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Abstract

This paper discusses the design concepts of a lock mechanism for a Parallel
Inference Machine (the PIM/c prototype) and investigates its performance in
detail,

The lock mechanism is implemented by slightly modifying a PIM snooping
cache mechanism which uses invalidation to maintain cache coherence. Since
lock contention is infrequent during normal memory usage of the PIM, the lock
mechanism is designed so as to minimize the lock overhead time in the case of
no contentions. This is done by using an invalidation lock mechanism, which
utilizes the exclusive state of the snooping cache and in which the locked
address is not broadcast.

Experimental results demonstrate the benefits of the lock mechanism in
regions of low lock contention. They also confirm that, in most cases, the lock
mechanism works well on the PIM. However, the mechanism causes
performance degradation when a locked address is accessed by multiple
processing elements (PEs) in the TCMP (Tightly-Coupled Multi-Processor). This
is because the flags for inter-PE communication in the PIM, such as the load-
requesting flag, which are shared by all the PEs, may be accessed by multiple
PEs at the same time, thus generating heavy contention. This paper also shows
that combining a register-based broadcasting facility with the proposed lock

mechanism can solve the above problem.



1. Introduction

Shared-memory parallel architectures show the most promise for the
development of high-performance supercomputer systems. There are two
main types of parallel architectures, SIMD (Single Instruction Multiple Data-
stream) and MIMD (Multiple Instruction Multiple Data-stream). An SIMD system
can achieve high parallelism efficiently because no complex control is
necessary. However, SIMD machines are not suited to all applications, and they
cannot execute non-uniform, non-deterministic programs. For this reason, an
MIMD architecture is usually recommended for developing general-purpose
parallel machines. In MIMD systems which use fine-grain parallel operations, all
the processors operate independently. Therefore, an efficient lock mechanism
(such as compare-and-swap) Is essential to protect shared addresses and to
ensure correct computation results when many PEs access the same memory
address at the same time.

Japan's Fifth Generation Computer Project [1] has been driven by ICOT
(the Institute for new generation COmputer Technology). The main goal of this
project is to develop a knowledge and information processing system, utilizing
the logic programming language KL1 [2], which has a stream-AND parallel
feature and inter-process communication/synchronization capabilities. A
parallel machine customized for this language, the parallel inference machine
(PIM), is one of the most important research themes of the project. The PIM
project [3], now under development, is designed to exploit these features for
the efficient parallel execution of KL1 programs. PIM model ¢ (PIM/c) [4] is a
machine developed by Hitachi consisting of 256 PEs (processing elements). In
the course of this project, although the PIM is dedicated to knowledge and
information processing, many new ideas relevant to all MIMD machines have
been developed. The TCMP lock mechanism is one such example.

PIM/c is hierarchically organized, being composed of loosely-coupled

clusters of TCMP (Tightly-Coupled Multi-Processor). This structure epables the



reduction of  parallel processing overhead, especially  the
communication/synchronization overhead, by utilizing the locality of
programs. In large-scale parallel machines, high speed communication between
the PEs is limited by the interconnection distance. This problem is aggravated in
a flat structure. In contrast, PEs can communicate at high speed inside a local
cluster composed of a limited number of PEs. Also, a convenient shared
memory can be introduced into the cluster.

A snooping cache [5] is employed in PIM/c clusters to support efficient
communications. During the execution of KL1 programs, logical variables are
shared among the PEs. Therefore, fine-grain communications between
processors occur frequently, causing a cache coherence problem. From the
viewpoint of overhead reduction, as many PEs as possible should be installed in
a cluster because the communication overhead is much higher between
clusters than within a single cluster. Therefore, inter-PE traffic through the
common bus should be minimized. A snooping cache solves this cache
coherence problem with a low overhead and, at the same time, reduces the
common-bus traffic. The “five-state snooping cache protocol” [6] was proposed
to support fine PIM data accesses efficiently.

Synchronization, queue management and load dispatching are essential
operations in supercomputers with a shared memory parallel architecture. The
KL1 language generates frequent lock accesses because synchronization
through the logical variables is extremely frequent. Queue management and
load dispatching operations, which are required in parallel processing, also
require lock operations. Thus, the overhead reduction brought about by the
lock mechanism is a very important issue in the design of the PIM/c. The lock
mechanism must be designed so that it works efficiently with KL1 programs.
Since lock contention is uncommon in normal memory accesses of KLI
programs, the mechanism is designed to minimize the lock overhead in the case
of no contentions. Therefore, an invalidation lock mechanism, which utilizes the
exclusive state of the snooping cache, is used. In addition, the lock address

register has a "with waiter” state [7], which indicates that another PE is waiting



for the address to be unlocked, in order to eliminate unnecessary comimon-bus
commands.

