ICOT Technical Report: TR-713

TR-T13

The Concurrent Constraint Language GDCC
and Its Parallel Constraint Solver

by
D. Hawley

MNobember, 1991

© 1991, ICOT

Mita Kokusai Bldg. 21F (03)3456-3191~5

| C DT 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

The Concurrent Constraint Language GDCC
and Its Parallel Constraint Solver

David [Mawley
Fourth Laboratory,
Institute for New Generation Computer Technology (1COT)
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Ahstract

We describe the current state of development of the concurrent constraint langnage
GDOC {(Guarded Definate Clanses with Consfrnints), is 2 member of the cc { Concurrent
Constrmnt) family of languages which supports multiple solvers and recursive queries in
a committed-choice framework. GDOC models computation as the interaction of multiple
conperating agents through the exchange of information via querying and asserting the in-
formation into a central repository. Concretely, this paradigm is embedded in a guarded
{conditional} reduction system. where the guands contain the queries and assertions. Caon-
trol is achieved by requiring that the queries in & gonard are true (entailed), and that the
assertions are consistent {satisfiable). with respect to the current state of the repository.

GDOC s an exporimental o language, which supporis a user-specified set of sorts and
romstraint =yrnhobs in a committed-choice framework, and is intended to be a research tool for
investigating ssues of constraint-solving in concurrent programmung languages, such as prob-
lem decomposition, use of multiple solvers and hybrid techniques, ordering of constraints,
mapsgeient of semi-decidable solution methods, debugging technigues, etc, We introduce
the language, its implementation in KL1[Nal8%a]. and a parallel constratal solver for ca-
tional polynomials based on a parallel implementation of the Buchberger Algorithm. The
Fuchherger Algorithm is a basic technology for symbaolic algebra. and several attempts at
its parallelization have appearsd in the recent literature, with some good results for shared
memery machines. The algerithm we present is designed for the distributed-memory Multi-
PSI, but nevertheless shows consistently good performance and speedups for & number of
standard henchmarks from the literature.

1 Introduction

Constraints, that is formulas desenibing conditions on objects in some domain, 15 an inter-
esting and important programming paradigm that has a voluminous literature. In the last
five wears, the integration of constrainl programming with Prolog has received a consider-
able amount of attention from both the view potot of applications and theory[LaMAT, DiH8S,
Walf9, DePR%] hased on the theoretical foundation of Jaffar and Lassez[TaL87]. As for ex
tending this work from the sequential to the concurrent frame, there is little published work,
among which is a report of some preliminary experiments in integrating constraints into the
PEPSys parallel logic system[Hen®0!), and a proposal, the Concurrent Constraint program-
pung languages, [ur integrating constraint, programming with concurrent logic programming
languages[Sar9]. The ce programming language patadigm models computation as the -
teraction of multiple cooperating agents through the exchange of information via querying
and asserting the information into a central repository. Coneretely, this paradigm is embed-
ded in a guarded (conditional) reduction system, where the guards contain the queries and
assertions. Control is achicved by requiring that the queries in a guard are true (entailed),

2 CONSTRAINTS IN LOGIC PROGRAMMING

and that the assertions are consistent (satisfiable), with respect to the current state of the
repository.

This paper introduces Guarded Definite Clauses with Constraints (GDOC), an experi-
mental ¢c language, which supports a vser-specified set of sorts and constraint symbals in
a committed-choice framework, and is intended to be a research tool for investigating issues
of constraint-solving in coneurrent programming languages, such as problem decompesition,
use of multiple solvers and hybrid techniques, ordering of constraints, management of semi-
decidable solution methods, debugging techniques, ete. It is implemented in KL1 and is
currently running on the Multi-Psi parallel logic machine at [COT.

The paper is organized as follows. We first informally review some of the vocabulary of
the constraint logic and concurrent constraint schemes, and then we introduce the GDOC
language. We then introduce the rational polynomial constraint system, discuss its suitability
in the cc framework, and then briefly present a concurrent constraint selver for the system.

2 Constraints in Logic Programming

Constraint Logic Programming

Constramnt logic programming (CLF), proposed by Jaffar and Lasser [JaLB86), is an exten-
sion of logic programming in which unification is replaced by the solving of equations over
some theory, and which can be then further generalized to allow non-equational relations as
vonstraints on variable values. Similarly to Prolog, a CLP program comprises predicates and
clauses, where clanses have the (abstract) syntax

Head - Canstramnts, (oals.

and is executed depth-fiest, left-to-right, with constraints taking the place of unification.
Operationally, (head) unification serves a dual purpose in logic programming, first to bind
actual (goal) and formal {clause) parameters, and secondly to prune the search. Constraints
take both these roles. Two major suitability requirements were given for a constraint solver
to be used in A const rainl logic language:

satisfaction-complete - sinee pruning of the proaf tree is based on the constraints, the
constraint sclver must be able to determine the satmfishility or unsatisfiability of any
ennstraiunl with respect to the accumulated constraint set,

sneremenlalily - since constraints are added dynamically during execution, the constraint
solver must be able to add new constraints to the accumulated constraint set efficiently,
and

Jalfar and Lassez also observe that although the mode of invecation docs not affect the
correctness of constraint evaluation, it does have a large effect on the efficiency of evaluation.
For example, in order of increasing cost, the query 7= X=2, Y=1, X+¥=2 can he treated as
a test, and 7= X+Y=3, X=1 can be handled by constraint propagation, while 7- Tev=3,
X-¥=1 must be handled as a system of simultancous ryquations, by some method such as
gaussian elimination. Likewise, the global ordering of constraint evaluation has a large effect
qan e]I"if‘l“'._a-'.

