ICOT Technical Report: TR-718

TR-T18

Experimental Version of Parallel

Computer Go-Playing System “GOG”
by

S. Sci, H. Oki. N. Sanechika,
T. Akaosugi & K. Taki

December, 19491

1997, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 -5

| C DT 4-28 Mita |-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Tapan

Institute for New Generation Computer Technology

Experimental Version of Parallel Computer Go-Playing System
“GOG™ !

Shinichi Sei’, Hiroaki Okit', Noriaki Sanechika*?, Takashi Akacsugi', Kazuo Taki'

1 lustitute for New Generation Computer Technology
1-4-238 Mita. Minato-ku, Tokyo 108, Japan
it Future Technology Laboratories Inc.
{ Electrotechnical Lahoratory of the Agency of Industrial Science and Technology

abstract : We have been developing a parallel compuler Go-playing svatem
G007, Go hag been a difficult gaone for the computer to play, We are trying
to bniled & strong o program using the computer power of the parallel inference
machines. ‘The tirst version was developed and reported [?]. A new version has
been completed and tested the comcept of fiying corps, a technigue for making
a gamne playing program strouger without losing the real-time properiy.

1 Introduction

Unlike checker aned chess playing computer programes which have attained or are approaching the
highest human skills. theee have been neo Go-playing programs that mateh average hnman G-
player’s skilis.

The difficuliy of constructing a Go-playing program comes mainly from the fact that (1) the
branching factor of an average game tree 15 too large for brute foree search 1o be feasible — the
board of (3015 19 = 19 as compared to the chess board of & x 8 and the player can put the next
stone on almost any vacant board position. and (2 a simple and good board evaluation funetion
does not exist evaluation of a board configuration needs understanding of relative strengths of
groups of stones. which involves pattern recognition,

We have developed a sequential Go-playing system in the Fifth Generation Computer Systern
Project [T Tt is written in the Prolog-like language ESF and runs on the sequential inference
machine PSI[?). Currently, the systemn is stronger than an entry level human (o player. but
consilerably weaker than an average-level player,

There are a numiber of improvements (such as knowledge of set moves, tartics, hetler board
evaluation, ete | thae could make the system stronger, but it would take too nuch processing time
to incorporate them, Thus we started the development of a parallel Go-playing system whach will
be stronger than the sequential system but will retain a wlerable response time to make real-tine
play with humans possible. The system s on the experinental parallel inference machine Multi-
PST 7. 7] 1t s consist of the parallel code {written in parallel logic language RLL) for deciding
ihe next move and the sequential code {that runs on the front-end processor (FEPY) for human
interface. The final version will ron on the parallel inference machine being developed at TOOT
[7].

| This paper first describes the process of move making i the sequential system, and discusses
what parsllelisim to exploit i thee parallel system. [t then deseribes the parallel version il the
cancend of fyiig corps tested o the svatemn

2 The Sequential GOG System

We have been developing o sequential computer Go playing system called “Seguental GO on
ihe sequential inference niachine PSI sinee 1985, The current system is sironger than homan Go

Fag by im slagsd ["L Geemeration” . “G07 means both “0in Game” and “5" in Japanese. It has been
developing in 5th Gieneradion Compates System Project.
2f'|||'rrr|.r|:|.' at Al Langnage Rewarch Institoie Lud. {ATR)

beginners. but is considerably weaker than an average-level amateur,

2.1 Move Making in the Sequential GOG System

Chur system’s approach is based on simulating the human player’s way of thinking as faithfully
as possible. The ocuthine of the process in which the sequential GOG system determines its next
miwves comprises three stages.

l. Board Hecognition
2. Candidate Move (GGeneratiwon
A Next Move Decizsion

When systen get enemy’s move it first recognizes hoard confignration. Based on the results of
recognition of the board configuration. it generates many candidate moves. It rates those moves
amel selects the one with the kighest value as the nexi move,

2.1.1 Board Recognition

When a player Inoks at the “Ga” hoard, he sees not only the arrangement of stones on the board.
but also sees their strategic meaning,

The raw data of booard coofiguration s sunply the stale of every bowed position, which = either
{aj vacant, (b} occupied by a white stone, or (¢]) oceupied by a black stone. Just Tike human player,
the system starts from the raw board data and successively makes higher-level data structures —
stones, strings (& string is connected stones of the same color), groups (strings of the same color
that are close to each other). families | “loosely” connected groups), ete. ---, and then determines
their attributes (potential value, area of surrounded territory, ete.) in the recognition phase,

Thess ohircts in the data strocture are consteucted bottomup - pomt, string, group and lamaly.
This is basically the same as the process of huoman concept formation from conerete to abstract.
Furthermore, we can find important area and stones through this deepening understanding.