Since the TCMP of the PIM/c uses a snooping cache, the lock mechanism
should use the snooping cache hardware in order to reduce the sysiem
hardware requirements and consequently the clock cycle. The proposed lock
mechanism is thus implemented by slightly modifying the PIM snooping cache
mechanism, We have completed the development of a small-scale PIM/c
prototype in which the snooping cache/lock mechanism is integrated in a single
LSI chip.

In this paper, the basic design concepts of the PIM/c lock mechanism are
described first. The performance is next evaluated on the prototype. Finally, its
merits and drawbacks are evaluated in detail.

During the initial stages of the PIM's development, the lock mechanism was
evaluated using a function-level simulation which exhibited its macroscopic
behavior. Afier these investigations, the present PIM lock protocol was
developed [8]. The lock behavior is determined by many parameters. Because
the common bus and its control mechanism are common to both the snooping
cache controller and the lock controller, the performance of the lock cannot be
evaluated independently of the snooping cache mechanism. Furthermore,
detailed structures, such as common-bus arbitration, common-bus timing or
resolution of cache access conflicts, may also influence its behavior. Until now,
the behavior of the PIM/c lock mechanism has not been simulated in detail as a
very complicated parallel cache simulator would be required. Having completed
the development of the real lock mechanism hardware in a single LSI chip, it is
now necessary and possible to evalvuate its performance.

Since an investigation of the fundamental lock mechanism characteristics
is of prime importance, benchmark programs of specific applications were not
used. This was motivated by the fact that benchmark programs can give us
only limited data. Also the bare performance of the hardware cannot be
measured, because the characteristics of the application may affect the
performance. Furthermore, it is difficult to obtain a wide range of access

parameters with such benchmark programs. Instead, artificial access patierns



were used, in which the lock access parameters, such as the lock ratio, could be

controlled.
2. The PIM/c snooping cache
2.1, The PIM/c prototype architecture

Figure 2.1 shows the organization of the PIM/c prototype, in which the
TCMPs are connected hierarchically. A loosely-connected network connects 32
clusters which each consist of a nine-processor TCMP,

Inside each cluster, eight PEs, one CC (cluster controller) and the main
memory are connected with a two-way interleaved common bus. Each PE
consists of a processor used for local KL1 execution, and the CC processor is
used for controlling network communications. The PEs and the CC use snooping
caches to support efficient communications. A two-way interleaved bus is used
to increase throughput. As a result, the bus, the main memory and the caches
are all interleaved.

So far, a 16-PE model (2 clusters X § PEs) has been developed, and a 250-

PE model is under way.

2.2, The PIM snooping cache protocol

KL1 programs require frequent inter-process communication. This
includes memory cell allocation, a suspension/resumption mechanism for
synchronization, and incremental garbage collection. The basic characteristics
of PIM cache accesses are as follows:

@ Fine-grain communication
The busic data sizes in logic programming are single words (logical
variables) and double words (list cells).

® High write ratio



The KL1 system requires frequent synchronization operations, and
consequently, the synchronization variables are often written to.

®  High lock ratio
Since the memory cells are shared by all the PEs, synchronization
and queue/flag management must include a lock operation.

®  High locality
KL1 programs often make frequent accesses to the same address.
Tail-recursion optimization can reduce the working set size and thus
a high cache hit ratio can be achieved.

® Frequent inter-cache communications
Since logical wvariables are referred to by both producer and
consumer processes, most of the inter-process communications can

be accomplished by inter-cache data transfers.

The PIM snooping cache mechanism should match the PIM cache access

characteristics. These are summarized below:

® Invalidation scheme
Based on the high access locality and the high write ratios of KLI
programs, invalidation is used to solve cache coherence problems in
the PIM. In this scheme, data in other caches is invalidated at the first
write access, and all successive write accesses can be accomplished
locally, without common-bus transactions.

® Write-back
With high write ratios, a write-back policy is used to reduce common-
bus/memory raffic.

® Inter-cache data transfer
An inter-cache transfer mechanism is employed to enable fast data
fetches because accesses to cache are faster than to main memory.

® Four-word cache block
Cache blocks are only four words in length because of the fine-grain

memory access characteristics of the PIM.



Figure 2.2 shows the cache block states of the PIM/c snooping cache and
the action to be performed in each state. Five states are defined in each cache
block to enable the following state attributes to be represented:

® cexclusive/shared
An exclusive state indicates that no other cache contains this block.
Wasteful invalidation can be eliminated because invalidation
commands are sent only when the block is duplicated in another
cache.

® clean/modified
A modified state indicates that data in the cache is inconsistent with
the data in main memory. This state is required in order to support
the write-back policy.

