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ABSTRACT

In this paper, we examine “program adjustment®, a practical approach to the automatic
programming and program synthesis for concurrent programs, which automatically reforms a
roughly-made program to satisfy given constraints. The model of concurrent programs used is the
finite state process, and program adjustment to satisfy temporal logic constraints is formalized as
synthesis of an arbiter process which controls a target process (a roughly-made program).
Compositional adjustment is also proposed for large-scale compound target processes, using
process equivalence theory. We have developed a computer-aided programming environment on
Multi-PSI, called MENDELS ZOME, that adopts this compositional adjustment. Adjusted programs
can ba compiled into KL1 programs and executed in MENDELS ZONE.

1. INTRODUCTION

As practical paraliel and distributed computer systems gradually spread in the industry, there is an increasing
demand for programmers who design concurrent programs. Since it is not easy for ordinary programmers to
produce correct and efficient concurremt programs, several Kinds of computer-aided concurrenl
programming environments are necessary, including tools for verilication, debugging, perormance
evaluation, and symhesis of correcl and efficient programs. MENDELS ZONE [Uchihira8?, Honidengg,
Uchihira%0a)] is a computer-aided concurrent programming environment that has been developed to make
the difficult task of concumment programming easier, especially for the Paraliel Inference Machine Multi-PSI
and its kermel language KL1. This paper focuses on the program synthesis feature of MENDELS ZONE.

Automatic program synthesis from some formal specification is not practical for the following reasons:

= |t is not easy for ordinary programmers to write complete formal specifications.

« Autornatic synthesis requires huge computing costs to produce large-scale programs,

» Synthesized programs may be inafficient,

For example, some works [Manna&Wolper84, Clarke&Emerson82] about concurrent program synthesis
from temporal logic specification are very suggestive, but they can not go beyond toy program synthesis.
More promising approach is the stepwise refinement which constructs (efficiently) executable programs from
formal specilications through a number of provable correct development steps [de Bakker89]. However, it
still has difficulties to specify 2 complete formal specification, and has a great gap from actual programming.

Therefore, we propose another approach “program adjustment® in place of automatic synthesis and
refinement. Program adjustment means 1o reform a roughly-made program automatically to satisty given
constraints, Here, we consider only timing constraints for concurrent programs that can be specified by
temporal logic. In this context, "a roughly-made program” is defined as a program which may be incomplete in
its timing. The main idea of program adjustment is that a concurrent program may eventually satisfy some
kinds of timing constraints by aliminating harmful nondeterministic allernatives (i.e., partially serializing a
concurrant program). This program adjusiment is practical for the following reasons:

= It is not very dificult for ordinary programmers to produce a roughly-made concurrent program, which
satisfies at least functional requiremeants. A more difficult task is 1o design and debug the timing of programs.
* Many bugs derive from harmmful nondeterministic alternatives.

= It is easy for ordinary programmers to write timing constraints, such as deadlock-free and starvation-free
constraints.

= A roughly-made program can be intended to be effictent by a programmer.



In this paper, a concurrent program is modeled with the finite state process, which resembles the transition
system in CCS and the finite automaton. A program is compositionally constructed from finite state
processes with the composition operalor. In the case of a finite state process, program adjustment means to
adjust a roughly-made process to salisfy given constraints by adding an arbiter process which is
synchronized with and controls the roughly-made process. When a target program becomes large, the
arbiter synthesis may cause computing cost explosion. Therefore, we propose compositional adjustment, in
which local arbiters ara synthesized in each composition slep. In each step, the reduction of the finite state
process, based on process equivalence theory, can ease compulting cost explosion. Here, we introduce a
new process equivalence relation to manipulate liveness properlies, because a traditional bisimulation
equivalence of CCS can not. This compositional adjustment has been implemented in MEMDELS ZOMNE.

The remainder of the paper is organized as follows. Section 2 defines Finite State Processes (FSP) and thelr
equivalence relation and composition operator. Compositional adjustment of FSP is described in Section 3.
An overview of MENDELS ZONE is briefly shown and its compositional adjustment is explained in Section 4.
Finally, Section 5 shows a simple and nontrivial example of program adjustment, followed by the conclusion
in Section 6.

