~ ICOT Technical Report: TR-0743

TR-0742

HELIC-1I: A Legal Reasoning System on
the Parallel Inference Machine

by
K. Nitta, Y. Ohtake., S. Maeda, M. Ono,
H. Ohsaki & R. Sakane

March, 1992

1992, 1007

Mita Kokusai Bldg, 21F (03)3436-3191 ~3

ICOT 4-28 Miia | Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

HELIC-1I:
A Legal Reasoning System on the Parallel Inference Machine

Katsumi Nitta (1)
Masayulki Ono (1)

Yoshihisa Ohtake (1)
Hiroshi Ohsaki (2)

Shigeru Maeda (1)
Kiyokazu Sakane (3)

(1) Institute for New Generation Computer Technology
4.98, Mita l-chome, Minate ki, Tokyo 108, Japan
(2] Japan laformation Pracessing Development Center

{3} Nippen Steel Corporation

nitta®icet.or.jp

Abstract

This paper presants HELIC-TT, a legal reasoning system
on the parallel inference machine. HELIC-TT draws legal
conclusions for a given case by refersing to a statutory
law {legal rules) and judicial precedents {old cases). This
system consists of two inference engines. The rule-based
engine draws legal consequences logically by using legal
rules. The case-based engine generates legal concepts by
reﬁ,-.:'rgnt:irlg sinilar aold cases. Thess cngines complemen-
tally draw all passible conclusions, and output them in
the form of inference trees. Users can use these Lrees as
material to construct arguments in a legal suit.

HELIC- 1T is implenented on the parallel inference ma-
clime, and it can draw conclusions quickly by parallel
inference.

As an example, & legel inference system for the Pe
nal Cede is introduced, and the effectiveness of the legal
reazoning and parallel inference model is shown.

1 Introduction

The primary knowledge source of a legal inference system
is & statutory law. A statutory law is a set of legal rules.
As legal rules are given as logical sentences, they are
easily represented as logical formulae. Therefore, if a
new case is described using the same predicates as those
appearing in legal rules, we can drew legal conclusions
by deductive reasoning,

However, legal rules often contain legal predicates (le-
gal concepls) such as “public welfare” and “in good
faith”. Some legal concepls are ambigucus and their
strict meanings are not fixed until the rules are applied
to actual facts. PPredicates which are used to represent
actual facts do not contain such legal concepts. As there
are no rules to define sufflicient conditions for legal pred-
icates, in order to apply legal rules to actual facts, inter
preting rules and matching between legal concepts and

facts are needed. o realize this, precedents (old cases)
are often referenced because they contain the arguments
of both sides (plaintil vs. defendant or prosecuter vs.
defendant) and the judge’s opinions concerning interpre-
tation and matching,

Consequently, legal ressoning can be modeled as
& combination of logical inference using legal rules
and case-based reasvning using old cases. Based on
this model, several hybrd legal inference systems con-
sisting of two inference engines have heen developed
{Rissland et al. 1989] [Sanders 1991(a})]. However, as
practical legal systems contain many legal rules and old
cases, it takes a long time to draw conclusions, More-
over, controlling two enzines often requires & complex
mechanism.

ICOT (Institute for New Generation Computer Tech-
nology) has developed parallel inference machines (Multi
P51 and PIMs) [Uclida et al. 1988],[Gote et al. 1988].
These are MIMD-type computers, and user’s programs
written in paralle)l logic programming language KL1
[Chikayama ct al. 1938] are executed in parallel on
them.

The HELIC-II (Ilypothetical Explanation construc-
tor by Legal Inference with Cases by 2 inference engines)
ig a legal inference system based on the hybrid model. It
nas been developed on the parallel inference machine,
and draws legal conclusions for a given ease by quickly
referencing statutery law and old cases.

In Section Two, we introduce the function and archi-
tecture of HELIC-TL [n Section Three, we explain legal
knowledge representation. In Section Four, we explain
the reasoning mechanism of HELIC-II. In Section Five,
a legal inference system of the Penal Code is explained.