] valid/invalid

An invalid state indicates that the data in the cache is stale.

3. The PIM/c¢ lock mechanism
3.1. Design  issues

During the execution of parallel logic programs, lock operations occur
frequently, because such programs include frequent synchronizations through
logical variables, queuc management operations and events related to load
dispatching. Therefore, the reduction of lock operation overheads is one of the
most important design issues.

Lock contention rarely occurs on the PIM. This is because most lock
operations are used to perform "compare and swap" operations on logical
variables and, therefore, the corresponding lock time is not long. Furthermore,
each PE accesses a variable at most once per logical reduction (approximately
100 cycles) and the number of PEs sharing a variable is not large (in most cases
only two, a producer and a consumer). Normally, access contention for logical

variables is detected by the failure of a compare-and-swap operation, not by
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the lock contention itself. For this reason, the PIM lock mechanism should be
designed such that the lock overhead can be minimized when contention does
not occur.

The PIM lock mechanism has been developed around the above-mentioned
access characteristics. Below, the basic design concepts of the PIM lock
mechanism are presented. When a PE locks an address, copies of the
corresponding cache block in the other PEs are erased using a invalidation
operation and the state of the cache block which includes the locked address is
changed to exclusive. This prevents other PEs from accessing the locked address
in their own caches. This lock operation will be referred to as the "invalidation
lock mechanism" in the rest of this paper.

Some advantages of the invalidation lock mechanism are:

® The additional hardware required to implement the lock mechanism

is small, because most of it is already incorporated into the PIM
snooping cache mechanism.

® The lock overhead can be reduced using the cache state. For example,

if the cache block which includes the locked address is flagged as
exclusive, the invalidation command which would otherwise be
caused by the lock operation can be eliminated,

A disadvantage of the invalidation lock mechanism is that when lock
contentions occur frequently, common-bus traffic will be high. This is because
when a PE locks an address, there is no mechanism to pass the locked address
on to other PEs. Therefore, other PEs still generate fetch commands to the
locked address which result in failure. This overhead cannot be avoided because
the invalidation lock mechanism is designed to minimize overheads when lock
contention does not occur. Such a mechanism is suitable for the PIM because in
this case lock contention is not frequent.

An alternative is the broadcasting lock scheme in which the locked address
is broadcast to all the PEs in the cluster. This scheme reduce the lock contention
overhead since, after broadcasting, all the PEs know the locked address. Thus,
accesses to the address which results in failure can be performed locally, in

other words, without & common-bus command. Thus, the common-bus



overhead can be reduced when frequent lock contention is present. However,
in the broadcasting scheme the lock/unlock commands are always broadcast to
the common bus, regardless of whether a lock contention occurs or not, and the
lock/unlock overhead is high when lock contentions are rare. Thus, the
broadcasting scheme is not suitable for the PIM.

In the case of supercomputers dedicated mainly to arithmetic operations,
lock contention is not frequent during normal data accesses. Thus, the use of an
invalidation lock scheme is also appropriate in this case. However, the control
variables for process synchronization may sometimes cauvse lock contentions,
for example when many processes perform a fetch-and-add operation on such

a variable simultaneously. Thus, the lock contention problem could still arise.

3.2. The PIM lock hardware

Figure 3.1 shows the block diagram of a PIM/c snooping cache which
includes the lock mechanism. The cache mechanism incorporates a snooping
cache control IC, which includes the CAA (Cache Address Array) RAM, a bus
snooping circuit and address/data selectors/buffer. This is linked to an external
CDA (Cache Data Array) RAM. The lock mechanism is composed of the following
components, which are all implemented in the cache control IC:
® Lock directory

The lock address and state are stored in the lock directory. There are
three lock states.

L (Lock) An L state indicates that the address in the lock

directory is locked.

LW (Lock with Waiter) An LW state indicates that the address 15 locked

and another PE is waiting for it to be unlocked.
This state is required to eliminate unlock
commands when there are no waiting PEs.

E (Empty) An E state indicates that the lock directory is not

used.