We would like to extend the constraint logic paradigm to a concurrent paradigm. both
te take advantage of potential parallelism in the logic component and constraint solver com-
ponent, and to address problems of controlling the parallelism with particular reference to
the order of constraint evaluation. The next section reviews a framework for starting to deal
with these issues.

Concurrent Constraint Programming Languages

Concurrent Constraint programming languages [Sar®9]. are a generalization to concurrency
of the CLF languages. We will present a brief summary of the hasic concepts of ce. The log-
iral interpretation of CLP programs is replaced by the notion of cooperating agents, which

2 CONSTRAINTS IN LOGIC PROGRAMMING B

communicate via queries and assertions into a (consistent) global database of constraints
called the sfore. Saraswat remarks that the CLP scheme is too weak, since 1t lacks control
features suitable for concurrent languages. Accordingly, in cc constraints occurring in pro-
gram text are classified by whether they are querying or asserting information, into Ask and
Tell eonstraints respectively. ' Asking and Telling are required to be stable operations.

The following definitions are adapted freely from [SaARS, Sarkd, Mah87). We define the
following sets: S is a finite set of sorts, including the distinguished sort HERBRAND, F a set
of function symbols. (" a set of constraint symbols, P a set of predicate symbols, and V a set
of vartables. A sort is assigned to cach variable and function symbol. A finite sequence of
sorts, called a signafure, is assigned to each function, predicate and constraint symbaol. We
write v : & if vanable v has sort s, f @ 8858, — sl functor f has signature 5159 . 5,
and sort 5, and p s.82 . 5, of predicate or constraint symbols p has signature 5,52 54,
We require thal terms are well-sorted, according to the standard inductive definitions. An
afomic constraint 15 a well-sorted term of the form ¢t 84, ..., tn) where ¢ 13 a constraint
svmbol, and a corsframi 15 o set of atomic constraints. Let © be the many-sorted vocabnlary
Fue u PoA consframnd systemas a tuple (X A,V (7), where & 15 a class of © structures.

We define the following meta-variables: ¢ ranges over constraints, g h range over atoms,
q ranges over clauses, and p ranges over predicates.

We now define the four relations answers, accepls, rejects, and suspends. The constraint
¢ answers o it

A (W)o = Jry.op)

e oaccepls o if
A (e na)

and ¢ rejects oy if

O (Vo e = =[32,.0])

where r, are the variables 1n ¢, and r; are the variables in ¢ but not in ¢, Nole that
the property answers s sirictly stronger than aecepts, and Lhat accepts and rejects are
complementary. We say that ¢ suspends o, of ¢ accepts, but does not answer ¢

A ee language program 1s coinprised o the usual way of clauses. A clawse is defined as
a taple {head goard tell body), where “head™ is a term with unigue variables as argaments,
“Euard” 15 a tuple < eg.0p =, cp, o and “tell” are a constraints, and “body” 18 a set of terms.
The constrainl ¢y 15 sad bo be ask-moded, while o and “tell” are said to be lell-moded. We
alise potalion somewhat e the following defimitioos. Constrainl & cowfirmes guard < eg e
if

& ANSUETS 0y, A s ACCepts oy

constraint & swspends < e, 0 > if
& accepls o, A acecpls o

and & rejects g if
5 refecls o Vo rejects o

Informally, a clavse (A < at>. e b) is a candidate for goal g in the presence of store s
if 5. g=h ronfirms <al> amd s g=h accepls a. A goal g rommils to candidate clause
{h.<at> ¢ b), by updating the store & with t U ¢, and replacing ¢ by b. A goal fails 1f
Wogg = (hoa by rshg =k = s regjects < al> Deciding confirms for multiple clauses and
commitment for multiple goals can be done in parallel.

The next section introduces the (D0 language, which is an instance of the cc scheine.

"In a language such as Flat Guarded Horn Clanses[Ued86] queryving and Ask-constraints correspond to guard
unification and guards. while asserting and Lell-conatraints correspond roughly to output wnification and body
unifications respectively,

3 GDhCC

3 GDCC

GIHOC is an experimental ce language, designed and implemented in the stream/process
model natural to committed-choice programming [U supports multiple plug-in constraimnt
solvers with a standard stream-based interface, so that vsers can add new doiaing and
solvers, and delays the binding of domain 1o solver to the start of each query, so that users
can easily specify variant solvers. We feel that the added Aexibility is appropriate ab this
stage. It should be noted that a solver for a given domain may only support a subset of the
constrainl symbols and modes, The GDUC language includes mest of KL1 as a subset; K11
builtin predicates and unification cau be regarded as a distinguished domain HErHRAND
[after Saraswat].
The GICC system {ligure 1) comprises

L. Pre-processor
Translates a GDCC source program into KL1 code,

2. Shell
Performs binding of domain to constraint solver. initiates queries and provides rudimen
tary debugging facilities. The debugging facilities comprise the standard KLI trace fspy
and PARAGRAPH execution-profiling functions, together with salver-level event logging,
The shell also provides limited support for incremental querying, in the form of inter-
query varislle and constraint persistence.

d. Standard Constraint Solvers
Interacts with a GDCC program to check guards and satisfy body constraints, At
present. there exists a constraint solver for rational polynomials,

Domain <-> Solver
GDCC Incremental Queries Constraint
ggl]]g

Shell Profiling SﬂIUE]‘

Progrﬂm BodyEqns rewriting rules Sﬂl‘\.’er

Cache Rules

Constraint
Solver

Figure 1: System Construction

Evaluation of GDCC programs

GDCC programs are compiled predicate-by-predicate into KL1, and during execution com-
municate via stream merge-trees Wo constraint solvers imiplemented as processes that encap-
sulate the entailment and unsasisfiability decision procedures. Abstractly, a constraint solver
i5 an object that provides the following services:

1. Add a (body) constraint to the current store, and fail the whole romputation in case
of inconsistency.

3 Gpoc

2. Determining the candidacy of each of a set of clauses with respect to a given goal.

3. Report the canonical form of the final store, as projected over the variables occurring
in the query

This defimtion focuses on the input-output behaviour, as relating to the mission of constraint
solvers: to provide control information to programs, and to report answers to queries. Spec-
ifying an interface at this level has the potential of allowing the constraint solver to make
mission-oriented decisions on scheduling, speculative versus conservalive guard evaluation,
ete.