2 Overview of HELIC-II

The function of HELIC-IL is to generate all possible legal
conclusions for a given case by referring to legal rules

end old cases. These conclusions are represented m the
form of inference trees which include fnal conclusions
and explanations of them.

HELIC-IT consists of two inference engines - the rule
based engine and the case-based engine - and three
knowledge sources - 2 rule base, a case base and a dic-
tionary of concepts (see Figl). The rule-based engine
refers to legal rules and draws legal consequences log-
ically. The case-based engine generates abstract pred-
icates {legal concepts} from concrete predicates (given

facts) by rveferring to similar old cases,

HELIC-II draws legal consequences using these two
engines. Sinee the reasoning of these engines is data-
driven, there are no special control mechanizms to man-
age this. A typical pattern of ressoning by HELIC-II
is as follows., When a new case (original facts) is given
to HELIC-II, the case-based engine initially searches for
::'i.mi]nr UII.'I'J. Ll aes Ml.l. E.CI'.I'ETE.'-I.'S !l'.'si'l.l. CDDCC'PLS \-'r']'lil:h Al
Lold in the new ease. These coneepis are passed o
the rule-based engine by way of working memeary|[WD),
Th&rh the rul:-ba.ﬁf.d nngim: 'I.'il.'ﬂ.“'ﬁ lﬂgﬂ.! CONREA]LISNTER WUh-
ing eriginal facts and legal concepts,

These results are gathered by an explanation construe-
tor, which then produces inference trees.

Explanation _,,{ Interenze }
r

Figure 1: The architecture of HELIC-II

3 Knowledge Representation

In this section, we will explain the representation of legal
knowledge in HELLC-IL We will show how to represent
legal rules, old cases and legal concepts,

3.1 Representation of Legal Rules

A statulory law consists of iega.l rules, Bach lega.] rule is
represenied as follows.

RuleName[Comment, Ruleln fo,
[1‘111,:1-“ -"1..: —* [[Hh --,,.EJ:]-.[C-I.. e I::‘E]1]}-

I this clavse, FuleNome i5 the rule identification,
Coemment 13 a comment for wsers and Rulefnfo 15 ad-
ditional information such as article number. The
LHS ([4,, 4, ..., 4;]) 3= the condition part, and the
RHS([[B,,.., B]. [0y, .-, 1], -]) is the consequence part.
[By, .., &) and [, are combined disjunctively.
Each literal of the LHS and RHS is an extended pred.
icale or its negation (denoted by “~" or “net”). An
ertended predicals cousists of a px&dimtc {concept), an
object dentifier and a list of attrifute = value pairs.
The following 1s an example ol an extended predicate.
An object “drivel” is an instance of & concept “drive”.
Two attribute — value pairs {agent = tom and car =
togotal) are defined,

drive(drivel, lagent = tom, car = toyotal]).

Internally, this extended predicate is treated as a set
of the triplet {obyeet, attribute, value} as follows.

{:frr'vt'l, agenl, tom}

{d:'iw:'l ,m?',!uyuz‘ul}

In & clause, we can use “not” (negation as failure)
ir additiss te “~" (logical not). By intraducing “not”,
nenmonotonic reasoning is realized, and the representa-
tion of exceptional rules and presumed facts aze easily
represented [Sartor 1991).

The futnwing are examples of IP.gal rules.

homicde0l | “ezample”, [arlicle = 199],
[personiA), person(),
action| Action, [agent = A},
tntention(Ifntention, [agent = A, action = Action,
goal = Hesull]),
death| Result, [agent = H]),
coused|Caused, [svent = Action, ef fect = Hesuli?]),
death| Resulf2, [agent = B},
not{~ illegality(Ilegal, [agent = A,

wetion = detion, result = Result?]))]
-
[[erimeQ f Homicide{Crime, [agent = A,
action = Action, result = Result2])]]).
legality0l{"example” [article = 38,
[action{ Action, [agent = A,
intention| Iniention, [agent = A, action = Action,
goal = Result]),
sel f e feneo(Result, [ohjert = detion]),
eaused|Caused, [svent = Action, ef fect = Result2])j
—
([~ sllegality{ Ilegal, [agent = A,
action = Acfion, resull = He.sm!ih]]]

The first rule is a defisition of the cnime of homicide,
which iz given by the Penal Code.