® Control circuits
The lock control circuit executes CPU commands and at the same time,
snoops the common-bus addresses. The bus-snooping mechanism detects
lock: contentions by comparing the lock address in the lock directory with
the common-bus addresses generated by the fetch accesses of other PEs.
While a PE is waiting for an unlock, it can also detect unlock operations by
comparing the unlock addresses with the CPU address. The lock control
circuits are implemented by adding a slight modification to the cache
control circuits.
® Common-bus signals
The common bus comprises address/data lines, command lines and
bus arbitration signals. A round-robin scheme is uwsed for bus arbitration,
allowing all PEs to receive equal priority. The lock mechanism and cache
control circuits use practically the same signals, The only additional signals
required to implement the lock mechanism are an unlock signal and a lock-
hit (LH) signal. The LH signal is used to inform other PEs which attempt to
fetch data that the fetch address is locked. On receipt of an LH signal, the
fetching PEs stop execution until an unlock command is generated, and the
locking PE changes state to LW. The LH signa! is common to all the PEs in the

cluster,

Table 3.1 shows the cache access cycles and bus command lengths of
snooping cache operations. Each value in the table is the number of cycles for
the ideal case, ignoring the overheads of bus snooping time, bus arbitration

time and memory waiting time. Thus, the real cycle times will be slightly longer.

3.3. The PIM lock control mechanism

In the PIM, the CPU lock operation commands are as follows:
LR (Lock Read) read data and lock the address
UW (Unlock Write) write data and unlock the address



U (Unlock) unlock the address
Using these basic operations, more complex lock operations, such as compare-
and-swap, can be performed.

There are four basic common-bus commands:

F (Fetch) read the block

I (Invalidation) invalidate the block in other caches

SO (Swap-Out) write the block back to main memory

U {(Unlock) unlock the address
Beside the four basic commands mentioned above, mixed commands, involving
the fetch command, and other commands are used to decrease the bus traffic.
During such commands, several commands can be executed in one bus
operation. For example, the mixed command of F and T (fetch the contents of
another cache block and invalidate them at the same time) can be executed in
the same number of bus cycles as a normal fetch command. Thus, the overhead
brought about by invalidation disappears when it is done in association with
the fetch operation. In this way, the common-bus overhead produced by the
cache coherence maintenance and the lock operation can be reduced.

Figure 3.2 shows the states of the PIM lock mechanism and the actions to
be performed at each state. The invalidation lock mechanism has no need for a
separate lock command on the common bus because the locking is already
performed by the invalidation command, which is used for the maintenance of
cache coherency. Thus, there is no need for a complex command in order to
perform a lock operation. Also, when an invalidation command is required, a
mixed fetch-and-invalidation command can be used to reduce the common-
bus overhead. .

During a lock access, the cache state and the lock state are inspected in
order to eliminate unnecessary common-bus commands. When the state of the
cache block which includes the locked address is exclusive, the invalidation
command which would otherwise be caused during a lock operation can be
eliminated. When the lock directory is in state L (but not LW) an unlock
command which would otherwise be cavsed during the unlock operation can

also be eliminated. As a result, unlock operations can be performed without bus
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commands. If the lock/cache state is not available, these commands must be
generated at every lock/unlock operation, and will lead to needless common-
bus traffic.

The PIM lock mechanism creates these advantages at the expense of
generating heavy bus traffic when frequent lock contentions occur. When
many PEs lock a single address, only one PE can issue the lock access. The other
PEs, which are not informed about the lock operation, fetch the address at the
same time, because the lock address is not broadcast to them. As a result, most
of the fetch accesses to the locked address fail because an LH response is issued
by the first locking PE. After the unlock command, all the remaining fetch
commands are produced again. This sequence of fetch/unlock commands leads
to heavy bus traffic,

In our approach, the lock/unlock mechamism is designed to minimize the
overhead when Ilock contentions rarely occur. Furthermore, the additional
hardware required to implement the mechanism is quite small, about 5% of the
total cache hardware, because most of the lock hardware is common with the

snooping cache controller,

q, Evaluation of the PIM lock mechanism

4.1. The evaluation objectives

In order to demonstrate the advantages of the PIM lock mechanism, the
hardware performance was measured and analyzed using the PIM/c prototype
machine. The effects of the aforementioned drawbacks were also studied in
order to clarify the performance limits of the lock mechanism.

In the first stages of PIM development, the lock mechanism design was
evaluated by a function-level simulation of its macroscopic behavior. At that
time, no detailed simulations were made, because the lock mechanism is tighily
coupled with the snooping cache mechanism. This means that a very

complicated cache/lock simulation is required to evaluate precisely the



performance of the real lock mechanism. So far, the detailed effects of the
control mechanism produced by this common-bus/memory architecture have
not been reported. On completion of the hardware development, it became
appropriate to study the lock performance in detail.

Conventionally, the performance of computer systems is evaluated by
benchmark programs. However, with benchmark programs, only limited data
can be measured, and global features covering a wide range of applications
cannot be wholly clarified. Furthermore, it might be difficult to evaluate the
performance with a wide range of access parameters which are known to cause
problems with the design. The proposed lock mechanism shows promise for a
wide range of applications, although its behavior has not yet been sufficiently
clarified. At present, the global features are more important than the
performance in specific applications.