2.1.2 Candidate Move Generation

The system has “Candidate Knowledge” which generate coordinate and evaluation value of can-
didate move. To decide the next move. many candidates are listed by execution of tasks invoked
from Candidate hnowledge. Candidates knowledge which the sequential (05 has i1s shown in
Tabie 1[¥].

2.1.3 MNext Move Decision

Firs: of all, the local adjustment for candidates rearranges disharmonies between the different
candidate knowledges . Next, the system sum up total proposed value of candidate at each point
on the board, The system selects the one with the highest value as the next move, and play 1.

3 The parallel "GOG” System
3.1 Design of the Paralle]l GOG System

The vanous tasks done by the sequential GOG system contaim possibihties of vanous forms of
I.Pill'a."l“l I.Pml'i-.‘:i:ii.l]ﬁ.

o lndependent parallel recognition of distiect objects {strings, groups, etc.)
s lidependent parallel capture seaeches of distinet strings
& Parallel processing within a search

+ Parallel generation and rating of candidate moves

Table | Candidates

{ Task || charactemstic [Contents |
JUSERI a standard pattern of good TOSEKT (about 200 kinds)
play in the corner
ngc- a pattern along rREENSlon, plncer,
with the cdge _ invasion into edge, ole
DAME toehed stones pattern stone's compelition move
(HANE NOBLOSHI, etc)
Tnvasion a pattern in the corner Tnvade, protect at corner
CFUTORORO - edge pattern expand/reduce territory
Fxpand,/Reduce . m edge for a weak slony N
Spheres Contact || touched families Expand/prevent MOYO move i
Foant {RYO-GEIMA, etc)
Capture/Fscape String (3 DAMES or fewer) | Capture/escape move
Cut feomnect weak linkages Cutjconnect move for peeping
| Tonclose/Escape | Shghtly cnclosed Enclose fescape move
weak friend group | for weak group
Separate/Contact | a big separatable group [Separste fcontact move
Sphiere a family with weak bordered Enclose /prevent move
Life-aqud- Death a race Lo capture a vital point for making two eyes
(apturing Race hetween two vulnerable groups | or filling opponent’'s DAME

Also. semne of the tasks, that could potentially strengthen the sequential GO{; system but were
not incorporated because of processing Line limitation, can he incorporated in the parallel GOG
svsten. and they give moee parallelinm,

3.2 Moachine Environment

The Multi-PSI is an experimental parallel mference machine. [Uis a distribnted-memery computer,
in which up to 4 nodes {processors plus local memory] are connected by an 8 <3 mesh oetwork
with wern-hole rouling

3.3 Parallel Processing

I the parallel systen one of the processars of the Mulli-PST serves as a manager processor, and
the rest does as worker processors. Nuxl mowe decision process is on the manager processor, and
manager processor distribites tasks to worker processors.

The ctline of process in the parallel GOG system is shown in Figure 1. When the system
gets enemy’s move. 1 recognizes hoard confignration and generate candidates moves. In those
processes, it picks up large Losks such as local search which check string to be raptiured or not and
dispalches 1o worker processors. The results are sent Lo Lhe inager processor and then it decides
the next move based on those resulls,

3.4 Devices on Paralle]l GOG System
o Interprocessor conmmunication

Gencrally, i programming a parallel systenm, we have to keep the interprocessor communi-
catiem down to a minimum. 0 order Lo realize it we designed that each worker processor
maintains a local copy of the hoard and updates it each time the manager processor no-
tifics @ new move In the hoard recognition or candidate move generation phase, worker
processors need only wiich @ the targel of task to execute those tasks. |t don't cause Lo con-
centrate message [rom worker processor on manager processor This reduces interprocessor
ST nirat ifJ“ .

enemy's | Board Candidate Move o Next Move
move /] Recognition Cieneration Drecision
L ey
."/
Tasks for i Recognition 3 . o
paralle] L of String (_("“"m""_'ff_‘ I/I
execubion

_——— —
{cf. Table 1) { Recognition Capture _\

N, Of Llnkﬁf‘ /l I\‘-\-_ i IH'F::;,rﬂJ'u\ __-/I'
Figure 1: Outline of Process in The Parallel GOG

& Load Balance

Crood Joad balance among processors 12 a key to get high processor ntilization. We used the
dynamic load balancing technique which is one of gonod ways to realize the load balance. In
our system, manager processor have a process which observe worker processors whether are
i idle. The manager processor dispatches tasks to worker provessors that are detected (o be
wdle.