The meaning of “not(~ illegality(Illegal [.])" is
that illegality iz presumed, in other words, if Lhere
isn't proof that “~ illegality{{llegel,[...])” holds then
“riot(~ illegalify(flegal,[...]])" is true.

The second i an exception of the frst
rule. If a person did some action in defense,
Spllegalityl legal [|17 is refuted,

rule

3.2 Hepresentation of Cases

A judicial precedent consists of the arguments of both
sides, the opinion of the judges and 2 final conclusion,
We represent a precedent (an old case) as a sifuation and
some case mules, and represenl 4 new case as a sttuation.

{1} Situation

A situation consists of a set of events fobjects and their
temporal relations. An event and an object are repre.
sented as an extended predicate as introduced in the pre-
vious seckion. The temporal relations are represented as

Fesl leywrs.
problem(Casel [}, Comment, Ternporal Relations).

Casell} is the case identification, Comment i3 3 com-
ment for users and TemporaiRelationsis a list of relations
between events. To represent temporal relations between
evente fobjects, we use Allep's interval notation such as
“he fore”, “meets”, ¥staris” and so on [Allen 1984),

The following is an example of 2 situation.

problem(traf ficdccidentl12, “example”,

[be Fore(dinner], drivel), during(eceident], drivel}]).

dinner{dinnerl, [agent = john,place = raurin's]).

drive(drivel, [agent = john, car = foyotal]).
arcadent{accdent], [agent = john|).
person(john, [sex = male]).
person(mary, [sex = female]).
restaurant(marim’s, [rank = dstars|).
car{toyotal, [type = sportsCar]).

The meaning of this example s that the case
“traf fic accident 1127 consists of three events such as
“dinmerl”™, “drivel” and “accidentl”. ®"Dinnerl”™ oc-
curred before “drivel”, and “acadentl™ happened dur-
ing “drivel”. The event “dinnerl” i3 a lower concepl of
“dinner”, and it is acted by “john" in “merim's”, etc..

(2) Case Rules

Arguments by both sides are represented as a set of
case rules. The following is the syntax of a caze rule,

Fule Wame{ Comment, Rulelnfo,
(A1, Az, .o A] = [By, By, -y Bi)

RyleMName is the rule identification, Comment iz &
comment for users and Rulefnfois additional infermation
such as a related article, index for the oppeosing side's
case rules, relation to judge’s decision and so on. Lhe
LHS ([A1, Az, ..., AJ]) i5 the context of the opinion, and
the RHS {[&,, By, .., B.]) is the conclusion insisted on by
one side,

The following 15 an cxample of a case rule.

rulel01] *enurngle”,
[article = 218, insisted = prosecutor,
result = lost],
[drive{drivel, jagent = john/important,
object = toyotal/trivial]),
personijohn, [sex = male/irivial]),
peraom{mary, [sex = female/trivial]),
acerdeni{ueddent] | [ugent = joknimportant|),
causedcaused], [svent = accident] fimporiant,
ef feet = injuryl fimportant]),
injurylinjuryl, [agent = mary/trivial])]
[responsibility(respl, [agent = john,
object = ken,reazon = accidentl])]).

The meaning of this case rule js:*In the case that a
traffic accident caused by John injured Mary, John had
a responsibility of care Lo Mary.” This rule concerns ar-
ticle 218 of the Penal Code and was msisted on by the
prosecutor, but the judge didn’t employ this rule. On
the THS, “ef fect = injuryl™ is an impertant fact from

the legal point of view. Therefore, this fact 15 marked
as “impartant”. We can use “exact”, "impertant” and
“trivial" to represent levels of importance. This infor-
mation i used to calculate the similarity hetween two
situations,

Arguments in a ease are sequences of case rules. As
both sides trv te deaw contradictory conclusions, an old
case contains case rules whese conclusions are inconsis-

bent.

3.3 HRepresentation of Concepts

All concepts in legal rules and cases must be contained
in the diclionary. In other words, each event and chject
in & situation are instances of these concepts.