Since this paper focuses on fundamental characteristics which are general
over a wide range of applications, artificial access patterns were used, in which

the cache access parameters could span a reasonable range.

4.2, Experimental evaluation

The three access parameters of major importance to lock behavior are the
lock ratio, the sharing number and the lock contention ratio. Consequently, the
effects of these parameters on lock performance were evaluated. The default
values of these parameters were chosen to reflect the PIM access
characteristics discussed in section 3.1:

@ Lock ratio
The lock ratio is the ratio of the number of lock accesses to the
number of total cache accesses. The effect of lock operation on the
overall system overhead was measured by varying this ratio. The
default ratio was unity, since lock ratios are high in the PIM.

® Sharing number



This is defined as the number of PEs which share a single cache block.
The effect on system performance of multiple PEs all locking the same
address was measured by varying the sharing number. The default

value was set to 3, because there is some locality in PIM cache

dCCES55ES.

Lock contention ratio

Lock contention is frequent if many accesses of the same address are
made in a short period. The effects of lock contention on the system
performance were measured by varying this ratio. However, unlike
the other parameters, the lock contention ratio could not be
controlled directly, since it depends on the order of bus commands,
which the software cannot control. In this experiment, it was
controlled by changing the working set size of the access pattern,
With a small working set, each address was accessed many times by
several PLs and, consequently, lock contentions were frequent. The
default value of the working set was 16M words (the whole memory

space), because lock contentions are uncommon on the PIM.

Table 4.1 summarizes the lock access parameters and their default values.

In the investigation of the lock mechanism, result were obtained by the

following procedure:

(1)

(2)
(3)
(4)

Generate a cache access pattern on a workstation, focusing on the specific
lock access parameters.

Download the access pattern to the local memory of each PE.

Execute the cache accesses by means of a microprogram.

Collect staristical data using a hardware monitor.

In the experiments, 40,000 instances of cache access were issued by each

PE. In order to avoid deadlocks, the lock accesses had to be followed by unlock

accesses 10 the same address, no other cache accesses being issued between the

two. All processors in the cluster, including the CC, had their own cache, and

consequently nine caches were connected to the two-way interleaved common

bus. Since the access pattern stored in the local memory of each PE was fetched
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by the microprogram, the effect of local memory access was eliminated after
the data had been measured. The end state of the same access pattern was used
as the initial cache state since the focus was on the stable state of the snooping
cache. An empty cache could have been used as the initial state, but this causes
an excessively high memory access ratio.

In PIM/c, each PE was fitted with a hardware monitor incorporating a 40-
bit counter and circuitry to select the event to be counted. This facility made it
possible to collect various statistical data such as the number of common-bus
commands, the number of lock contentions, and the bus snooping waiting time,

without any additional overheads.

4.4. Results

4.4.1. Verification of the lock mechanism

The lock performance was evaluated on the basis that lock contention is
not frequent, in order to prove the advantages of the PIM lock mechanism.
Figure 4.1 shows the relationship between the lock ratio and the cache
throughput efficiency, and also the bus utilization and number of bus
commands. The cache throughput efficiency is defined as the ratio of the real
data throughput between the CPU and the memory system to the ideal
throughput (with no cache overheads). When the lock ratio increases, the
cache throughput efficiency increases only slightly. This is because at high lock
ratios, the fetch-and-invalidate mixed commands generated by the lock
operation, reduced the common-bus overhead.

Figure 4.2 presents the time diagram for common-bus accesses when read
and write accesses are issued to the same address in sequence. If the lock ratio
is low, most of the cache accesses are normal read/write accesses. In this case,
an F (fetch) command is issued for the first read access and an I (invalidation)
command is issued for the subsequent write access. Therefore, two common-

bus commands are required. On the other hand, if the lock ratio is high, pairs of
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LR (lock read) and UW (unlock write) accesses consume most of the cache access
time, In this case, fetch and invalidate commands are performed at the first LR
access by the mixed command and the UW accesses can then be done without
common-bus commands. Therefore, cnly one common-bus command is issued.
Since the FI (fetch and invalidate) command can be performed in the same bus
cycle as the F command, the invalidation overhead can be reduced. The
decrease in common-bus commands in Figure 4.1 proves this assumption. As
the lock ratio increases, the number of normal F and I commands decreases and
the number of mixed FI commands increases but by a relatively smaller
amount. Overall, the number of bus commands decreases.