2. FINITE STATE PROCESSES

The basic model for concurrent programs is the finite state process [Kanellakis & Smolka30], which can
specify the finite state transition system with liveness conditions. First, we define a Finite State Process
(FSP) and an equivalence relation for FSPs. Then, several operators (composition, relabelling, and
reduction) on FSPs are introduced and their properties are shown,

2.1 FINITE STATE PROCESSES

[Detinition 1] {(Finlte State Process)

A Finite State Process (FSP) is a seventuple P=(5 A L.6.x,50,F), where:

+ 5 is a finite set of states,

+ Ais afinite set of actions,

= | is a finite set of synchronization labels,

# 5 SxA—=5 UL} is a deterministic transition function (here, &(s,1)=L means action t € A is disabled in
state s e 5),

« 1 A — (Lu {1}) is a labelling function, (here, Tt means an invisible internal action},

» 5pc 5is an initial state, and

o FC Sis a set of designated states. B
[Example]

P= ({50,51,52,83}. (11,1213}, {a.b}. &, n. 0. {s3}) where &(s0,11) = s1, &{s0, 12) = s&, &(s1.12) = 53,
8{s2t1)= 53, 6(s3,13)= s0, n(t1)=a, n(i2)=b, m(t3)=1. W

NOTE: action/label, a double eircle means a designated state.
Fig.1 Finite State Process

To begin with, several notations are introduced. Let X be a set. The set of all finite sequences over X, with an
empty sequence & (without &), is denoted by X* (X+, respeclively), and the set of all infinite sequences over
X is denoted by X%, @ means "infinitely many”. X* is defined by X™ = X* w X®. For@ e X*, 8() means the i-
th element in sequence 8, &k means the subsequence 6(1) B(2)...6(k) of 8, and |8 is the length of 6. Let
P=(S,A,L,5,1.50,F) be an FSP. A transition function can be extended such that & : § x A* — Su{l}, ie,
5(s.0a) = 5(5(s.8),a). Nole, 5(s.e) =5. Since a transition function is deterministic, a current state can be



uniquely determined from an initial state and an action sequence. We call an action sequence a behavior.
Similarly, we can extend a labelling function such that = A* — (L {t})*. In addition, =*(8) is defined as the
sequence gained by deleting all occurrences of T from x(#). A set of reachable states from state s in P is
defined as Rp(s) ={5'| 3Be A". 5' = 5(5,8) } and Rp+{s) ={ &' | Ivc A+, 5" = §(5,8) }. Also, a set of all
possible action sequences (label sequences) of P is defined as L(P)}={ 8cA* | &(sp.0)=L ) (Lx(P)={
x*{8)e L* | 8 L(P)], respectively). Since interest is in the infinite behavior of FSP, we introduce a set of
infinite action sequences Lgy(P)YS (ADUA*{AMY where A means deadlock:

LelP) = { Be AD | 1svioB{s0.8lk)=L | v | Be A (A} | 3k.1=Visk.b(s0.8(i)2 ) and Yae A. &&(s0,8]k).a)=L and
a(j)=n for Yj=k)

Mote that if 8 & L(P) is a deadlock sequence (i.e., an inevitably finite sequence), then 8 is represented as
BADE Ley(P). Finally, LeaIM(P) S Lgy(P) is defined as Ly,3IM(P)} = { 8] 8 € Ly(P) under the faimess condition
} where the fairness condition means wheangver a behavior 8 infinitely often passes through some state s,
every action a enabled at s must appear infinitely often on @ (i.e., if 5 = &(s0.8];) for infinitely many i and
&(s,a)=L, then 5 = &(sg,8];) and 8(j+1)=a for infinitely many j). Finally, L(P)/L is introduced by definition:
L{P)L ={ 8" | 2ee L{P).¥i.(8"(i)=¢ if 8{i}c L, otherwise 8'(i)=6(i))} Intuitively, L(P)/L consists of a set
of behaviors of P in which all elements of L are deleted.