In the dicticnary, a super concept, a concep! and a list
of attribufes are defined as follows.

chject{ereature, [j).

ereafure{person, [age, sex|).
person{peraon,]).

personfin fant, []).

ereaturellion, []).

action{drive, [agent, car, destisntion]).

The similarity between concapts is defined by the dis-
tanee in the hierarchy (see Fig.2). For example, “baby”
is clozer to “in fant” than to “lien” because it requires
two steps for “haby" to reach “infant”™ but three steps
to reach “lion” in this hierarchy.

creature
/F'G'FEOI'I lion
infant baby

Figure 2; Hieracchy of coneepls

4 Reasoning by HELIC-II

In this section, we will explain the reasoning mecha-
nisms of the rule-based engine and the case-hased en.
gine. These engines are implemented in the parailel logic
programming language KL1 and run an the parallel in-
ference machine.

4.1 A Rule-based Engine

The function of the rule-based engine is to draw all le-
gal consequences by the forward reasoning of {egal rules,
uging original data (2 new case) and results {rom a case-
pased engine.

The rule-based engine iz based on the parallel
theorem prover MGTP [Model Generation Theorem
Prover)[Fujita et al. 1991] developed by TCOT.

MGCTP solves range restricted non-Heorn problems by
generating models. For example, let’s take the following

clauses.
Cl: true — pla); g(B).
Ct p{X) — (A nr(X).
C3 (X)) — 8]
Cd: gl X} — false
MO=()
/01 \

M1={p(a)} M2={g(b)}

I e

M3={p(a).qla)} M4={p(a)r(a)) pe
G4 c3
X M5={p(a),r(a),s(a)}

Figure 3 MGTP proof tree

MOTP calculates madels which satisfy these clauses
as follows (see Fig.d). The proof starts with nall modsd
M0 = {#}. By applving Cl, M0 is extended into M1 =
{p{a)} and M2 = {q(F)}. Then, by applying 02, Af1 1=
extended into M3 = {p{a),gle)} and M4 = {p(a),r(a)]}.
Using C4, M3 and M2 are discarded. By CJ, M4 is
extended to M35 = {pla),r{a),s(a)}. M3 is a model
which satisfies all clauses.

In MGTD, each clause is compiled into a KL1 clause,
and each KL1 clause is applied in parallel on the parallel
inference machine. 1n the problem in which the proof
tree has meny hranches, parallel inference performance
becomes high.

Tey vse MGTE as a rule-based engine of HELIC-TT, we
extended the original MGTF as follows.

1. Realization of "not {negation as failure)™: We
made MGTF able to treat “negation as failure”
based on [Inoue ef ol 15%1). For example, the fol-
lewing (7 is treatod as ©°, and the model is extended
in two ways (see Fig.d). Here, *k” is o modal opera-
tor, and "k(r(X))" means that the model is beheved
to contain a datum which will satisfy r{X) in the
future,

O omof(r{ X)) = (X)L
C' dom(X) — k(r{X)}i~ k(r(X)), s(X)

After MGTP generates models which satisfy all
clauses, the rule-hased engine examines each of
them. For example, if a model conteins both ~
kir{a)} and rie), or if a model contains k{ria)) and
deesn't contain rial, the maodel 15 discarded.

Ctepte)

c

M ={p(a)kir{ali M™ ={p{a),~ki{r(a)).s(a)]

Figure 4: Negation as fallure of MGTP

2. Realization of the multiple context: The rule-
based engine uses both original facts {a new case)
and results from the case-based engine as the ini-
tial model. The case-based engine may generate
dala which conflicks with each other such as “q{b)"
and "~ g(k)". Therefors, before reasoning, the rule-
based engine has to sphit the imitial model into sev-
eral ones so that each model doesn't contain any
conflicts {see Fig. 50

However, the case-based engine has not generated
all results when the role-based engine begins to res-
son because the reasoning of both engines is data
driven. To obtain the pipeline effect, we developed a
function to register predicates which may cause con-
flicts, and to split the model when svch predicates
reach the rule-based engine. For example, in Fig.3,
il ~ g(k) reaches the rule-based engine, the model
ts split before g(b) is reached. We implemented this
mechanism by using a similar modal operator as the
“L-operator”.

