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Abstract

The distributed hash table is & paralielization of the hash
table obtained by dividing the table into subtables of
equal size and allocating them to the processors. It can
handle a number of search/finsert operations simultane
ously, increasing the throughput by up to p times that of
the sequential version, where p is the number of proces-
sors. However, in the average case, the peak throughput
is not attained due to load imbalance,

Tt is elear that the table size m must grow at least
linearly in p to balance the load. In this paper, we
study the rate of growth of m relative to p necessary to
maintain the load balance on the average (or to make
it approach the perfect Joad balance). Tt turns ouwt
that [inear growth is not enough, but that moderate
growth—namely wip logzp]—js sufficient. The proba
bilistic model we used is fairly general and can be applied
to other load balancing problenss.

We aleo discuss communication overheads, and find
that, in the caze of mesh multicomputers, unless the net-
wurk channel bandwidth grows sufficiently as p grows,
the network will eventually become a perdormance bot.
tleneck for distribated hash tables.

1 Introduction

Parallel computation achieves speedup over sequential
computation by sharing the computational lead among
processors. T'he Joad balance between processors is cen-
tral in deterimuning the paralle]l ruotime (though other
factors also affect performance). Unlike uniform com-
putationsl tasks in which almost perfect load balance is
achieved by allocating data uniformly to the processars,
non-uniform computational tasks such as search prob-
lemns pose non-trivial joad balancing problems.

In mest nop-uniform tasks, worst-case computa-
tional complexity is far larger than average case com
plexity; and the worst case 15 usually a very rare
case. Thus, the study of AVETARE Case pcrrurrnanne
i importanl, and it has been conducted for sort-
ing and wearching [Kouth 1973], oplimization prob.
lemns [Cofimen and Lueker 1991), and many others

[Vitter and Flajolet 19490].  However, there seems to
have heen little work on average-case performance anal-
ysis in regard to paraliel algorithms, especially on
highly parallel computers, a notable exception being
[Kruskal and Weiss 1945].

In this paper, we study the average-case load balance
of distributed hash tables oo highly paralle]l computers.
A distributed hash table is a parallelization of 2 hash ta-
ble, in which the table is divided into subtables of equal
size to be allocaled to the processora. It can handle a
nutnber of search fiusert operations simultaneously, in-
creasing the throughput up to p times that of the se-
quential version, where p is the nember of processors.

However, in average cases, the peak throughput is not
attained due to load imbalance. Intuitively, the more
buckets allocated to cach processor, the better the aver-
age load balance becomes. It is ciear that under a con-
stant load factor a = n/m (n is the number of elements
in the table, m is the table size}, m must grow at least
linearly in p to balance the load. We shall investigate the
NeCessa r:,-',-'lﬁul:ﬁr.iﬂnt rate of gmwth of m relative to p a0
that the load balance factor—the average processor load
divided by the maximum processor load—approaches 1
asp — oo, It turns out that linear growth is not enough,
but that moderate growth—namely, w{p]ug’ pl—is suf-
ficient. This means that the distributed hash table is
a data strueture that can exploit the massive eamputa-
tional power of highly paralle]l computers, with problems
of a reasonahble size.

We also briefly discuss communication overheads on
multicomputers, and find that, in the case of mesh multi-
comnputers, unless the network chanoe]l bandwidth grows
sufficiently as p grows, the network will eventually be-
come a perforimance bottleneck for distributed hash ta-
bles.

The rest of the paper is organized as follows. See-
tion 2 describes the distributed hash table and de-
fines the problem we shall analyze. The terminology
of average-case scalability analysis is introduced in Sec
tien 3. The analvsie of load balance is presented in Sec-
tion 4. The full proofs of the propositions appear in
[Kirnira and Ichivoshi 1991]. The communication over-
heads are considered in Section 5. The Jast section sum-
marizes the paper.



2 Distributed Hash Tables

21 Distributed Hash Tables

The distributed hash table is a parallelization of the hash
tahle. A hash table of sige 1 = pg is divided into subta-
bles of equal size g and the subtables are aliocated to p
processars. The two most simple bucket allocations are:

The block allocation

The k-th bucket (# = 1) belongs to the ([ {k=1)/q|+
1)-th subtable,! and

The modular allocation

The k-th bucket (& 2 1) belongs to the ({(k—1) mod
ri 4+ 1)1-th processer,

At the beginning of a hash operation (search or insert)
for an element T, the hash [unction is computed for 2 to
generate a pumber & (1 < k < m}, and the element {or
the key) is dispaiched to the processor which contains
the h-th bucket. The rest of the operation is processed
at the targel processor, :

For better performance, it is desirable to maximize the
locality. Thus, when the indirect chaining scheme is em-
ployed for hash collision, the entire hash chain for 2 given
bucket should be cantained in the same processor which
contains the bucket. With open addressing, linear prob-
ing has the best locality {under the allocation scheme
{1} but its performance degrades quickly as the load fac-
tor increases. (ther open addressing schemes have better
sequential performance characteristics [Kauth 1973, but
have less locality, For this reason and also for simplic-
ity of analysis, we choose the indirect chaining scheme.
The bucket ailocation scheme docs not influence the load
balance analysis in this case.

