reasoning(see [Sawamura 91] for the
details). Logic and proof examples include the following. (a) First-order logic: various pure
logical tautologies, the unsolvability of the halting problem, inductive proof, hardware
verification, and category theory. (b) Second-order logic: the equivalence between the principle
of mathematical induction and the principle of complete induction. (c) Propositional modal
logic: modal reasoning about programs. (d) Intensional logic: (1) the reflective proof of a
metatheorem: (2) Montague semantics of natural language. (e) Martin-Lof's intuitionistic type
theory(see Appendix 1): various constructive proofs. (f) Hoare logic and dynamic logic:
reasoning about program properties. (g) General logic. (h) Relevant logics. (i) A logic of
knowledge.

Although we would not say that the examples tried in the above proof experiments are
Jarge and complex enough to evaluate the proof methods of EUODHILOS (except a few proofs
which became 100 ~ 1000 steps long in primitive inference steps), we have become convinced
particularly of the following points:

(i) Proof visualization in mee-form

Visualizing proofs in tree-form made proof structures much clearer than the linear format
of a proof did. 1t was found that in this representation of a proof tree there would be less chance
of getting lost as to where we are now in the proof and what we should do next.

(ii) Proof modularization on several sheets of thought

Similar to program modularization, proof development by proof modularization allows us
to construct a proof in a structured way. Sheets of thought have induced a modularized proof
development to attain well managed and efficient proof construction. In fact, they support such
a proof construction that the main part of a proof which contains a conclusion is located in a
sheet of thought and every subgoal which may be successfully connected to the main part of a
proof tree is located in each sheet of thought. It may be expected that they turn out to give a

promising way towards proving in the large.

- T3 -

Lots of experiments for proving have also convinced us that reasoning by several sheets
of thought goes well with human thought processes, such as analysis and synthesis in scientific
exploration, from the part to the whole and vice versa.

(i1i) Various proof styles

Goal-directed reasoning is usually a predominant style for computer reasoning. However,
it is not always efficient for one to reason only in a backward way. In our experiences with
EUODHILOS, we found forward reasoning and its mixture with backward reasoning more
efficient and natural, in particular for largc- and complex proof development.

(iv) Ease of use

EUODHILOS was designed so as to be usable by people who may not be so familiar with
computer systems. We can specify our own logic and develop proofs under an casy to usc
environment based on a graphical interface that provides a controlled dialogue between the user

and EUODHILOS.

This paper have dealt with only syntactical aspects of reasoning by a computer, not a
whaole spectrum of reasoning tasks. The following issues should be attacked as important but
most challenging aspects of reasoning which should be incorporated into syntactical reasoning
systems like EUODHILOS: (a) Reasoning generally consists of the manipulation of
informarion, not symbaols and they are just one of the many forms in which information can be
couched|Barwise 88). As a matter of fact, we usually make crucial use of diagrams, graphs or
other non-linguistic form of representation, since we are adept at reasoning with and making
inferences directly from them, (b) When one studies and appreciates the power of a proof, it is
tactics and elegance and so on which seize one's attention and stay in onec's memory. We
should put more emphasis on studying the nature of human-oriented reasoning patterns and
capabilities, and the epistemic structure of proofs regardless of the logic on which they are

based| Robinson 90)].

- 24 —

Acknowledgements

We would like to thank Prof. J. A. Robinson (Syracuse University), Dr. R. K. Meyer,
Prof. M. A. McRobbie and Dr. J. K. Slaney (Australian National University) for their valuable
comments and discussions on our work. The paper also benefited from the discussions with
Dr. D. Basin (University of Edinburgh). Special thanks are owed to Mrs. K. Yokota for her
collaboration on the development of EUODHILOS.

This work is part of a major research and development of the Fifth Generation Computer

System project conducted under a program set up by the MITL

References

[Avron 87] Avron, A.: Simple Consequence Relations, ECS-LFCS-87-30(1987), Univ. of
Edinburgh.

[Backhouse 88] Backhouse, R. and Chisholm, P.: Do-it-yourself type theory (Part 1), Bull. of
EATCS, No. 34, pp. 68-110, (Part 2), ibid., No. 35, pp. 205-245, 1988,

[Barwise 88] Barwise, J. and Etwchemendy, J.: A situation-theoretic account of reasoning with
Hyperproof (extended abstract), STASS Meeting, 1988.