Howewer, in the current implementation we solve constraints one-by-one, following a
simple strategy for guard evaluation: FPor cach goal, we evaluate the HERBRAND comnponent
of the guard before solving the remaining constraints; we do this in parallel for each clause.
This approach is incomplete in the same sense that KLL is incomplete, in that it 15 not
guaranteed to detect goal failure, since only one of the possible seralizations of each guard
evaluation is considered

Constraint solving typically requires manipulating variables in various ways. One basic
form of manipulation is the comparison of two (uninstantialed) variables. KLI provides
no mechanism for doing so, and in facl the language’s philosophy prohibits such compar-
isons Accordingly. we represent non- HERRRAND variables as ground terms, Currently. the
programmer is burdened with ereating these “variables™ via the huiltin predicates alloe /7,2,

Example

T'he following example is adapted from [AiS88]. Given an arbibrary quadcilatecal, we wish to
find the ellipse that passes through the midpoints of the four sides, as illustrated in figure 2.
The approach is to caleulate the midpoints of the four sides fiest, and then to calculate the
eliipee as a linear transformation of a cieele, The transformation matrix is caleulated based
on the relationship between a unit square an the paralielogram formed by the midpoints. A
fragment of a GDCC program (see Appendix A) to solve this problem s

start{P1,P2,P3,P4,K,¥Y) :- true |
create_pointa{[& B,C, D)),
mid_points([P1,P2,P3,P4,P1],[4,B,C,0]),
cale_ellipse(4,B,C,0,L,Y).

calc_ellipse(p(X1,¥1),p(X2,Y2),p(X3,Y3),pl(A4 Y&) P) :-
alg: (X1-X2)=(Y3-Y4)=(¥1-Y2)+{X3-X4),
alg: (X1=M4)*(Y2=-V3)={¥1-Y4)*={X2-X3) |
cale_ellipas_ckay(P1,P2,P3,P4,P).

The entry-point is atart/s which takes the coordinates of the quadrilateral’s vertices, and
the two variables on which the ellipse constrami will be imposed. For example, the query
ellipse:start{p(X1,1),pl{1,5),p(X2,8),p(-9,98),p{X,¥Y)} will return constraints on X
and ¥ such that the point [X.Y) must lie in the ellipge drawn through the midpoints of a
guadrilateral whose vertices are (X1 1), (1.5} (X28) amd {-9.9). The program proceeds by
spawning a process to calculate the midpoints of the four sides of the quadrilateral, and a
process to calculate the ellipse. The guard in cale ellipse/6 suspends until, by checking
that each of the twe pairs of apposite sides have the same slope. it verifies that the midpoints
form a parallelogram. Correctness of the method used by calc_ellipse/6 is ensured by the
guard. Additionally, the constraint-solver has a more constrained problem to deal with since
the guard guarantees that the midpoint caleulations have finished hefore new constraints
are generated from cale_allipse/6. This is typically much more efficient, which shows the
value of control based on mformafion-flow for concurrent constrainl languages.

L]

E

SOLVING RATIONAL POLYNOMIAL CONSTRAINTS

-

-
-

L

P3 o

Figure 2: kExample: Ellipse through midpoints

4 Solving Rational Polynomial Constraints

In [SaARD, SaSER], Buchberger Algorithm/Grobner Base constraint solvers for the rational
polynomial, boolean and finite-cofinite set domains were shown to fit reasonably well with
the Constraint Logic Programming scheme, since they are incremental, and satisfaction-
complete. We are interested here to investigate the use of Grobner Base techniques within
the concurrent constraint programming language scheme for the rational poly nomial domain,
which can be formalized as the constraint system (= F U0 P A V0O where:

5={A}
Fo=fw AA <A 4+ AA — A}
L {fraction :— A}
= {=}
P = {string starting with a lowercuse letler}
V' = {string starting with an uppercase letter}

with the structure

DIA) = the set of all algehraie numbers
D =) = multiphration
Di+) = addition

Dfraction) = the rational number il denotes

and
&= axioms of complex numbers

We will start this scction with a summary of some well-known results.

In [Bucad]. Ruchberger wtroduced the notion of Grobner Bases and devised an algorithm
to compute the Grobner Base of a given finite set of polynomials This algerithm has been
widely used in the ficld of computer algebra over the past few years,

Without loss of generality, we can assuine that all polynomial equations are in the form
oflp=0. Let £ = {py =0,..., P = U} be a system of polynomial equations, and ! the ideal
in the ring of all the polynomials generated by {p1,....pe}. The following close relation
between the elements of [and the solulions of £ is well known as the Hilbert zero point
theores [Hil90].

Theorem 4.1 letp be o polynomial. Every solution of E o5 also a solution of p= 0. if and
only if there exists a natural number n such that p" is an element af f

Corollary 4.1 E kas no selution if and only if L€ T

Buchberger gave an algorithm to determine whether a polynomial belongs Lo the ideal.
A rongh sketch of the algorithm is as follows {see [BucB3) for a precise definition).