FSP is a transition system with livenass conditions. In FSP, livenass conditions are represented by
designated nodes that indicate satisfiable behavior of FSP as follows:

[Detinition 2] (Satisflable Behavior)
Let P=(S,A L& r 350,F) be an FSP. 8 e AD jgs a satisfiable behavior, If &(sg.0|k}e F for infinitely

many k = 1. Lp{P}'= A% is a sel of all satisliable behaviors on P, |

Note thal a salisfiable behavior corresponds to an accepling run of w-automaton,

[Definition 3] (Completeness of FSP)
Let P=(S A L,8,x,50,F) be an FSP. P is complate if ¥s e Rp(sg). 7s'e Rp*(s)jand s' e F. ]

A state se Bp(sg), having no path to designaled nodes from g, is called an unsatisfiable slate. A behavior
reaching to an unsatistiable stale is called an inevitably unsatisfiable behavior,

[Lemma 1]
If FSP P is completa, then Ly /8INP)C Lyy(P). n

This lemma means that if P is complete, then a random transition over P leads to a salisfiable behavior,
2.2 EQUIVALENCE OF FINITE STATE PROCESSES

We now introduce the notion of ntw-bisimulation equivalence that is an extension of Milner's weak
bisimulation equivalence [Milner89). mtw-bisimulation equivalence has been originally developed for
compositional verification [Uchihira80b). In this paper, it is used to reduce a FSP to a smaller and equivalent
one in compositional adjustmenl.

[Definition 4] (tw-divergence)
Let P=(5,A.L,5,n.50.F) be an FSP. s € §is rw-divergent (sT) if vn>0. 3s’c S. 30 A*, [6] =n, mA(0)=e

and 5'= 8{s.8). n

[Definition 5] (ntw-bisimulation Equivalence)
Let P1=(51,A1,L1.81,x1,501.F1) and P2 = (82 A2,L2,82,n2,502.F2) be FEPs. P1 and P2 are mtew-

bisimulation equivalent (P1=g P2), if there is a binary relation R < S1x52, such that (sgy.sp2)eR,
and Vsl e 51. vs2 e 52. (54,52)e R +=»

(1) 89 € F1iff s2 ¢ F2,

(2) s4T ifi g2 T,

{3) ¥ty € Aq. Vsq' e Sq. (if 51" = B1{sq,11) then 38 e Ap".3s2'e S2. rl*(11)=n2"(8), 52' = §2(s2.8),
and (s1'.52)eR.

(4) Yio e Ap. Wso'e So. (if 82" = Bo(so12) then 38 ¢ Aq™ . 381" e 51 . r2%12)=x17(D), 51" = 81(51.8),
and {s1'.52" e R. [ ]



mra-bisimulation is extended so that it can discriminate designated states and divergence, which can not be
discriminated by the weak bisimulation. The following lemma is derived from these discrimination abilities.

[Lemma 2]
If P1 is complete and P1=pgP2, then P2 is also complete. ]

[Definition 6] (Reductlon)
For a given FSP P = (S,A.L,6.r.50.F), a reduction of P, red(P) = (St,Ar,Lr,br,xr,sr0,Fr), is an FSP such that P

=rre Fed(P) and |Sri<|S). n

The smaliest red(P) is construcled effectively by the relational coarsest partitioning algorithm [Paige &
Tarjan87, Kanellakis & Smolkag0] such that all states of P that are mrw-bisimilar to each other are brought
together into a single state of red{P).

2.3 OPERATORS ON FINITE STATE PROCESSES

Concurrent programs are constructed as a composition of several FSPs that are synchronized with each
other. The composition and relabelling operators for FSPs are introduced and their important properties
(substitutivity and reflectivity) are shown,