The absence of a single entry point that can become
& bottleneck makes the distributed bash table a suitable
data structure for highly paraliel processing. The peak
throughput increases linearly with the number of proces-
sors. The problem is: When does the “real” performance
approach the “peak” performance? When elements are
evenly distributed over the processocs, linear growth in
the number of data elements is sufficient for linear growth
in performance, Oun the other hand, in the worst case,
all elements in the hash table might belong to a single
subtable so that performance does pot increase at all.
We are not interested in these two extremes, bul in av-
erage performance, just as we are more interssted in the
average complexity of hash operations in sequential bash
tables rather than worst-case complexity.

"When p dees not divide m, taking ¢ = {m/p] works but it
may lead to & sub-aptimal load balance [e.g., consides the case
m=p+1). A better load balance cen be realized by a mapping
function which w a little more complicaied than simple division.

2.2 Problem Definition

There can be a number of uses of hash tables depend.
ing un the application. Here we examine the following
particular use of the hash table.

Concurrent Diata Generation, Scarch and Inser-
tion

Initially, there is an “old” distributed hazh table con-
taining “old elements” and an empty “new” distributed
hash table. The old and new tables are of the same size

" = pg {p is the number of processors and g is the num-

ber of buckets assigned to each processor) and use the
same hash function, Also, some “secds” of new elements
are distributed randemnly across the processors.

(1) Cencurrent Data Generation

Fach processor generates “new elements” from the
allocated seads. It is assumed that the time it takes
each processor to generate new elements is propor-
tional to the number of genezated elements.

{2} Concurrent Data Dispatch

Each processor computes the hash values of the new
elements and dispatches the elements to the target
processors accordingly.

{3) Concurrent Search

Each processor does a search in the old table for
each of the new elements it has received.

(4) Concurrent Insert

Each processor inserts those new elements that are
not found in the old table into the new table. No in-
terprocessor cammunication arises, because the old
and new hash tables use the same hash function.

The above usage may seem a little artificial, but the
probabilistic model and the analysis for it should be eas-
ity applicable te other usages. In the analysis of load
balance, the data dispatch step iz ignored (equivalently,
instantaneous communication is assummed). This is dis-
cussed in Seclion 5,

3 Scalability Analysis

Average Speedup and Efficiency We denote the se-
guential runtime by T(1) and the parallel runtime us-
ing p processors by T'(p). The speedup is defined by
S(p) = T(1)/T{p), and the efficiency by E(p) = S(p)/p.
Efficiency is the ratio between the “real” performance
{obtained for a particular problem instance) and the
“peak” performance of the paraliel computer. In the
absence of speculative computation, the efficiency is less
than or equal to 1.



Since we intend to engage ourselves in an average-case
analysis, we need to define the “average spesdup” 2nd
the “average efficiency”.

Definition 1 We define the averags collective speedup
aip) by E{T(1))/E(T(p)) (E{X]) denotes the expecla.
tion of X and the average collective efficiency nip) by
alpl/p-

The reason why we analyze the above defined aver-
age collective speedup, and not the expected speedup
in the lteral sense—E(T(1)/T{p))—is that: (1) it is
much simpler to analyze E{T{1})/E(T(p)} than ana-
lyze E(T(1)/T{p)), and [2) in cases where any average
speedup figure is meaningful our definition is a betber
indicator of overall speedup. Suppose we run a nem-
her of instances [y, L, ... from some problem class, then
the collective speedup defined by 3711, L}/ T I
(T(1,1} and T(p 1) are sequential and parallel run-
times for problem instance [) and represent overall
speedup.  This is more meaningful than any one of
arithmetical mean, geometric mean, of harmonic mean
that may be calculated from the individual speedups

T(1,7,)/T(p.T.).

Scalability Analysis and Isoefficiency We would
like to study the behavior of 5{p) as p becomes very large,
In general, for a fixed amount of total computation W,
nip) decreases as p increases, because there is only finite
pargllelism in & fixed problem. On the other hand, in
many paralle] programs, for a fixed p, 5(p) increases as
W grows. Kumar and Rao [1987] introduced the nolion
of isoefficiency: if W needs to grow according to fip) to
maintain an efficiency £, then f{p) is defined to be the
tsoefficiency funclion for efficiency E. A rapid rate of
growth in the iscefficiency function indicates that near-
peak performance of a large-scale parallel computer can
be attained only when very—sometimes unrealistically—
large problema are run. Such a parallel algorithm and for
data structure is not suitable for utilizing a large-scale
parallel computer. (We will refer to the isoefficiency by
this original definition by eract isoefficiency.)

Since it is sometimes impossible to maintamn an exact
E because of the discrete nature of the problem, the
following weaker definitions of soefficiency may be more
suitable or easier to handle.

Asymptotic Iseefficiency [ is an asymptotic isoeffi-
ciency function for £ if

lim 7(p) = E under W = f(p).