4 SOLVING RATIONAL POLYNOMIAL CONSTRAINTS

Let there be a certain ordering among monomials and let a system of polynotmial equations
be given. An equation can be considered a rewrite rule which rewrites the greatest monomial
in the equation to the polynomial consisting of the remaining monomials. For example, if
the ordering is lexicographic, a polynomial equation, £ — X 4+ B = A, can be considered as
arewrte runle. 7 — X — B+ A A rule Ly — Ry s sand to subsume rale Ly By if Lo s
a r|:||||t.ip|e: of Ly A pir of rewrite rules L, — A anid fa — fis, of which L, and La are not
mutually prime, is termed a crfecal pair, since the least common multiple of their left-hand
gides can be rewritten in two different ways. The S-poiynomial of such a pair 13

leml Ly, La) lemi{ Ly, La)
L - F"-IE

Lo Ly

S-polyi L, L) = K

If further rewriting does not succeedl in rewriting the S-polynomial of a critical pair to gero,
Lhe pair s said to be divergent and the S-polynomial is added to the system of equations.
By repeating this procedure, we can eventually cbtain a confluent rewrnting system. 'Lhe
confluent rewreiting svster thus obtained is called a Grobner Base of the original system of
equations, and ran be characterized by all S-polynomials rewriting to zero. The following
theorem establishes the relationship between ideals and Grobner Hases,

Theorem 4.2 Lot B be @ Grabner Base of a system of squaliens {pp =10, .., Pa =0} and
Iet T be an sdeal generafed by {ps. .. pa b, A polynomial, p. belongs to [of and only {f p o5
rewretien fo 01 by H,

We could decide entallment based on 4.2, and satishalality h;\‘ uz-iug Lhe BuL'hi.rt'rgt'r
Algorithm tooneorporate the polynomial to the Grobner Base as per 4.1, but. for our purposes
there are some problems with this approach. Firstly, tentatively modifying the Grobner
Base in order to check gnard satisfiability s undesirable, particularly il we wish o do s for
multiple elawses sinultaneously. Secondly, since the relation between the sclutions and the
ideal deseribed i theoremn 4.1 15 incomplete, the method of theorem 4.2 15 incomplete with
cespeel to deciding cotailiment. For example . sinee Grobner Buase of {X*= 0} is {X* =0},
rewriting using this Grrobner Dase cannot show that X = 0 15 entailed. There are several
HPP[UHCJ:I("H Lis :iq'.'ll'\-'l' ll‘l("' l'[lLil.iI[]I.'.'[I: Fll.'*.'lhEL'[II:

1. LU'se the Grobner Base of the radical of the generated deal, T, 1.6, {p|p® € [}. Although
il s theoretically possible Lo compute, there s no efficient inplementation

2 Use bhe Buchberger Algorithm to add p to the Gribner Base and then check that
the resulting Girobner Base s equivalent to the onginal. U nfortunately, this seems as
difficult as finding the Groboer Base of the radical,

3. Uize the Buchberger Algorithm to add poe to the Grobner Base. where o s 2 new
variable s o the old weal i 1 £ the new ideal. This has the unfortunate side-effect
of changing the Grobner Base,

4. bFind n such thai @ 15 rewmiben to O by the Grobner Base of the generated wleal Sinee
wois bounded[Ualidd], this s a complete decision pracedure, Since the bound s very
large, we may prefer the ineremental solution of repeatedly raising p to a small positive
integer power and rewriting it by the Girobner Base.

Sinee we have not run into problems with incompleteness in practice, we have chosen not
Lo bnplernenl any of the above strategies.

4.1 Parallel Constraint Solver

There are bwo o main sources of palynomial-level parallelism in the Buchbherger Algorithm,
the paraltel reduction of a set of polynomials, and the parallel checking for subsumption
and critieal pairs of a4 pew rule against the other roles. Since the latter is inexpensive,
we must roncentrate on parallelizing the coarse-grained reduction component for shared-
memory architeciures, However, since the convergence rate of the Buchberger Algorilhin is

4 SOLVING RATIONAL POLYNOMIAL CONSTRAINTS

very sensitive Lo the order in which polynomials are converted into rules, an implementation
must be careful to select “small” polynomials early for inclusion in the developing basis.
The key idea underlying the algorithms in this paper is that of sorting a distributed set
of polynomials, and we will use the “distributed enumeration sort” [Aki85] as our point of
departure.

We begin by considering the “distributed enumeration sort” algorithm. which is suitable
for distributed memory machines. In the sort algorithin, each processor has a complete set
of the input items, and a copy of the ownership function which is a one-to-one function from
itemns to processors’. Each processor independently compares the item it owns to all the
other items in order to determine the item's rank in the sorted sequence. I'he method for
outputting the items in sorted sequence chasen, becanse of its applicability to the Buchberger
algorithin, is that cach processor listens to the cutput of all the other processors, and outputs
its equation when the count reaches the ilem's rank.

The sorting algorithm is adapted as follows. Fach processor contains a complete set of
basis polynomials {called rufes) and non-basis polynomials, and a load-distribution funetion
w which logically partitions the polypomials by specifving which processor “owns” what
polynomials. The position in the sutput (rule) sequence of each poly nomial is calculated by
its owning processor hased on an associated key {for example, the leading power product)
which is identical in every processor, and does not change during reduction. Each polynomial
is output when it becomes the smallest one remaining. The critical-pairs and subsumptions
are calculated independently by each processor, so that the processors’ sets of polynomials
stay synchronized. As a background task, each processor pewrites the palynomials it owne,
starting with those lowest in the sorted order. Termination of the algorithm is detected
independently by each sougione, when the input equation stream is closed, and there are no
nen-hasis polynomials remaining.