[Definition 7] (Composltion Operator)
For P1=(S1.A1,L1,51,x1,81g,F1} and P2= {S2A212562n2,s20,F2), a composition P = P1|P2 is
defined as follows:
P=(S1x82x{0,1}2, (Alulidie}) x (A2u {idle}), L1uL2,8,x,(s10,520,0,0).F), where
5 (S1282x(0,1}2)=(A1{idle)}x(A2ufidle}) —S1xS2x{0,1}2 such that
&((s1,52,11 12),(a1,a2))=
v (61(51,a1),52(s2,a2),11' 12') where fi'=1 #f Bi{si.al)e Fi, otherwise f'=0 (for i=1,2),
when n1{al)=r2{a2)=t, and fi=f2=1,
#{81(=1,a1),82(s2,a2),1" 12') where 1'=1 i Si(si,ai)e Fi v fi=1, otherwise 1i'=0 (for i=1.2),
when n1(ai)en2{a2)=t, and ({1=0vf2=0),
= (81({s1,a1}.52.11".0) whers f1'=1 if 51(=1,a1)e F1, otherwise 11'=0,
when m1({al)e (L1nL2), a2=idle, and f1=f2-1,
« (81(s1,a1),82,11.12) where f1'=1 if §1(s1,a1)eF1 v f1=1, otherwise 11'=0,
when ni{at}e (L1~L2), a2=idle, and (f1=0vt2=0),
= (51,62(52,a42),0.12') where f2'=1 if §2{s2,a2)e F2, otherwise 2'=0,
when x2(a2)eL1nL2, al=idle, and H=f2=1,
= (51,62(52,a2).1 12" whare {2'=1 if 52(s2,a2)e F2 v 12=1, otherwise 12'=0,
when r2(a2)e LinL2, al=idle, and ({1=0vi2=0),
« ptharwise 1,
r: (Aqufidle}xAzu{idie}) — L1ut2uft} such that
= n{{aq,az))=m1(aq)=n2(az) if a1 € A1 and age A2,
e n{{al,idle))=n1{al) if a1 A1,
« m((idle,a2))=n2(a2) if a2 A2,
and F'={ (s1,52,f1,12) | fi=f2=1). (]

Remark that processes are synchronized at actions with same labels. This composition is similar to
composition of CCS [Milnergg] except for its treatment of designated nodes. The following relabelling
operators is used to relabel actions so that actions which are synchronized in composition have same labels.

[Definition 8] (Relabelling Operator)
For P=(S5,AL.5,7,50.F) and a relabelling function f:L—L"u{t}, P'=P[f] is defined as follows:

P's(S.A L6 50.F), where

« n'{a)=f(n{a)) if m{a)=t,
= ma)=t if x{a)=1 ]
[Example]

« P1={{s0,51,52),{t1,12,13,14,15),{a1,b1,c}.51 %1, 50,{s1}) where

51(s0,11)=s1, 51(s0,12)=52, 51(51,13)=52, §1(52,t4)=51,841(s1,15)=51,n1(t1)=a1,
ni(t2)=b1, =1(13)=b1, =q(id4})=al, =q(15)=c.

« P2=({s0,51,52}.{t1 12.13,14,15}, {a2,b2,d}, §2,%2,50.{s2}) where



82(s0,11)=51, B2(50,12)=52, &2(s1,13)=82, §o(s2,14)=s1, 52(s2,15)=582, n2(11)=a2,
ra(12)=b2, =z{13)=b2, nz(14)=a2, np(15)=d.

= relabelling functions: fi{ai}=a, fi(bi)=b, and fi{l)=| for other labels (i=1,2}.

« P1[{1]|P2[12] = ({sD,s81,s2,583,54} {(11,11),(12,12), (13,13).(14,14),(15,idle),(idle,15)},
{a,b,c.d}, & =, sp, {s3,54])) where

5(s0.(t1,11))=81, &(s0,(12,12))=82, &(s1.(13,13))=s3, &(s1.(15,idle))=51,
5(s2,(14,14))=54, &(s2, (idle,15))=s2, BH(s3,(14,14})=581, &(s3,(idle,15})=52,
§(s4,(13,13))=52, ©&(s4.(15,idle}}=51,

ni(t1,11))=a, =((t2,12))=b, ={{13,13))=b, =n((t4,14))=a, =({15,idle))=c, =((idle,15})=d.