. Keeping justification: To construct inference
trees, the rule-based engine must keep the justifica-
tions for each consequence. A justification consists

ﬂ.nﬂwﬁ.ﬁﬂ'

The Case-based Engine
plaintitfs dalendant's
opinian opinicn
{~aib)} fafbl}
g

{p(a),~qb).g(bl}

The Aule-based Engina

initial madals
[p{a),~q{bl {pia).qib}

Figure 5: Splitting a model

of a rule name and data which matches the LHS of
the rule.

4. Temporal reasoning: We prepared a small rule
set of temporal reasoning [M]en lglﬂ"ll to help in de-
scribing the temporal relation. The following are
example rules.

be fore{A, D), before(B,C) — before(A, 7).
meets(A, B), overlaps(C, B) —
everlaps A, f?], du rirl.g{.”., l':]l, st-::rfa(}i, &y

With these extensions, the rule-based engine has many
proof tree branches even if clauses don't have the dis-
junction such as Cl and C2 in Fig.d. Therefore, the
rule-based enpine has & lot of parallelisms in its reason-

ing.

4.2 A Case-based Engine

The function of the case-based engine is to generate legal
concepts by using similar old cases. "The reasoning of the
case-based engine consists of two stages (see Fig.6).

sitvation Tima
[Tem i bary bo-mi_Injury)
l caugality *
150 siage:
Sgarching simdlar cases Caset
a5ad
situation Tima Cazal
|: o mL:E: E 3 b I_L_I [mlurr h
cate |'|.r|i -------------------- -
! P (O O
2nd stage: 1 [“_
Applying case mles 5

Execuling Matching Matching
r LHS ces| LHS

L J

legal eoncepts
[eausality, intension, etc.)

Fjgurc G2 Hr:n_qnning b:.-' the rase-based cng:inr

1. Searching similar cases:

The zole of the first stage 15 to seazeh for similar
cases from the casc base, At first, the case-based
engine consirucks & sequence of events for cach case.
As the situations of the new case and old cases are
described as a set of events/fobjects and their tem-
poral relations, it is easy to construct a sequence of
events for each situation.

Then, the case-based engine tries to extract com-
mon subseguences from event sequences of the new
case and each old case. Tor example, let's take the
following two sequences.

51t [, meets|strikel injuryl),
during(rundwayl, injuryl),.|
52 [, be forelkick?, sneak2), .|

In this example, the temporal relation between
“ghrikel™ and “runAwayl” is the same as that of
“kick?2" and “sneak?”. Furthermore, “strikel™ and
“kick2" have a common upper concept “violence",
and “runAwayl” and “sneak?” have a ¢ornmon up-
per concept “escape” in the dictionary. Therefore,

we regard [strikel, runAwayl] and [kick?, sneak?] as
mapped subsequences of 51 and 52 (see Fig.7).

violence escape
Istrike 1 injury 1
st —H
runAway 1
kick 2 sneak 2

% b—f b

Figure 7 Subsequence of events

The similarity between two cases s evaluated by the
length of the longest mapped subsequence, Several
cases whose similarities are bevond a threshold are
selected in the first stage.

2. Applying case rules:

The rale of the second slage is Lo apply the case
rules of selected cases as follows [Branting 1989,

At first, the similarity between the LIS of a case
rule and a new case is evaluated, For example, let's
take “rulel0i” in section 3.2 and the following new

CASE,

person{ ki, [|].

babyl(jene, []).

cyc{e(cydg?r[qggrti = fn'ﬂ.l -:rf:ajad = I:.nnu.’aﬂ]].
colliston{collision?, [agent = k).
sprain{sprain2, [agent = jane]).
intention(intention?, [goal = injury2]).
injury(infuryl, [agent = jane]).