Figure 4.} shows the effects of the sharing number on cache throughput
efficiency, bus utilization, external hit ratio and the number of bus commands.
The external hit ratio is the probability with which inter-cache data transfers
(as opposed to memory access) occur in cache miss cases. A high sharing
number causes frequent fetchfinvalidation commands between caches and
tends to decrease the throughput efficiency. However, the external hit ratio
increases as the sharing number increases, and consequently, at high hit
ratios, the data delay time in cache miss cases can be reduced by inter-cache
data transfers, because the cache operates much faster than main memory. At
high sharing numbers, inter-cache data transfer prevents a significant
degradation in throughput efficiency which would otherwise be caused.

Consequently, the system performance is largely independent of the lock
ratio and of the sharing number, and is the same as when no lock accesses
occur. As a result, it is concluded that, when lock contention is infrequent, the

lock overhead associated with the invalidation lock mechanism is very small.

4.4,2, Lock overhead

In order to study the aforementioned drawbacks of the PIM lock
mechanism, the hardware-level overhead of the lock mechanism was

measured. Figure 4.4 shows the relationship between the sharing number and
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the number of lock/cache overhead cycles. The bus waiting overhead
represents 40% of the total execution time, because bus urilization was high
(about 60%) in the access pattern.

The bus command, bus snooping, and memory waiting overheads
comprised about 60% of the total lock overhead, independent of the sharing
number. These overhead contributions were due only to fetch accesses caused
by LR (lock read) commands. If a PE locks an address, an FI command is used to
fetch and invalidate the cache block which includes the address. Therefore, four
words (one block) of data are transferred, even when only one word is
required for the lock access. This copying overhead was the most significant
limitation of the invalidation lock mechanism. Furthermore, this data copying
may cause a so-called "ping-pong effect" when several PEs lock an address

alternately. This drawback is discussed in section 5.

4.4.3, Lock contention

Figure 4.5 shows the relationship between the lock contention ratio
(controlled by the working set size) and the cache throughput efficiency. The
cache throughput efficiency was measured using the following three types of
lock access:

(1) Access with lock and with a round-robin bus arbiter
This is the most common type of lock access.

(2) Access without lock and with a round-robin bus arbiter
In this case, the same addresses as in (1) are accessed, but LR and UW
commands are translated to normal write commands. Because the LR
command invalidates the contents of other caches, it is translated to a
write command instead, so as to enable the pure lock overhead to be
evaluated. The performance degradation due to lock contention was
measured, comparing the result with (1).

(3) Access with lock and with a fixed-priority bus arbiter



In this case, the same addresses as in (1} were accessed, but the
common-bus priority was fixed. The effects of common-bus
arbitration on lock performance was also measured, comparing the

result with (1).

In Figure 4.5, the cache throughput efficiency ratios (1)/(2) and (1)/(3)
are shown.

Figure 4.6 shows the relationship between the lock contention ratio and
the bus utilization and the composition of bus operation time. The overhead
produced by the following bus operations was evaluated:
® Data trunsfer due to LR operations
@  Failure of fetch access due to lock contention with an LH (lock hit) response
® Unlock commands
The performance degradation caused by lock contention can be investigated in

detail.

The effect of lock contention on cache throughpur efficiency

Figure 4.5 shows that no lock overhead is observed at low lock contention,
when the working set size is larger than 100. When lock contention occurs
more frequently, at a working set size of less than 100, the lock performance
decreases quickly as the working set size decreases. As a result, it is confirmed
that the invalidation lock mechanism will have no lock overhead if lock
contention is rare. The lock contention ratio observed in the access pattern
itself was about 5% for working sets with a size of 100 words, as a result of nine
PEs accessing the two-way interleaved bus. (It should be noted that lock
contention observed on the real machine was more significant because
common-bus contentions delay the lock accesses.) Thus, up o 5% lock
contention can be tolerated by the PIM invalidation lock mechanism, as it only
leads to a small lock overhead.

Figure 4.6 shows that when lock contention occurs frequently, the fetch
failure overhead increases rapidly as the lock contention increases, and more

than 80% of the total bus cycles are consumed by this overhead when lock
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contention is extremely frequent. The overhead caused by the unlock
operation is small, thus when lock contention occurs frequently, most
degradation is caused by fetch command failures due to the LH response from
the locking PE. As the invalidation lock mechanism is employed specifically to
minimize the lock overhead in the region of low lock contention, this overhead
cannot be avoided.