P[] | P2[f2] : v
ftit1ya {1212)%0

(15, idla)/e

' (idle 15
Fig2. Composition

[Definition 9] (Projection)
Let P1 and P2 be FSPs. A left projection L(P1|P2)lleft is defined as L(P1[P2)lleft = { B1/{idle} |
30e L(P1]P2). 8(i)= (01(i), 02(i)) ). Similarly, a right projection L(P1|P2) Lright is defined. In the same
way, projections of Ly, L/, and Ly are defined. |

[Lemma 3] (Reflectivity)
Let P1 and P2 be FSPs. If P=P1|P2, then Ly(P) LlettT Ly(P1) and Lp{P}lright< Lg(P2). B

[Lemma 4] (Substitutivity)
rtw-bisimulation equivalence is preserved by composition and relabelling; that is, if P=gryQ.
then P|R=g,,Q|R, and Plfl=p,Q[f]. W

Reflectivily and substitutivity are used in the following the basic adjustment and the compositional
adjustment, respectively.

3. PROGRAM ADJUSTMENT

This section proposes compositional adjustment of FSP. Program adjustment means to adjust a roughly-
made process to be complete by adding an arbiter process. First, we begin with basic adjustment.

3.1 BASIC ADJUSTMENT

[Problem]
Input: An FSP P=(S A L.5.r50.F),
QOutput: A maximally permissive FSP C=(S¢ A, Le, 8¢, me.50¢,Fe) such that PC is complete.

Here, "C is maximally permissive™ means "vC', f P|C' is complele then L(C) < L{C)". =



Here, C is called an arbiter. The arbiter C restrains the target FSP P from falling into unsatisfiable states by
eliminating harmful observable transitions.

[Algorithm 1] (Single Arblter Synthesis)

(Step 0) P"=P.

(Step 1) Find a set of unsatisfiable states Su<S' in P'=(S". A", L& n",50",F). If there are no
unsatisfiable states, go fo Step 4.

(Step 2) Construct a pseudo-arbiter C' from P' as follows:

Al first, t-closure Gt is defined as

Crls, a) ={ &' | 30, (s'=58(s,0), n*(B)=a) ) for ¥se S' and VacL' e,

Cr(Ssub.a) = Uge Seyub Ct(s.a) for ¥Ssub< 5'and Vael',

then it is defined that C' = (5S¢, Ac', L, 8¢, g, Ct(sg', £), S¢). where

sc=25', Ac={ 1, | aeLju ts | € S, and

for Vael, Vs'eSc',

= 8¢'(s'tg) = C1(s',a)e Sc’ if Crfs',a)Su=0,

# §c'(s' 1) =L if Ca{s"a)Su=0,

. SC.{E'.ts‘}-E'. and

rc'(ta)=8 and ne'(lg’)=t for Vae L', Vs'e Sc'.

Remark that "8¢'(s 1) =L if Ct(s",a)nSu=9D" means elimination of all behaviors which can nol be
dislinguished from inevitably unsatisfiable behaviors by a label observer.

{Step 3) P'=P"| C', and returmn to Step 1.

{Step 4) Let a final pseudo-arbiter C' generated after applying Step 1 - Step 3 repeatedly be a arbiter C.

It C is empty {i.e., all behaviors are eliminated), C is called unrealizable, otherwise, called realizabla.

[Theorem 1]
If a FSP C=({S¢,Ac Lc.fic.mc,50c,Fel is realizable for a given FSP P=(S,A.L,6.%,50.F) in the above algorithm,
then P|C is complete and C is maximally permissive,

(Sketch of proof) During Step 1 - Step 3, all inevitably unsatisfiable behaviors are eliminated in the final P".
Theretore, P' is complete, Since the transition function of C' is deterministic about its labels, C' restrains no
satisfiable behavior of P, Therefore P|C is complete and G is maximally permissive. W

[Corollary 1]

Lo'8I(P|C)LieftS Lp(P|C)Lleft S Lp(P)
(Proot) It derives from Lemma 1 and Lemma 3 with Theorem 1. |

This corollary assures that P, adjusted by C, satisfies its liveness constraints, whenever its behaviors are

made by random transitions over states. Remark that an arbiter is effective in case that L' (P)C Lp(P)
does not hold.