The engine tries to map the LHS of “rule00l” to
a new case. As the following pairs of event fobject
have common upper concepts in the dictionary, we
map these pairs (gee Fig.5).

john + bill
mary - jane
drivel = cycle?
toyotal vr hondal

LHE of ruled
svenl
abject ” agent wt carsed!
ageni

Figure 3: Mapping networks

accident1 1o collision?
injuryl ~+ sprain2
cauzed] — cauzed?

The sirnilarity is evaluated by eaunting the number
of mapped links in Fig.8. As we explained in sec-
Liem 3.2, an anmelalion [exact, important, trivial) is
attached to cach link in the network, These annota-
tions and the distances between conecepts are used as
weights to evaluate similarities. Even if some condi-
tions of & case rule are not satisfied, but the impor-
tant conditions are satisfied, then the LHS may be
j'l.ldgt‘d s SJI.[ILII]EI.I' Lo t-l]t TLEWY CohEs. FL'H.' :xumpl&, ;.I.'I.
Fig.8, though there 13 no node which can be mapped
to “negligencel™, “rulel0]” may be selected as sime-

ilar.

Mewt, the case-hased engine selecls case rules whose

T HSes are similar to the new case, and executes Lheir

RHSes.

The matching and executing case rules are repoated
untii there are no case rules left to be fired.

On the parallel inference machine, sach stage s ex-
vcnlel in parallel. In the first stage, belore searching,
cases are distributed to processors (PEs) of the parallel
inference machine, and then a new case is sent to each
PL. Each PE evaluates similarities between the new case

and cld cases, and selects similar ones.

nEwW CaMe

[eyete? agent billl......

dictionary

orie nput mode

1dr{v¢1,_a.gent.tﬁnd | Hiﬂ-l.ur.myaliuJ

Figure 9: Hete-like networks of KLL processes

In the second stage, case rules are distributed to PEs,
and the LHSes of each case rule are compiled into a Hete-
like network of KL processes {see Fig.9). Then, triplets
({object atiribute, value]) which are facts of the new
case are distributed to each PE as tokens.
matching based on similarity, each one-input node refers
to the dictionary of concepts, and each two-input node

To realize

not only examines the consistency of pairs of tokens but
eviluates their similarities with the LHS.

5 A legal reasoning system for
the Penal Code

We developed an experimental legal reasoning system for
Lhe Penal Code.

In the Penal Code, general provisions and definitions
of crimes are given as legal rules. Though they seem to be
strictly defined, the existence of criminal intention and
causality between one's action and its result often be-
commes Lhe most difficult issue in the court. The concept
of eausality in the legal domain iz similar to the conecept
of responsibility and is different from physical causality.
Therefore, to judge the existencs of causality, we have to
take into account various things such az social, political
and medical aspect,

We show the function of Lhe reasoning system of the
Penal Code using Mary's case. We selected this case

from the qualification examination for lawyers in Japan.

Marv’s Case:

On a eold winter's day, Mary abandoned her
son Tom on the street because she was very
pﬂﬂ[. TI!JITI_ WS j'I.IEL '1' I'.I'IDHL]'[E D].d.. .]Ii.m fﬂund
Tom crying en the street and started to drive
Tem by car to the police station, However, Jim
caused an accident on the way to the police.
Tom was injured. Jim thought that Tom had
died of the accident and left Tom on the street.
Tem froze to death,

The problem is te decide the erimes of Mary and Jim.
The hard issues of this case are the following.

1. Causality between Mary's action and Tom's
death:

If Mary hadn't abandoned Tom, Tom wouldn't have
died. Moreover, the reason for his death wasn't in-
jury but freezing. Therefore, some lawvers will judge
the existence of causality and insist she should he
punished for the crime of “abandonment by person
responsible resulting in death”. Un the other hand,
other lawyers will deny any causality because causal-
ity was interrupted by Jim's action.

2, Causality between Jim’s action and Tom's
death:

Jimm did several actions such as “pick up”, “drive",
“rause accident” and “leave Tom™. Among them,
“canse accident” will be punished by the crime of
“injury by negligence in the performance of work™,
and “leave Tom” will be punished by the erime of
“death by negligence”. Moreover, if there is causality
betwesn “cause accident” and Tom's death, Jim will
be punished by the crime of “death by negligence
in the performance of work™ which is very grave
As the main reason of Tom's death is freezing, it is
difficult to judge the causality.