On the other hand, at low lock contention rates, data transfer due to LR
operations consumes almost all the bus cycles, and the system performance is
limited by bus throughput. This type of data transfer leads to the "ping-pong

effect” mentioned in section 4.4.2,

The effect of common-bus arbitration on cache throughput efficiency

Figure 4.5 shows that, at high lock contention rates, the performance
obtained using fixed-priority bus arbitration is much better than that obtained
with round-robin bus arbitration. This is because when round-robin bus
arbitration is used, fetch failures due to lock contentions are more frequent
than that obtained with fixed-priority bus arbitration. For example, if all nine
PEs lock one address, they produce an FI command on the common bus,
allowing the PE with the highest priority to access the address. With a round-
robin bus arbiter, the priority of the locking PE drops to the lowest level after
the lock operation. As a result, fetch commands generated by other PEs, which
fail because of a lock contention, are produced before the unlock operation and
cause wasted bus traffic, The experimental results show that about seven fetch
failures are produced during one lock operation when all the PEs in a cluster
access one address.

On the other hand, with a fixed-priority bus arbiter, the locking PE has a
relatively high priority and can produce the unlock command soon after the
lock operation. In this case, the wastage of bus cycles due to fetch failurc can be
eliminated.

In this way, when lock contention occurs frequently, the lock performance
is affected greatly by common-bus control operations such as bus arbitration.

However, in the PIM, as the lock contention is not frequent, a round-robin bus

— 19



arbitration is suitable, because an equal bus overhead can be achieved for each

PE

5. Discussion

In this section, the advantages and disadvantages of the PIM invalidation
lock mechanism are studied using the experimental results presented in the
previous sections.

As discussed in section 4.4.3, no lock overhead is observed when lock
contention is infrequent, because of the following features of the lock
mechanism:
® A lock operation can be performed by a local register write and there is no

need for lock address broadcasting when the locked address is in the

exclusive state.
® Utilizing the mixed fetch-and-invalidate command, invalidation for lock
operations can be performed without any common-bus overhead.
® The lock state can be used to reduce unnecessary unlock commands on the
common bus when a lock contention does not occur.
Once lock contention occurs, common-bus overheads arise due to fetch failure
and unlock operations. After a fetch failure, the PE accessing the locked address
stops execution until an unlock command is generated. This feature can reduce
the common-bus traffic as the PE waiting for the unlock operation will not be
using the bus. However, when multiple PEs access a locked address, multiple
fetch failures at the same address occur for all the PEs involved. Thus, when
lock contentions are extremely frequent (more than 5% of the total access
pattern), frequent fetch failures would raise the bus traffic significantly and
the common bus would become a bottleneck,

In the PIM, lock contentions are not frequent in the course of normal
inference operation. Thus, the problem mentioned above rarely occurs.
However, when flags and queues are shared by several PEs in the cluster, lock

contention may occur, because all the PEs sharing the addresses access them
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once per logical reduction (approximately 100 cycles). In that case, for example,
nine block data transfers (four words each) occur in a single logical reduction.
These data transfers take 63 cycles (an inter-cache data transfer takes 7
cycles) and consume more than half of the total bus cycles of a logical reduction.
These nine data transfers can be replaced by broadcasting. However,
broadcasting cache protocols have heavy drawbacks in normal cache
operations.

When a flag is shared by all the PEs and is accessed by each PE once per
logical reduction, a significant performance degradation arises. This is because
the invalidation cacheflock mechanism used in the PIM will cause heavy bus
raffic due to frequent lock contentions and data transfers as discussed in 4.4.2
(the so-called "ping-pong effect”). Such a situation might be generated, for
example, by the flag for the load dispatching operation. Any PE requesting the
load sets the cormresponding flag and all the other PEs read this flag once per
logical reduction. If the flag is ON, the PE reading the flag resets it and dispatches
a job. If the flag is OFF, no operation is necessary.

In this case, frequent one-to-any communications are performed using
lock operations. When the flag is ON and load dispaiching is required, the lock
mechanism overhead is not significant because a load dispatching operation
takes many cycles. On the other hand, when the flag is OFF, these flag-fetching
operations cause a significant degradation, because no other flag operations are
performed. Furthermore, most of the PEs access an OFF flag because load
dispatching is not very frequent, Because of this, an additional communication
mechanism is required for this kind of operation.

In order to solve this problem, the PIM employs a software interruption
mechanism, "slit-check” [9]. In this mechanism, each PE has a special register of
16 bit flags and the value of each flag can be broadcast among the PEs. In each
PE, the contents of this register can be checked by the CPU. Because this
register is independent of the cacheflock mechanism, the cacheflock protocol is
not altered. As the slit-check mechanism does not have a lock feature, it must
use the lock mechanism associated with the cache. The slit-check flag is checked

for a particular event, and if the flag is ON, real operations are performed using



the data in the cache. Using the slit-check mechanism with the invalidation
cache/lock mechanism, the above-mentioned flag operations, which would
otherwise cause heavy overheads, can be performed with a very small
overhead. The hardware needed to implement the slit-check is about 5% of the
total cache/lock controller.