The dynamic problem requires more complex control. in order Lo prevent the areival
of input polynomials at different times at each processor from causing processars to have
inconsistent views ahout the set of non-basis polynomials and possibly about the sutput
{rule) sequence. Figure 3 shows the algorithm for the dynamic case. This version requires
additional information aboul the basis and non-basis sets of each engine to be made known,
eventually. to every other engine,

A serious drawhack Lo the algorithm is that it cannot take advanlage of “magic polyno-
mials”. That . since the key which determines the output pesition of & polynomial is fixed
Lefors reduction begins, the key is only a rough approximation of the actual preferability of
a polynomial after reduection,

Since the resnlt for the static algorithm is straightforward, and a special case of the result
for the dynamic algorithm, we will only prove correctness for the dynamic version. We would
like to show that the processors have the same view of the output (rule) sequence

Lemma 4.1 For every t = 0, eractly one processor outputs to Channelft]

Froof by induction on f. Assuwme i =0 Since B, 15 updated rractly when t 15 incremented,
we have By = B, =) and P, = K; We call a processor i synchronized of & = K, only
synchronized processors can owipnl flme [2) By definttion, 5; C [']J Ry, and so for all
synchronized processers by — K = r"|J- i Therefore there 15 o wmigue mimimum p e P
Letm = wip) If processer m s synchronized, then of outputs p as soon as p has been fully
rewritlen, otherwise f wats unlil synchronzation (whick will eventually occur, if 5 is finste).
In exther case, ¢ as ancremented. After vulpnt, Koy will not change until B, = B,, {line #),
wheeh also freezes the value of K. We are then guaranieed that no [other) engine can culput
untd recervang p, and merementing

Asswme £ =1y > (. Now I, — I, are the identical sets of crubical prirvs from the firsd £, rules.
We wrgue somalarly to fhe base case o oblaen the required result.

Corollary 4.2 Fach processor receives the same sequence of rules. .

*This idea is eazily gensralized to a many Lo one ownership fanction.

4 SOLVING RATIONAL POLYNOMIAL CONSTRAINTS

(1
i2)

i3
4]
(51
(6
7
]
i
{10]
(11
(12)
(13)
(14
(15}
{16}
(17}
(18}
[15]
(20)
(21)
(22)
(28]
(24)
(45}

comment

Y = stream of polvnomials.

& = subset of 5 that engine 1 knows has been received by every engine.
B; = subset of 4, that engine + knows has heen received by every cngine.
Code Lo mamtaion & amd 8, s omitted

s =1, N

spawn engine(i. 5 Channel) on processor i

engine{ 1.5, Channel)

S=P =k, =1

B, =B =d&t:=10

idu forever
choose

guard

do

recelve N from 5
B, =E
A= UYL o= RuXy

guard

do

guard
do

guard
do

guard
do

endchoose
enddo

ip = man{ #)) 18 irreducible wrl B,
wip) = :':|S = Kk

output p to Channel[t++]

P = B U {spoly(p.q) | ¢ € Bi} — {p}
Bo= Boup}

receive p from Channel[t++]

P o= F U {spolyip.q) | g € By}~ {p}
8, = Byu{p}

(L= {g|qge F wig)=1ipmsreducible by B, }) # 0
Rewrite L by B

Fr =05 is closed

output B, to l:‘.ha.ruu-:l[t]
sboepr

“The choose (guard Cond oo Action)® eodebosose constrack specifies o non-deterministic guarded
chotce. Exccution will suspend antil a1 least one of the conditions ohtains, and then the action correspomd-
ing to ane of the gnards whose condition obtains will be cxecuted; the testing of guard conditions has no

wlmervable effect until an associated action 1s chosen.

The algorithm for the static problem is obtained by changing all references to the stream 5 to the =et

ol input polynomiale P, replacing line(4) with “f = P, and deleting the framed code.

Figure 3: Algorithm for Dynamic Problem

4 SOLVING RATIONAL POLYNOMIAL CONSTRAINTS

Theorem 4.3 Forall pg € 5, S-pely(p.q) rewrites fo zerv
The proof follows easily from the above corollary.

4.2 Implementation and Results

The dynamic algorithm was implemented on the Multi-PSI, a distribuled-memory multi-
processor designed as a development platform for operating systems and applications based
on concurrent logic programming concepts. The user-level language, KL1[UeC90, Nalggh),
i a data-flow language that executes at up to 128 K reductions/second on a siugle Multi-PSI
nexde.

The central data strucbure in the inplementation is a sorted List of items of work, com-
prising input polynomials, eritical paies, and requests to simplify rules. Priorities correspond
to the key associated with each polynomial. In the current implementation for rules and
input polynomials we use the largest power product as the key, and for S-polynomials we
use the largest power product after canceling the largest power product of cach of the two
parent polyoomials, A refinement of the algorithm to mitigate the effect of not updating
the keys during polynomial reduction is to reorder the subset of polynomials owned by each
processor within the "output slots” controlled by that processor, maintaining each subset in
increasing order.

The complete execution of one piece of work is broken down into stages; for example,
a critical pair is first converted to a S-polynomial, then rewritten unlil the leading power-
product is irreducible, thirdly fully rewritten, and finally the coefficients are minimized hy
dividing by their greatest common divisor. Based on this breakdown, we pipeline the ex-
ecution of the cotire list, giving us maximum overlap betwoen communication and local
computation, The strategy [or executing the pipeline is to give priority to the most ad-
vanced element for the engine next to output if its outpul stage is empty, and otherwise to
give priority to the least advanced item; this combination of cager evaluation for the next
engine to output a rule and lazy evaluation for all the other engines seems to give the best
timings. A nice consequence of have the global set of cquations replicated on each processor
is that we can use the criteria for detecting useless critical-pairs as described for the sequen-
tial implementation of Gebawer and Moller [GeM88]. The ceiteria must be executed on each
proceasor redundantly.