3.5 Flying Corps

The Parallel GOG system can be made stronger by incorporaling more tasks, evaluating candidate
meves more precsely. ele Bur, that would inerease the time to decide the next move, and the
svstem might become too slow as real time game, oven when parallel processing would be incore-
porated. To improve strength of the system considerably while retaming the real time respense of
it. we propose the roncept of flymyg corps which has been tested in the system.

This iden bs 1o find the tasks which 1s important but not necessarily solved before next move
and to make fAying corps processes 1o execute these tasks. The system which incorporates Aying
corps idea consists of main corps processes and flying corps processes (Figure 2). A flying corps
process and a main rorps process are assigned on a same processor. Main corps processes consist
of a manager and workers and flying corps processes are the same with them. Main corps prircesses
executes necessary tasks to operate by Go rule and tasks to keep cortain strength.

Main rorps’ processes have hugher priority than Hying corps’ processes Flying corps processes
notily the task completion to a manager provess of lying corps when the dispatched task is com-
pleted. (thal might be several meves after the initiation of the task). Each time all tasks of main
carps are finshed. the munager process of main corps will collect the resnltz of finished lasks on
fying corps processes. With those results and the results by worker processes of main corps, the
systemn decide the next move. The time to decide next ineve depends only on main corps processes,

Flying corps processes execule these tasks independently from the immediate next move deciston
process (i mam corps processes). When the opponent is thinking of the next move, the flying
corps processes keep on running. ¥ When a local situation which caused tasks for flying corps will
be changed by some later move, the these tasks will be ahorted,

This idea’s merits are as follows,

Flying corps processes do their tasks independently from the main move deciding procedure,
and they don’t obstruct main corps processes,

*"I'his is common with a human player to consider such tasks whic; fhying curps provesass executs

PE I

manager of idle PE |/ manager of idle PE)
for main corps ./ for Aying cotps

’ ma.nagcr ‘\ - manager
”ﬂ nf A 11:-:r|rn_r/. of flving corps .)l

e Py ~
/ P -""|.|‘__
" WOrHeT O W'l:FfEf'l D! N
1 i :I ain Forps
i w Nialn CoTps _‘_E]hi.l]'l orpe . . .

|" worker of r’f worker of)
LAving corps \Aying corps /
2 PE3

Frgure & f_fuuﬁylratinn of .‘“i:.'slﬂn

A processer have a main corps process amd a flying corps process. The man corps process
have higher priority than flying corps process. ‘The flying corps processes starl (o run when
tasks of main corps is finished. Thus processor which finished tasks of main corps don't
change into wle. Main move deciding procedure need not wait for results of Aying corps
processes. Therefore the time to generate the next move won't be increased in spite of the
increasing process. [neetains the real-time response with the system,

The more idle processors there are, the smarter move parallel (GOG can produce,

A Hyving corps process and & nuan corps process are assigied onoa same processing element.
Flying corps process runs on the processor which there have no task to be executed by main
carps process. When opponent takes long thinking time ur the parallel machine have many
processars, there are many il processur. Thos many tasks of flying corps are execute and
thie syvsbeqn produee smarter move,

3.6 Experimental Results and Consideration

First, we prograsmned the parallel GOG system without Aying corps idea Tuble 2 shows its per-
formance. From these results, the paralicl exccution shortens the processing lime in Go.

Tahle ¥ Speedup i Parallel Execution

|_L~=| of final match, Lith Kisei tournament

Stage [1PEJ4PE| 16 PE |
Ah mese |0 37 3l
G0th meve | 10 34 5.3
CIROth move | L0 3.7 . 7.5
[5th of final mateh, L3th Meygin tournament |
Stage | | PL | 4 PE 16 PE
a0th move | 1.0 4l a4
Glith move | 10| 34 Y
150th move 1.0 3.6 hi

Next, we gnade the system including fiying corps which compute capture search of string with
4 DAMEs. The capture search is the task which decides whether the string is in danger by

being captured. Capture search with 4 DAME: is so large task that we didn't incorporate in the
sequential GOG. Tahkle 3 shows the eomparing executing time with GOG including flying corps
and without flying corps using 16 PEs. The generating time for the next move of the parallel GOG
with flying corps did not increase in spite of the increasing process.