[Example]
Fig.3 shows a simple single arbiter adjustment. In the target process P, only 8 = t3t6l7 is an inevitably
unsatisfiable behavior. Since {t31617, t3t4} is a set of behaviors which can not be distinguished from 8 (i.e.
have the same label sequence "ab”), t4 and 17 are eliminated. From the reminder, the arbiter C can be
constructed.
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Fig.3 Single Arbiter Synthesis
3.2 COMPOSITIONAL ADJUSTMENT

When a target program is composed hierarchically with many processes and then become very large, the
arbiter synthesis may cause the following problems: (1) the synthesis results in computing cost explosion,
{2) a single arbiter is too restrictive to conirel the whole program precisely. Therefore, we propose
compositional adjustment, in which local arbiters are synthesized in each composition step. The reduction of
FSP can gase ils compuling cost explosion in each slep.

[Theorem 2]
It P1 =ppy P2, then C is an arbiter of P1 iff C is an arbiter of P2.
(Proof) From Lemma 2 and Lemma 4, C|P1 is complete iff G|P2 is complete. W

[Corollary 2]
If C is an arbiter of red(P), then C is also an arbiter of P. u

[Algorithm 2] (Compositional Arblter Synthesis)
For simplicity, we explain compositional adjustment for the foellowing target program that is constructed by
two-level composition (Flg.4). This algorithm can be extended easily to arbitrary target programs.
Target Program:
(P11[f11] | P12[f12])[f1] | (P21[f21] | P22[122])[f2]
where P11, P12, P21, and P22 are FSPs, and 11, 112, 121, 122, 11 and f2 are relabelling functions.
The compositional arbiter synihesis is done in a botlom-up way.
(Step 1) Low level arbiters C1 and C2 are synthesized for subprocesses P11[f11] | P12[f12]
and P21[i21] | P22[f22], respectively. We denote P1 = (C1 | P11[f11] | P12[f12]}[{1] and P2
= (C2 | P21|f21] | P22z{f22])[f2).
(Step 2) Reduced subprocesses red{P1) and red(P2) are made from P1 and P2.
(Step 3) A top level arbiter CO is synthesized for a larget process red(P1) | red{P2}.
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Fig.4 Compositional Adjustment

The Corollary 2 assures that reduction preserves all information necessary for each local arbiter synthesis.
The reduction in each step can cut down lhe synthesis cost. Note that it is possible to synthesize directly a
single arbiter C' for the targei programs. However, C' is 1oo restrictive because it has less visible
{uncontrollable) actions compared with local arbiters, and its synthesis cost is more expensive.

4. MENDELS ZONE
4,1 OVERVIEW

MEMDELS ZONE is a programming environment for concurrent programs. The target concurrent
programming language is MENDEL, which is based on an extended Petri net and is then translated into the
concurrent logic programming language KL1 and executed in Multi-PSl. MENDEL is regarded as a user-
friendly macro language of KL1, whose purpose is similar to A'UM [Yoshida & ChikayamaB8] and AYA
[Suzaki & Chikayama31). However, MENDEL is more convenient for programmers to use to design a state-
transition-based distributed system. MENDEL programs can also be translated into C and Occam.
MENDELS ZOME supports {1) synthesis of MENDEL atomic processes, (2) graphical process
imerconnection, and (3) compositional adjustment of interconnected MENDEL processes based on
theories described in Section 3. This adjustment procedure, which needs relatively much computing power,
is implemented by KL1 and executed on Multi-PSI 1o achieve an effective speedup.

4.2 MENDEL NET

MENDEL is a concurrent programming language based on an extended Petri net. If a programmer
constructs a program only using by MENDELS ZONE's graphic editor shown in Fig.5, he does not have to
learn the detailed syntax of MENDEL. He is required only to know a graphical representation of the
extended Petri net, called MENDEL net. Therefore, we omit an explanation of MENDEL #self. MENDEL nat
is extended from Petri net in the following aspects:

{1) Modularity is introduced. A module of MENDEL nat represents a process.