Though the Penal Code has no definite rule for the
causality, lawyers can get hints from old cases, For ex-
armple, let's take Jane's case which was handled by the
Supreme Court in Japan.

Jane's Case:

Jane strangled Dick to kill him. Though Dick
only lost consciousness, Jane thought he was

dead. Then, she took him to the seashore, and
left him there. He inhaled sand and suffocated

to death.

In the court, there were arguments between the prose-
cutor and Jane. The prosecutor imsisted Jane should be
punished by the erime of Aomicide because of the follow-

I Teasons.

P1: “Strangling” and “taking to the seashore™ should be
considered the one action of performing the homi-
cide. Therefore, it iz evident that there was an in-
tention to kill Dick and causality bhetween her aclion
and Dick’s death.

P2: There is causality between “strangling” and “Diek’s
death”™ even though “strangling” wasn't the main
reason for his death.

(O the contrary, Jane insisted her actions didn’t sat-
isfy the condition of the crime of homicide because of the

FI.'.I" oWl g TEASON.

J1: “Strangling” should be punished be the crime of
“aftempted homicide, and “taking to the scashore”
should be punished by the crime of “mansiaugh-
ter coused by negligence” because there isn't canszal-
ity between strangling and Dick's death, and there
wasn't an intention to kill him when taking him to
the seashore.

We represent Mary's situation and Jane's case rule as
follows.

Mary's situation _
problem(“mary's case", “ezample”,)
abandon(abal, [agent = mary, objeel = torm]).
pickup(pic2, Jagent = jim, object = fom]).

traf ficAccident(accl, [agent = jim]).

Jane’s opinion
rulel02{“Jane's case”
[article = 218 insisted = de fendant,
result = losi],
[suf focate(sufl, [agent = janetrivial,
object = dick firivial]),
intention(intl, [agent = jane/trivial,
object = act] famportant,
goal = deathl fimportant]),
deathdeathl, lagent = dick/trivial]),

caused|covsed], [event = actl/important,
ef fect = lost] fimportant]),

-
|~ caused|{caused], [svent = acll,

ef feet = death3])]).

The case-based engme of HELIC-II generated
“es caused[] D, fevent = accl, of fect = death9]]” by ap-
plying ruledfZ.

ln Mary's case, HELIC-II generated 12 inference Lrees.
Some of them are based on the prosecutor’s opinion and
others are based on the defendant’s opinion. The root
of each tree is a pessible ciine such as abandonmend
by @ person responsible resuiting in dealk, muonslough-

ter coused by negligence, etc.. The leaves are the initial
date of the new case, and intermediate nodes are conse-
quences by case rules or legal rules (see Fig.10)

Figure 10: An Inference Tree

We measured the calculation time to draw a conclusion
for Mary's case on the experimental parallel inference
machine Multi-F51. The number of rules used was about
%0 and the number of cases used was about J0.

Fig.s 11 and 12 show the performance of the case-based
engine, and Fig.13 shows the performance of the rule-
based engine. These graphs show the effectiveness of the
parallel inference,

6 Conclusion

We introduced the parallel legal reasoning system
HELIC-II. The advantages of HELIC-[I are as follows.

Tma(ses) Spetdur
SO0 it
400 1 e
L
-
3001 ’

s Spoedup il
2009

& o 20 3a 40 0 60 7O
Mumber of peocessors

Figure 11: Performance of stage 1 of the case-based en-

gune

Temagae i Spedthr
1700 62
1005 R

[iSslely b ao

BOG 30

400 el

2007 o

v
Of a 20 12 40 50 04 ?ﬂa

MNumbeer af procassors

Figure 12: Performance of stage 2 of the case-based en-
gine

Tmelvec.)

Figure 13: Performance of the rule-based engine

1. The hybeid architecture of HELIC-11 is appropriate
ta realize lega! reasoning. As the reasoning of both
engines is data-driven, controlling these engines is
easier.