[Belnap ¥2) Belnap, N. 1), Jr.: Display Logic, J. of Philosophical Logic 11(1982), pp. 375-417.

[Constable 86] Constable, R.L., et al.: Implementing mathematics with the Nuprl proof
development system, Prentice-Hall, 1986.

|Dawson 91] Dawson, M.: A generic logic environment, Ph.D. thesis, Dept. of Computing,
Impenal College, 1991,

[Felty 88] Felty, A. and Miller, D.: Specifying theorem provers in a higher-order logic
programming language, LNCS, Vol. 310, pp. 61-80, 1988.

[Feferman 89] Feferman, S.: Finitely inductively presented logics, in Ferro, R., Bonotto, C.,
Valentini, S. and Zanardo, A.{eds.): Logic Colloquium '88, N-Holland, pp. 191-220, 1989.

[Gabbay 90] Gabbay, D.: Labelled deductive systems, CIS-Bericht-90-22, University of
Miinchen, 1990.

[Genesereth 87] Genesereth, M. R. and Nilsson, N. J.: Logical foundation of artficial
intellipence, Morgan Kaufmann, 1987,

[Gordon 79] Gordon, M. J., Milner, A. J. and Wadsworth, C. P.: Edinburgh LCF, LNCS,
Yol. 78, Springer, 1979.

[Gordon 88] Gordon, M. J.: HOL: A proof generating system for higher-order logic, in
Birtwistle, G. and Subrahmanyam, P. A.(eds.): VLSI Specification, Verification and
Synthesis, Kluwer Academic Publishers, pp. 73-128, 1988.

[Griffin £7] Griffin, T. G.: An environment for formal system, ECS-LFCS-87-34, Univ. of
Edinburgh, 1987.

[Harper 87] Harper, R., Honsell, F. and Plotkin, G.: A framework for defining logics, Proc.
of Symposium on Logic in Computer Science, pp. 194-204, 1987.

[Ketonen 84] Ketonen, J. and Weening, J. S.: EKL - An interactive proof checker, User's
reference manual, Dept. of Computer Science, Stanford Univ., 1984.

[Langer 25] Langer, S. K.: A set of postulates for the Iogical structure of music, Monist 39, pp.
561-570, 1925.

[Martin-Lof 84] Martin-L&f, P.: Intuitionistic type theory, Bibliopoplis, 1984.

[Meseguer 87] Meseguer, J.: General Logics, in H. D. Ebbinghaus et al.(editors): Logic
Colloquium '87, North-Holland(1987), pp. 275-329.

[Meyer 76] Meyer, R. K.: A General Gentzen System for Implicational Calculi, Relevance Logic
Newsletter, Vol 1, No. 3(1976), pp. 189-201.

[Ohashi 90] Ohashi, K., Yokota, K., Minami, T., Sawamura, H. and Ohtani, T.: An automatic
generation of a parser and an unparser in the definite clause grammar, Transactions of
Information Processing Society of Japan, Vol. 31 , No. 11, pp. 1616-1626, 1990 (in

Japanese).

[Paulson 89] Paulson, L. C.: The foundation of a generic theorem prover, J. of Automated
Reasoning, Vol. 3, pp. 363-397, 1989,

[Peirce 74] Peirce, C. S.: Collected Papers of C. S. Peirce, Ch. Hartshorne and P. Weiss
(eds.), Harvard Univ. Press, 1974,

|Pereira 80] Pereira, F. C. N. and Warren, D. H. D.: Definite clause grammars for language
analysis - A survey of the formalism and a comparison with augmented transition networks,
Artificial Intelligence, Vol, 13, pp. 231-278, 1980.

— Eﬁ,_

[Robinson 90] Robinson, J. A.: Natural and artificial reasoning, in Arbib, M. A. and
Robinson, J. A.{eds.): Natural and Artificial Parallel Computation, The MIT Press, pp. 277-
309, 1990.

[Sawamura 87] Sawamura, H. and Minami, T.: Conception of general-purpose reasoning
assistant system and its realization method, 87-SF-22, WGFS, IPS, 1987. (In Japanese).