{2) Another kind of synchronization between processes that is synchronous (i.e., hand-shake)
communication is introduced, in addition to asynchronous (i.e., dataflow) communication.

{3) Each transition can have an additional enable condition, which must be satisfied when it fires, and an
additional action, which is executed when it tires. Both are written by KL1.

MENDEL net is graphically representad like Petri net (Fig.6). The basic conventions are as follows:

- Each place is represented by a circle.

- Each transition is represented by a square.

- Each process is represented by enclosing places and transitions belonging to the process with a line.

- A synchronous (hand-shake) communication is represented by a dotled line between transitions.

- An asynchronous (dataflow) communication is represented by an arrow between a transition and a place.

However, our program adjustment method is only applicable to finite state programs. When program
adjustment is applied, the target MENDEL net is restricted to baing a2 bounded one without asynchronous
communications, which is able to be translated into FSPs, Furthermore, KL1 codes atiached to transitions

are ignored.
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4.3 MENDEL NET CONSTRUCTION

A programmer can construct a MENDEL net using the graphic editor and a program library as follows:

{Step 1) Construct atomic MENDEL processes basically by software reuse [Uchihirag?], If the library has no
suitable reusable MENDEL processes, MENDELS ZONE can synthesize il from a given algebraic
specitication [Honideng0]. It is also possible for the programmer to construct the atomic MENDEL process
by himself using the graphic editor.

(Step 2) Interconnect MENDEL processes with communication links using the graphic editor to make a new
compound MENDEL process. A large-scale program can be constructed in this compositional way.

Here, constructed programs are roughly-made because a programmer reuses programs whose possible
behaviors he may not fully understand, and then communication links may be incomplete.

4.4 MENDEL NET VERIFICATION AND ADJUSTMENT

Aftar constructing a roughly-made MENDEL net, the programmer spacilias safety and livenass propearties
that must be satistied by MENDEL net. Here, safety propenties include admissible partial ordering of actions
(i.e.. transition firing). and liveness properties include deadiock and starvation about actions. These

consiraints are specilied by temporal logic.

[Definition 10] (LPTL)
(1) Symax



Linear time propositional temporal legic (LPTL) formulas are built from:

* A get of all atomic propositions: Prop={p1, p2. P3.---Pn}

+ Boolean conneclives: A,—

» Temporal operators: X("next”), U{"until")

The formation rules are:

» An atomic proposition p € Prop is a formula.

« It {1 and 12 are formulas, so are f1 A 12, <f1, X1, 11 U 2.

(2) Semantics

The operators intuitively have the following meanings:

— *NOT, » : AND, Xf (read next f): f is true for the next state, 11 U 12 (read f1 until 12): {1 is true
until {2 becomes true and 12 will eventually become true. The precise semantics are given as the Kripke
structure [Manna& Wolpergd4]. W

We use Fi ("eventually 1) as an abbreviation for (true U 1) and Gf ("always ") as an abbreviation for —F—f.
Also, 11+ 12 and 11 o 12 reprasent —(—{1~ —12) and <1 v 12, respectively. Here, we assume a single event
condition which provides thal only one atomic proposition is true at any moment.

[Thecrem 3]

Given an LPTL formula f under a single event condition, one can build a FSP P=(S,A.L, &, s, F) such that
L corresponds 1o a set of atomic propositions of f, and Lp(Py) is exactly the set of behaviors whose label
sequences satisfy the formula f,

(Proof) It is a restriction of a general theorem [Wolperg3]. H

Riemark that a label sequence of a satistiable behavior in Py corresponds to a model of LPTL formula.

[Example] (Temporal Logle Constraints)

Let a label set be L={a1,a2).

(1) GF (a1 v a2): Ether a1 or a2 must infinitely often occur.

(2) G( a1 = XG(—a2)}: Whenever al occurs, then a2 must never ogour,
FSPs which are generated frem (1) and (2) are shown in Fig.7.