2. The knowledge representation and inference mech-
aniging of HELIC-IT are simple but convenient to
represent legal rules and old cases.

3. By parallel inference, HELIC-1I draws conclusion
quickly. As the rule base and the case base of the
legal domain are very larse, quick searching and
quick reasoning are important to develop practical
systems.

4. Though it is troublesome to represent cases in de-
tail, the rules of temporal reasoning help to describe
CaERE-

There are many lasks for cxtcnding HELIC-TI. The
follawing ate examples.

o Though the case based engine 13 focusing on
the similarity belwsen two cazes, we have to
develop & mechanism te contrast two cases
[Rissland et of. 1987).|Rissland ef al. 1989]. By
comparing two inference trees, it is possible to con-
struct & debate system.

¢ Todescribe legal rules in detail, we bave to integrate
an extended logic system such as the logic of belief
and knowledge with temporal logic on MGTT.

» Toimprove the power of the similarity based match-
ing of the case-based engine, we have to introduce a
derivational analogy mechanisin.

* As inference trees are not suitable for allowing
lawyers to understand the inference stops, they are
represented in nalural language,

References

[Uchida ef al. 1988] Shunichi Uchida et al. . Research
and Development of the Purallel Inference Systemn
in the Intermediate Stage of the FGCS Project. Tn
Froc. Int. Conf. on Fifth Generntion Computer Sys-
tems, ICOT, Takyo, 1188, pp.16-46.

[Goto et al. 1988] Atsuhiro Goto et al. . Overview of the
Parallel Inference Machine Architecture. In Proc.
int. Conf. on Fifth Generation Computer Systems,
ICOT, Takye, 1988, pp.205-225,

[Chikavama ef el 19858] Takashi Chikayama et al,
Overview of Lthe Parallel Inference Machine Operat-
ing System (PIMOS). In Frec. Int. Conf. en Fifth
Gereration Computer Systems, ICOT, Tokyo, 1988,
pp.230-251.

[Mitta ef al 1991] K Nitta et al. . Experimental Legal
Reasoning System on Parallel Inferenice Machine. In
Frog, PPAT Workshop of 128h [JCATL Sydney, Aus-
tralia, 1991, pp.139-f45.

[Rissland et al. 1987| E.L. Rissland et al. . A Case.Based
System for Trade Secrets Law. In Proe. fut. Confl on
Artificial Intelligence and Law, Boston, USA, 1987,
pp-Gl-66.

[Rissland et ol 1989] E.L. Rissland et al. . Interpreting
Statutory Predicates. In Proc. fal. Conf on Arli-
feial Dutelligence and Lew, Vancouver, CANADA,
1989, pp.46.53.

[Sartor 1‘391] G, Sastor. The struciure of Norm Condi-
tioms 2 Nonmonotonic Reasening in Law. In Prec.
Mt Conf. Artificsal fndclligence and Law, Oxford,
Uk, 1991, pp.155-164.

{Hrarting 18849 L.K Branting Representing
and Reusing Explanations of Legal Precedents. In
Proc. Int. Conf. on Artificial Intelligence and Law,
Vancouver, CANADA, 19589, pp.103-1E0.

[Sanders 1991(a)] K. Sanders. Representing and reason-
ing about open-textured predicates. In Proe. Int,
Conf. on Artificial [ndelligence and Law, Oxford,
Uk, 1891, pp.237-144,

[Sanders 1991(b}] K.Sanders. Planning in an Open-
Lextured Domain, A Thesis Mropasal. Technical Te-
port CS-91-08, Brown University, 1991.

ujita ef al. 199 Junta et al . lodel Gensration

Fuji (. 1991] II.Fuji L. A Model G i
‘I'hecrem Frover in KKL1 Using & Ramified-Stack Al-
gorithm, ICOT TR-606. 1991,

[Tnoue ef ol 1991] K lnoue et al. | Embedding negation
as failure inte 2 model generation theorem prover,

[COT TR-722, 1991,

[Allen 1984] J.F.Allen. Towards a general theory of ac-
tion and time. Arfifictel Intelligence, Vol. 23, No.2
(1934 pp.123-154.

10—