The implementation of the & and B variables in the dynamic algorithm is based on ACK
{acknowledgment) messages. However, the addilional latency introduced applies only to the
acceplance of new input polynomials, and the number of B related ACK messages can be
decreased hy updating the B variables less frequently. Information aboul processor load is
piggybacked onto the ACK messages, in order to construct the w load-distribution function
dynamically (heing careful to build it identically on each processor).

Table 1: Absolute Performance of Dynamic Algorithm (sec)

Exarnple 1 PE 7 PE 1PE 6 PE R DPE 16 PL GAC
Runge-kutta 1 1994 1.702 1508 1562 1689 2.078 452
LTrinks 14.040 7.351 7705 B.O2I16 7044 10629 BES
BTrinks 52043 29691 24145 27629 24645 25.290 | 138425
Katsura 3 4.739 2.003% 2.330 2210 2,284 2504 4666
Katsura 4 273666 144475 101897 69708 111.802 92.700 | 141077

! Result is for different ordering thal gives better results for this problem.

The henchiwarks presented here are from the SAC system as reported in Boege ot
al.[BoGGB6); with the exception of Katsura 4, all examples wse total degree roverse lexico-
graphic ordering. The figures for the SAC systern/IBM 3080 are given to show qualitative
differences with a standard implementation

10

4 SOLVING RATIONAL POLYNOMIAL CONSTRAINTS Il

P i
#
] 1 1
Rules ! Rules

Key EgiLF

o Irgut Eges

Figure 4: Parallel Buchberger Algorithm

— " K atd

Absolute Speedup

2 4 6 & 10 12 14 16"FF
Figure 5: Speedup of Dynamic Algorithm

5 CONCLUSIONS

Except for Katsura 4, the speedup curve (Figure 5) eventually becomes flat, reflecting
the limits of polynomial-level parallelism in these examples. The absolute performance of
the algorithm is only fair. However, reimplementing the polynomial and rational arithmetic
in a standard von Neumann language should bring about a 1-2 order of magnitude per-
formance improvement in the bulk of the computation (measured at over 90%), without
affecting the parallehsm, Although reimplementation would change the ratio beiween com-
putation time and communication time/ latency, we conjecture a significant improvement in
overall performance to the extent of passing the performance of SAC and other sequential

implermnentations.

5 Conclusions

We have demonstrated the possibility of developing a concurrent ronstraint programming
language GDCC using the KLI committed-choice concurrent logic programming language.
GDCC is an open system, in the sense that KL1 processes obeying a simple protocol can be
used as constraint solvers for user-specified domains. We have demonsteated that Grabper
Base techniques are somewhat applicable to the concurrent context. and presented a con
straint solver based on a parailelized Buchberger Algorithm for calculating the Grobner Base

The constraint solver exhibits substantial speedups and reasonable performance. Reim-
plementation of the low-level routines in a von Neumann language should substantially im-
prove the latter. The algorithm uses broadeast messages cxclusively, and it would be in-
teresting to investigate its perforinance on a hardware and software platform that supports
broadeasting efficiently,

The performance of the paralle] Knuth-Rendix approach to solving Grabner Bases needs
much further study. It well known that the ordering of constraints has a strong effect on
the performance of the Buchberger Algorithm. but although GDOO guards can affect the
arrival order of constraints oceuring in the program text, internally generated constraints
{critical pairs) are not subject to this control, Therefore some other means should be Tound
to order the solver's subcomputations, and in this respect research into intelligent scheduling
strategies seems worthwhile, Guard-oriented scheduling also opens up the possibility of
giving a romplete implementation of entailment, and extend the implementation to decide
parametric guertes|Las8i]. The latter has many possible applications, including semantic
mela-PrOgERMTINE.

Finally, the problem of variable management in KL1 may be overcome hy global program
analysis for some class of GDCC programs, and as program analysis is a very active area of
research, we hope to use these results to relieve the programmer of the burden of indicating
variable typing and allocation.

References

[AIS88] A Aiba, K. Sakai, Y. Sato, D. Hawley, and R. Hasegawa. Constraint Logic Pro-
gramming Language CAL. In Tndernational Conference on Fifth Generation Com-
puter Systems {988, pages 263-276, 1088,

[AkI®S] Selim. G. Akl. Parallel Sorting Algerithms. Notes and Reports in Computer Science
and Applied Mathematics. Academic Press, 1985,

!BeP89] H. Beringer and F. Porcher. A Relevant Scheme for Prolog Extensions: CLP
(Conceptoal Theory). In #th Mmiernational Conference on Logec Frogrammang.
pages 131 148, 1984,

[BoGEG] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving systens of alge-
braie equations by calculating groebner bases. J. Symbolic Computation, 2(1):83
95, 1986,

12

REFERENCES

[BucRd]

[Cala=H]

[DnHsa]

[Ge MRE]

[Hens9]

[Hil30]

[L5

[JaLET]

[LaM&7]

[LasR4]
[Mah&7]

[Nal8ga)

[Nalggh]

[SaAng]
[5ardd)]

[SaS8S]
[Ue50]
[Uedga]

[Waln)

B. Buchberger. (srobner hases: An Algorithmic Method in Polynomial Ideal Theory.
Technical report, CAMP-LINZ 1083,

Leandro Caniglia, Andre Galligo, and Jooe Heintz. Some new effectivity bounds
in computational geometry. In Applied Algebra, Algebrawe Algorithms and Error
Correciing Codes - 6th International Conference, pages 131-151. Springer-Verlag,
1988, Lecture Motes in Computer Science 357.