[Sawamura 88] Sawamura, H., Minami, T., Yokota, K. and Ohashi, K.; Potennal of a general-
purpose reasoning assistant system EUODHILOS, in I. Nakata and M. Hagiya(eds.): Software
Science and Engineering, Selected Papers from the Kyoto Symposia, World Scientific Pab.,
pp. 164-188, 1991,

[Sawamura 90] Sawamura, H., Minami, T., Yokora, K. and Ohashi, K.: A Logic
Programming Approach to Specifying Logics and Constructing Proofs, Proc. of the Seventh
International Conference on Logic Programming, edited by D. H. D. Warren and P. Szeredi,
The MIT Press, pp. 405-424, 1990.

[Sawamura 91] Sawamura, H., Minami, T., Ohtani, T., Yokota, K. and Ohashi, K.: A
Collection of Logical Systems and Proofs Implemented in EUODHILOS I, TIAS-RR-91-13E,
Fujitsu Lab., 1991.

[Sawamura 92] Sawamura, H., Minami, T. and Meyer, R. K.: Representing a Logic in
EUODIULOS, TIAS-RR-92, Fujitsu Lab., 1992,

[Slancy 90] Slaney, J.: A General Logic, Australasian I. of Philosophy, Vol. 68, No. 1, pp. 74-
88, 1990.

[Tarski 5G] Tarski, A.: On the concept of logical consequence, in Logic Semantics
Metamathematics, Oxford Univ. Press, 1956.

[Turner 84] Turner, A.: Logics for artificial intelligence, Ellis Horwood Limited, 1984.

Appendix 1. Intuitionistic type theory and a constructive proof

INFORMATION I
SOFT_KEYROWRD T e - 3,1
3 2
SYNTAX J LxmP] Lo
INFEREMCE_RULE 3 1 STLIE R 1T e]
REMRITING_RULE | SLLLLEte-TRE TR LR PR S =Th] i
l.:(lﬁﬂ & e —— T {1, #F [T T] E A, F k) ddced
19im] (nbls
PROVER 1 T ETTY mE Gids aandlven e B Side condinton mx
DERTVED. £ | Ax. upml::l-d:j_ =m DA 08 Wl Bawidina am
i B — (i1 {1}}
THODREM Lo e, IWLAE LR ey (P I

= |] nrujj MBI (/000

(]
:r-m=~r<l::n=.:-.uL |n|-:a::~l-:-!ﬂal " EI"F,FFT‘: Rk EL"—_”T] 2
o e IE L2 |J_'-—||-_}'—|' LA : EEi (]
A RETE] ol T = L2 o

Ao PWEM L {x) EIEE
— e T} L
Ine fie, FlEm] (b)@y (PaL] CAd PPy baul

e e — A 113 : i

LEnI I {43)
[RL R CT NN T R T L Tl]

LE A E L
PRI (L
e 18 L]
R, Pl] e by
e — L L LR] a
- LR G, AR (W PR (I T TR T |
TET Twine i, iimn:ijtﬁﬂ'@ & F 5]
TEe T 1510 imine s fedn (xd il
- xRk Y

4 - - T
Wi, P8 e Cn. 0dn] L) bl (Preeaf]) M uLnrrh iminl rr:l]l'P‘vI:ﬂ'ul:u:L

St LR LR

Bl P O, AR L) T il (B

The EUQDHILOS system consists of two major parts: one for defining a user's logical
system and the other for constructing proofs on sheets of thought. The screen only displays
some sheets of thought which appeared in the example proof process.

Each sheet is a special window surmounted by a title and a row of command
buttons(icons) pointed by a mouse. Four icons from the left allow the user to scroll up, down,
left und right respectively. The fifth icon allows the user to resize a sheet of thought. The sixth
button actually has four modes to which there appear four icons; pencil and eraser icons for
proof editing, and up and down arrows for indicating the direction of reasoning: forward and
backward. The seventh icon represents copy and move modes. The two icons from the right
allows the user (o save and quit, and guit without save respectively.

On the screen are laid four sheets of thought at work, in addition to the logic menu, two
inference rules, a rewriting rule and software keyboard. The sheet_1, sheet-4, sheet_5 and

sheet_2 comespond to Fig. 6, Fig. 9, Fig. 11 and Fig. 14 in the body of the paper respectively.

The final proof on sheet_2 is obtained by connecting the conclusion highlighted on sheet_4 to

the premise encompassed by a rectangular frame on sheet_5.

— 90 —