Tahle 3. Comparing executing time (see) with GOG including flving corps and without flving corps
using 16 PEs

L | Data | i Data 2 |
N Stage || 30th move | 90th move | 180th move || 30th move | ®th maove | 180th move
Without fiving corps 1091 12.43 13.05 5.590 7.674 1168
With flying corps 10.50 1254 13.65 5678 7716 11.74

The origin : Data | is quoted from Ist of final match in 13th Kisei tournament and Data 2 is done
from 5th of final match m 13th Meijin tournament

Upper line represents time corresponding to a worker of main corps execution in each processing
element, while lower line te a flying enrps. PE 1 is assigned manager process. Virtical line represents
when move is placed on board. In this execution, white side is human plaver and black’s one is
parallel GOG,

Figure 3: Log of Execution on every processing elemient

Figure 3 shows log of execution on every processing element. Upper lige represents time cor-
responding to a main coeps execution. in each processing element, while lower line to a fiving

COPpPS.
Il shows that a processor executes both tasks of flying corps and main corps, and tasks of Aving

corps are executing over several moves. We can also find Hying corps processes is being executed
during main corps process are waiting task.

The strength ol the system, including fiving corps idea, is under evaluation. The parallel system
handles more tasks than sequential GOG. thus we have 1o adjust evaluation values of candidate
mowve to be well balanced,

4 Conclusion

We have developed the experimental version of parallel computer Go-playing systein “GOG” and
lested a technique of fiving corps on the system, Our experiments represent Lhe system using the

fi

technigue retains the real-time respomse in spite of Ineorperating nouch more processing

We will incorporate more tasks gradually to make GOG stronger using the Hying corps tech-
nique. We plan o incorporate much largee tasks such as Tsumego using the technigue of flying
corps. Tawmego 1= ton large to execute in main corps, and it is able to execnte independent by from
next move deciding procedure. Tsumego would require long processing time, even though fAying
corps s incorporated. We will consider dividing a large task into small subtasks and distribute to
processors. Also, we consider that, if flving corps execute the task which have intermediate results
such as scarch and have some effective information to decide next move on the working, flying
corps processes report those i lornmation (o main move deciding procedure,

We will improve the pacatlel GOG to aplly with those Aying corps ideas

References

[i] A, Goro, M. Saro. B Nakapma k. Taki, and A Matsumoto: Overview of the parallel
inference machine (PIM) architecture, In FProceedimgs of FOOS NS pp, 208220 [T4EE].

[2] K. Nakajima, ¥ . Inamoura, & Bchivoshn, W Rokusawa, and I Chikayama. Distributed mmple-
mentation of KL an the Multi-PST/V2 In Proceedings of the Secth Tutervalional Conference
an Logie Programmeng. ppo 436-451, 1584,

[3] H Nakashima and K. Nakajima, Hardware Architecture of the Sequential [nferepee Machine
PSIIL In Proceedings of 414 Symp. on Logic Programmang. pp. 104113, 1987

[4] N. Sanechika. “Go Generation™: A Go Playing System. ICOT Technical Report TH-345,
1850

] N Banechika, S0 Sel, L. Akacsugi. K. Taki, 5. Yoshikawa. T. Yoshioka, Y. Murasaws,
S Uchida, H. Oki. M. Ohshima, M. Ogiso, Y. Mizano and 1. Sakamoto, The Specifications
of "GO Generation In Proceedimgs of Game PMlaging Systemn Workshop, 1991,

W] S Sen N kchivesh and K Taki Experimemal Version of Parallel Conputer Go-Playing
System UG n Prececdengs of Delermalional Workshap on Farallel Processing for Arificial
Intedlegenee en L0CAT0 ppe 184 190 1991

(7] K. Taki. The Parallel Software Research and Development Tool: Multi-PS] System, In
Frogrammung of Fulure Generation Compufers, K. Fuchi and M. Nivat (eds). Flsevier Seienee
Publishers B.Y . (North-Halland), pp. 411 426, 1985,