Flg.8 shows the verification and adjustment procedure: (1) The programmer can give an LPTL formula for a
MEMDEL net of each compound process. (2) MENDELS ZONE checks whether a MENDEL nel satisfies a
given LPTL formula by the model checking methed for LPTL [Vardi&Wolperg6). (3) When it does not satisty
the LPTL formula, the adjustment method is invoked.

The compositional adjustment method, that is described in Section 3, can synthesize local arbiters lor every

compound process. Here, Py representing temporal logic constraints is treated as one of the F3P
components (i.e., a target process forms "P = Pi | P1 |...] Pn7).

(1) (2)

ail a2 ai

ail a
Fig.7 FSPs Pf Temporal Logic Constraints
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4.5 COMPILATION TO KL1 AND EXECUTION

The adjusted MENDEL program is compiled into a KL1 program, which can be executed on Multi-PSI. The
programmer can check visually that the adjusted program behaves to satisfy his expectation. If not, he
should consider two types of bugs: (1) Bugs of temporal logic constraints, and {2) Bugs of KL1 codes
attached to fransitions (i.e., its enable conditions and additional actions), which are ignored in translating to
FSP.

5. EXAMPLE: THE SEQUENCE CONTROL PROGRAM

In this example we synthesize a singie arbiter using MENDELS ZONE. The problem may be stated informally
as follows. The target program must be designed to control machines which cooperatively process (i.e.,
etch) printed circuit boards {Flg.9a). The resist machine applies resist to boards. The exposure machine
exposes boards to the light. The development maching develops boards. The arm machine moves boards
from one machine to angther. The target program is composed with 6 processes (Resist, Exposure,
Development, Arm, and Trans = 2) which control corresponding machines. Here, Trans represents board
transportation. Each process is displayed as a MENDEL net, shown in Fig.6. With no arbiter, this systern
lalls into deadlock when an action label sequence of Arm "gel_r — pul_e — gel_r" occurs. We give the
tollowing termporal logic constraints:
f=GF(get_r v put_e v gel_e v put_d}

which means Arm never falls into deadlock. An arbiter C is synthesized as follows: First, FSPs representing 6
subprocesses are relabeled by relabelling functions fr, e, {d, fa, #t1, and #t2, and are reduced, and FSP Py
{Flg.8b) representing temporal logic constraints f is genarated. The target process P {Fig.9¢) is composed
from these FSPs. Finally, the arbiter C shown in Fig.9d is synthesized trom P, according to Algorithm 1. We
can sae that the adjusted program “C | Pt | Resist[fr] | Exposure(fe] | Development{td] | Arm{ta] | Trans{li1] |
Trans[fiz]" satisfies the above constraints.

Dewvelopmant

Exposure

Fig. 9a Machine for Processing
Printed Circuit Boards

11



gel_r, put_e,
get_e, put_d

Figgbh FSP Ptior LPTL formula

Fig.9c Target Process P
{displaying only labels)
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Fig.8d Synihesized Arbiter C

6. CONCLUSIONS AND RELATED WORKS

We have approached program synthesis from the viewpoint ol program adjustment. In the proposed
framework (l.e., FSP), program adjustment is defined as the synthesis of arbiter processes which control a
target process with synchronization to satisty their constraints. We have had some experience in slate-
transition-based software construction, using compositional adjustment in MENDELS ZONE.

Our previous works [Uchihira87, Uchihira90a, Uchihira&HonidenS0] had proposed program synthesis
methods, whose basic idea is similar to program adjustment. However, these methods are not fully
compogitional. In this paper, we newly inlroduce a CCS-like compogitional framework to achieve
compositional adjustment. Abadi, Lamport, and Woiper [AbadiBS] proposed a compositional program
synthesis using the CCS-like compositional framewaork, where failure equivalence is adopled instead of mtw-
bisimulation equivalence. However, their approach is a top-down program refinement, which differs from our
bottom-up program adjustment approach. On the other view, arbiter synthesis can be regarded as a control
problem of discrete event systems which are well surveyed by Ramadge and Wonham
[Ramadge&Wonham89]. However, these works showed no compositional synthesis methods satisfying
liveness constrainls, while they mainly consider safety properties.
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