The combination of the lock mechanism with an invalidation protocel and
the slit-check mechanism with a broadcast facility can help in implementing

efficient TCMP systems.

6. Conclusions

In this paper, the design concepts for the PIM/c lock mechanism were
described. This lock mechanism has now been integrated in a single IC with the
snooping cache controller, Several fundamental characteristics of the lock
mechanism have been investigated using a small-scale prototype of the PIM/e,
which is composed of nine-PE TCMPs.

The main results obtained through our investigation are as follows:

(1) When lock coniention is infrequent, no lock overhead is observed
because of the following characteristics of the PIM lock mechanism:
« The lock operation can be performed with just a local register write and
an invalidation.
« If the state of the locked address is exclusive, the associated invalidation
operation can be eliminated and no common-bus command is required.
*+ The mixed fetch-and-invalidate command can reduce the invalidation
overheads of the lock.
« Using the lock state stored in the lock directory, unlock operations can be
eliminated when no lock contentions occur.

(2) Frequent lock contentions cause the lock overhead to increase gquickly

with increasing contention, because fetch commands fail much more
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(3)

(4)

(5)

frequently. The fetch failure increases as the number of locking PEs
increases.

Frequent lock contentions also cause the lock performance to be
affected greatly by the common-bus control (e.g. by bus arbitration). In
the PIM, a fixed-priority bus arbitration reduces the fetch failure rate and
improves the performance.

The upper limit of the lock contention ratio (discussed at (1)) as
determined from the access pattern (the address traces of the PEs) is
about 5%. The lock mechanism is suitable for the PIM because normal
memory accesses remain in this area.

The lock contention problem (discussed in (2)) may occur at a flag
shared by muliiple PEs in the cluster, because the access frequency is
extremely high. We are convinced that the combination of the cache/lock
mechanism with an invalidation protocol and the slit-check mechanism
with a register-broadcasting facility can help realize efficient TCMP

systems.
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network
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Fig. 2.1. Organization of the PIM/c prototype.
(PIM/c: Parallel Inference Machine model C)
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Fig. 2.2. PIM/c snooping cache state diagram.
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Table 3.1.
Cache Access Cycles and Bus Command Length

ﬁgwé Conditions Egggses Time Eg?nmand Length
Read lcache No Invalidation o
Write [Hit  |pvalidation 4 3
Cache |[No Swap-out 10 7
Miss Swap-out 13 10
Unlcn:l-] No Lock waiting 2
I Lock waiting 4 3
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(Empty

LR /1 A
(cache hit case) UWorU /U
LR/F &I
(cache miss UWor U
hitcase) _y F-> LH F-> LH
l'__)i Lock with
[LOCK Waiter p
—— CPU command = input bus command
( / output bus command) ( -> cache response)
LR: lock read F: fetch
UW: unlock write | - invalidation
U:  unlock U: unlock
LH: lock hit

Fig. 3.2. States and actions of the PIM lock mechanism.
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Table 4.1.
Lock Access Parameters

Parameter Range Default Value | Notes
Lock ratio 0.0-1.0 1.0 Mumber of lock accesses
Total number of cache accesses)
Sharing number 2.9 3 Number of PEs

sharing a cache block

Working set size | 1- 16M{(words) | 16M(words) | Controls lock contention




real throughput
ideal throughput (= throughput with all cache hit cases)

—— cache throughput efficiency =

==3== common-bus utilization

== ~- total
number of —8— F (fetch)
bus command —a—| (invalidate)

—o— FI (fetch & invalidate)
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conditions: sharing number = 3
working set size = 16M(words)

Fig. 4.1. Cache throughput efficiency,
common-bus utilization
and number of bus commands
as a function of lock ratio.
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(1) Normal read / write access
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(2) Lock read / write access
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Fig. 4.2. Time diagram for common-bus accesses.



: real throughput
—p— he throughput efficiency = .
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Fig. 4.3. Cache throughput efficiency, bus utilization,
external hit ratio and number of bus commands
as a function of sharing number.
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+ composition of lock / cache overhead:

—6— bus snooping —— bus command execution
—&— bus request —B— main memory waiting
—— lock waiting
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Fig. 4.4. Lock / cache overhead cycles
as a function of sharing number.



real thmughggl

+ cache throughput efficiency = ideal throughput (= throughput with all cache hit cases):

—o— access with lock and a round-robin bus arbiter

+ cache throughput efficiency ratio:

—A— access with lock / access without lock
—— access with a round-robin bus arbiter / a fixed priority bus arbiter
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Fig. 4.5. Cache throughput efficiency
as a function of lock contention.



oM common-bus utilization
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Fig. 4.6. Common-bus utilization
and composition of bus operation time
as a function of lock contention.