M. Dinchas, P. Van Hentenryek, H. Simonis, A. Aggoin, T. Graf, and F. Bertheir.
The Constraint Logic Programming Language CHIF. In Proceedings FGOS-58,
LEsE

R. Giebaner and H, M. Moller. Ou an installation of buchberger’s algorithm. 1.
symbolte Computation, (2 and 3).275-286. 1988,

P. Van Henlenrvek, Paraliel constraint satisfaction in logic programming: Pre-
limiary results of chip with pepsys. In 8th Iniernelivnal Conference on Logic
Programming, pages 165-180, 1989,

1. Hilbert. Uber die Theorie der algebraischen Formen, Math. Ann., 36:473-534,
188
Joxan Jaffar, Jean-Louis Lassez, and Michael J. Maher. A Logic Programming

Language Scheme. In D DeGroot and G Lindstroms, editors, Logie Programming.
Funetwns, felations, and Fguafions. Prentice-Hall, 1956,

J. Jaflar awd J-L. Lassez Constraint Logic Programming. In Proceedings of the
F{th ACM Principles of Programming Languages Conference, Munich, January
L4987,

Catheeine Lasser, Fen MoAloon, and Roland Yap. Constraint Logic Programmung
and Options Trading. fortheoming Hesearch Heport, I1HM T.J. Watson Hesearch
enter, [YHT.

J-L. Lassez. Querving Constraints. fortheoming Research Report, 1985

Michael 1. Maher, Logic Semantics for & Class of Committed-choice Programs. In
Procesdengs of the Fourth International Confevence on Logw FProgrammang, pages
wak-nTt. Melhourne, May 1987,

k. Nakajima. ¥ Inamura, k. Rokusawa, N Ichivoshi. and T Chikayama. Dis-
tribinbed inplementation of k11 on the multi-psi/v2, Lo 686 fnternafional Conference
on Logie Programming, pages 436 451, 1989,

Katsuto Nakapma, Yu lnamura, Nobuyuki Tchivoshi, Kasuaki Rokusawa, and
Takashi Chikavama Distributed implementation of KLI on the Mulu-PS1/V2.
I Procecdings of IJCLP 8. pages 436-451, 984

k. Sakai and A, Alba. Cal: A theoretical background of constraind. logic program-
ming and s applications. fewrnal of Symbole Computation, 8588-600, 1985,

V. Saraswat. {oncerrend Consframd Progmmoeng Languages. PhD thesis,
Clarnegie: Mellon University, Computer Beience Department, January 1484,

Y. Sate and k. Sakal. Hoolean Girébner Base, February 1988 LA-Symposiom in
winter, HIMS. kyoto Universiny

karunor Ueda aml Takashi Chikayama. Design of the kernel language for the
parallel inference machine. Computer Journal, December 198). To appear.

K. Veda (fuarded Horn (lauses. PhLY dhesis, University of Tokyo, [nformation
Engineering, HEs.

O Walinsky, CLP{XZ"): Coostraint Logic Programming with Hegular Sets. In 62h
Faternational Conference on Logic Programming, pages 181 198, 1980,

13

A

SOURCE FOR ELLIPSE EXAMPLE

A Source for Ellipse Example

:= module ellipae.

1= public start/6.

start(P1,P2,P3,P4,P) - trua |
create_points([4,B,C,D]),
mid_points{[P1,P2,P3,P4,P1],[4,B.C,D]),
calc_ellipse(A,B,C,D,P).

cale_ellipsa(p(X1 Y1) ,p(X2,¥Y2),p(X3,Y3),p(X4,¥4) P} :-
alg:(K1-12)+(V3-¥4)=(Y1-¥Y2)#(X3-X4},
alg: (N1-X4)s(Y2-¥3)=(Y1-Y4)s(X2-X3) |
transform_matrix(T),
calc_transform{T,p(X1,¥1},p(X2,¥2),p{X3,¥3}),
create_point(Fpl,
transform{Pp,T,P},
circle_2(Ppl.

cirele_2(p{X,¥}) :- true |
alg:X"2 + Y72 = 2,

transform_matrix(T} :=- trua |
allec(100,A1,B1,C01,A2,B2,02),
T=[[A1,81,C1], [AZ,B2,C21].

calc_transform(T ,P1,P2,P3) := true |
square_2{LL,UL UR LR},
transform(LL,T,P1),
transform(UL,T,P2}),
transform(UR,T,P3).

square_2(LL,UL,UR,LR} :- true |
UL=p(-1,1), UR=p(1,1),
Ll=p(-1,-1), Lk=p{1,-1}.

transform(P, [L1,L2] JPp) - true |
Fp = piXp,¥Yp),
transfermi(P,L1,Xp),
transformi (P ,L2,Yp).

transformi (p(X,Y), [A,B,C],F) :- true |
alg:P=A*X+B*Y+C,

mid(p{X1,Y1),p(X2,¥Y2) ,p{X3,Y3)) :- true |
alg:3=X3=X1+X2,
alg:2e¥3as=Y1+Y2Z,

create_pointa([]]},

create_points{[IiIs]) :- true |
create_point(I),
create_peints(Is).

mid_pointa{[_],[1).
mid_points([A,BlIs],[MiMal) :- true |

14

A SOURCE FOR ELLIFSE EXAMPLE
wid(4,B, M),
mid_points([B|Is] ,Me).
create_point(P) :- true | allec{100,X,¥), P=p(X,¥Y).
7= allec(0,X,Y),alloc(1,4},

ellipse:start(P1,P2 P3,P4,p(X.Y)),
Pisplh,-1) ,P2=p{-1,1),P3=p(1,1) Pa=pl1,=1).

15

B RESULT OF COMPILING ELLIPSE EXAMPLE 16

B Result of Compiling Ellipse Example

:= module ellipse
:= public’$igdccs$’ / 0 .
‘$hgdocds’
1= public satart/ 6 .
start(Var0,Vari, Var2, Var3, Var4,XA): -VarO=Var5,Vari=Var6,Var2=Var7, Var3=Var8, Var4=Var9|
create_points([Vari0,Varil ,Var12,Vari3], Vari4),
mid_pointa{[Vars, Varé,Var7,Varg,Vark], [Var10,Varii,Vari2,Vari3],Varis),
calc_ellipsa(Varid, Varill VariZ, Vari?, Vard Varia),
IA={Vari4,VariE, Varig} .
cale_wllipse(Var0, Var!l,Varz, Var3 Vard ki) - true |
Xa={Xa1,{vars}},
{ Varf=success,VarT=succeas,VarB=success
-> Abort=success,
tranaform_matrix{Vard Varid),
cul:_tr:nsicrm(varn,p[varji.varlzJ.p{Uar13,variaj,P{?ar15_var1e},var1?},
craate_point(Vari8, Varis),
transform{Vari8,Var9, Var20, Var1),
circle_2(Vari®,Var22},
Tal={VariQ Varl7,Vari9,KVar2i, Var22}
Y
{ VarO=p(Var23,var24),
Vari=p(Var2f, Varle),
VarZ=p(Var2? Var2g),
Vard=p(Var29, Var3o),
Varda=Varil
=» Var5=[auspend{[Vari1,Var12,Vari3 Vari4, Varib, Var16,Var32, Var33], Abort,
lalghask(=, expr{i*(Varli*Vari6)+(-1»{VariieVar3a)
#{=1*(Vari2*VariE)+(i=(Vari2»Variz)
+{—1*=(Vari3sVari6)+(1+(Varl3sVari3i)
+{1*(Varigd=Varis)+-1is(Var144Var3z) 13333},
{VarT, Abort})]),
suspend{ [Var11,Var12 Vari3 Vari4,Vari6,Vari6,Var32,Var33], Abort,
[alg#ask(=, expr {1+ (VarileVari4)+{-1=(Varii=Varis)
+{-1#(Var12+Vari12}+{i+(Vari2=Varis)
+{1n({VarideVarad)+{-1»(Vari4+Variz)
+{=1%(Var1f+Varia)+1={Varlé=yar32))}31)3)),
{Vars, Abert})107,
Varé=success,
Varii=Var23, Var12=Var24 Var13=Var2s,Var14=Var26,Vari5=Var27,Vari6=Var28,
Vari2=Var28 Var33dsVar30,Varz0=Varii
: waiti(Abort)
-» Varb ={}
).
circle_2(Var0,XA) :- VarO=p(Vari,Var2) |
Rh=[suspend{ [Vari Varz], [alg#tell(=, axpr(-2+1+(1sVariee2+12VarIes2)11])].
transform_matrix(VarO,XA) :- Varo=Varl |
Vari=[[Var2, Var3,vVar4], [Vars,Vare,var7]],
Il=[nnw_variablaf?a:2.1ﬂﬂﬁ.niu_uaritblu{#ara,iun},nan_uaxiablg{vnzq,lun},
nev_variable{VarE, 100) new_variable(Varég,100) ,new_variable{Var7,100)].
cale_transform(Var0,Varl,Var2,Var3,XA}:-Var0=Vard Vari=Var5, K Var2=Var6, Var3=varT|
sgquare_2(Var8, Var9, Vario, Varil,Vari2),
transform(Var#, Vard Vars Var13),

B RESULT OF COMPILING ELLIPSE EXAMPLE 17

transform{Vard, Vard, Varé, Vari4),
transform{VarlD,Var4,VarT ,Varik),
TA={VariZ,Vari3,Vari4, Varis} .
squl.n_‘z{'l.l'a.rl:l,h.riJ.fa_:'z,‘.rarﬁ,ln :- Var0=Vard, Vari=VarbE K VarZ=Varf Var3=Var7 |
VarS=p(-1,1},
Varg=pil,1},
Var4=p{-1,-1},
VarT=p({1,-1},
Xa={} .
transform(Varod,Varl, Var?,XA) - VarD=Var3, Vari=[Var4,Varb], Vari=Vare |
tran=formi(Vard Vard Var7, Var8),
transforml(Vard, Vars Vars Varid),
Varé=p(Var7 Vard},
TA={Vars Vari0} .
transforml(Vard,Vari, Var2 X&) :-Var0O=p(Var3,Var4) ,Vari=[Var5 Vars,Var?], Var2=Varg |
XA=[suspend([Var3,Var4,Vars, Varé, Var7, Varg],
[algttell(=,expr(-1*(VardsVarb)+(-1n(VardeVare)
+(-1*VarT+1#Var8))1)]1].
mid{Var), Varl, Var2 Ia) :-
VarO=p(Var3, Var4),
Vari=p(Varb,Vart),
Var2=p(Var7,Varg) |
X4=[suspend{ [Var3,Var5,Var7], [alg#tell(=, expr{-1*Vard+{-1+Varb+2+Var7)1)]),
suspend([Var4,Varé Narg], [alg#tell(=, axpr (=1#Vard+{-1*VarG+2=VarB)1)]3].
create_points(Var0, XA) - Var0=[1 | Xa={} .
create_pointe(Vard,Xk) :- Var0D=[Varl|Var2] |
craate_point(Varl,Vard),
create_points{Var2 Var4),
Eh={Vari, Var4}
mid_points{Var0,Varl,X4) :- Varo=[Var2], vari=[] |
a={} .
mid_points{Var0, Vari, XA} :- VarO=[Var2, Var3|Vard], Varl=[Vars|Varé] |
mid{Var2, K Var3, K Varb, VarT),
mid_points([Var3|Vard] ,Varé, Var8),
EA={VarT,Vard} .
create_point(Var0,XA) :— VarO=Vari |
Vari=p(VarZ2,K¥ar3),
IA=[new_variable(VarZ, 100} ,new_variable(Var3d, 100) [{}]