]

Asymptotic Super-Isoefficiency [ is an asympiofic
super-isoefficiency function for B if

]iﬂglfq[p]- = F under W= f(p).

f is an asymptiotic super-isoefficiency function if it is
an asymptotic super-isoefficiency function for some
E = 0, i.e., the efficiency is bounded away from 0 as
o= 0,

An exact izoefficiency function for F is an asymptotic
isoefficiency function for E; and an asymptotic isoeffi-
ciency function for £ is an asymptotic super-isoefficiency
function for E.

In the analysis of load balance, we study the bal-
ance of essential computation. Essential computation is
the total compulalion performed by processors exclud-
ing the parallelization overheads. The amount of essen-
tial enmputation is equal to pT(p) minus the total over-
head time spent on things such as message handling and
idle time. In the absence of speculative computation, we
can identify the amount of essential computation with
the sequential runtime® The terminclogy for load bal-
ance analysis is defined like that for speadup fefficiency
analysis, except that “essential computation” replaces
“runtime”: the total essential computation corresponds
to sequential runtime; morimum processor load corre-
sponds to parallel ruatime; and load balance Jactar®
corresponds to efficiency. We use the same terminel-
ogy for isoefficiency functions. In the foliowing analysis,
we study asymptotic jsoefficiency for 1 and asymptotic
super-isoefficiency. (Since we are not dealing with ex-
act isoefficiency, we drop the adjective “asymptotic” for
brevity. |

4 Analysis of Load Balance

4.1 Assumptions

For the sake of probabilistic analysis, we consider a model
in which the following values are treated as random vari-
ables {(RVs): the number of old and new elements belong-
ing to the j-th bucket on the i-th processor {1 <1 < p,
1< 7= q)denoted by Ay and By; respectively, and the
nurmber of new clements generated at the i-th processor
denoted by ).

First, we make some assumptions on the distributions
of these random variables. The two alternative mod-
els of hash tables are the Bernoulli model in which the
nutnber of elements n inserted in m buckets is fixed
(¢ = nf/m) and the probability that an element has
B given hash value is uniformly 1/m, and the Pois-
son model in which the occupancy of each bucket is
an independent Poisson random variable with parame-
ter o [Vitter and Flajolet 1980]. We choose the Pois-
son model, because it 15 simpler to analyee directly, and
because, with regard to the distributions of maximum

2If we ignore various sequenbial overbeads such as cache miss,

process switching, and paging.
ot to be confused with the load factor of hash tables



bucket occupancy in which we are interested, those un-
der the Bernoulll model approach those under the Pois-
son model as m — oo [Kolchin et al. 1978].

For a similar reason, we assnme that (7 {1 £ 1 < p) are
indspendent identically distributed (i.i.d.) randem vari-
ahles having a Poisson distribution with some parameter
v, It follows that the total number of new elements has
a Poisson distribution with parameter py, and by the as-
sumption on the hash function, B;;’s are 1.1.d. random
variables having a Poisson distribution with parameter

= py/m = vfg. We assume that load factors & and
A of the old and new hash tables are constant (do not
change with p, g).

To summarize, A,; and B are i.1.d. random variables
having a Poisson distribution with parameters o and §,
and 7 are i.1.d, random variables with & Moisson distri-
bution with paramcter g8, Note thal &)'s and B's are
not independent because 1, Gy = g5 By

4.2 Essential Computation and Load
Balance Factor

Since each data generation is assumed to take the same
time, the essential computation of the data generation

step 1s
Woen = E 7.
Lhths
(ignoring the constant factor).

As for the search step, some searches are snceessful
(the new element is found in the old table) and others
are unsuccessful. For stooplicity of analysis, we choose a
pessimustic estimate of the essential computation and as-
sume that all searches are unsuccessful. We also assume
that an unsuccessful search inveolves comparison of the
new elements against all the old elemenis 1o the bucket.
Thus, the number of comparisons made by an unsuccess-
ful search in the bucket with 4;; elements 1s 4;; + 1 (the
number of elements plus one for the hash table slot con-
taining the pointer to the collision cham). Tlerefore, the
essential computation of the search step is:

Wicar:h = E z {A.J + 1:'5._...

1gigp1ige

(again ignoring the constant factor).

We make a similar assumption for the insert step: ev-
ery insert is dope after an unsuceessful search in the new
table, Thus, the essential computation of the search step
for bucket 7 on prooessor 1§ is:

3o+ =

oel<h, =1

Oy (Bi; + 1072,
and the tolal essential computation for the search step
15

Wisers = L L Bt Ed;'i' ]-'I'.I'r:2

15igplas<q

Thus, the total essential computation is:

Wi(l)= 3 (W + W'+ W),
1aigp
where
Wi=G, W E:K,ﬁfﬂuﬂlﬁw and

wr 21-:;-:.1 uﬁEu + 1)/2.

The maximum processor load is
Wip) =

The average load halance
factar nip) is E{W(1})/pE (W(p)). We would like to
know what rate of growth of g is necessary fsuflicient so
that gip) — 1 as p — oo

Since

E(E{W.’+

iy

(g ) ez ) o ()

= p(E(W))+ B (W) + E(W"),

ru -l- wi.l + wh‘.l"ll

w+mﬂ

and
E f;?gg{W.' + W+ Wf"})
< B (g W) + & (s 7) + £ (g 70).
we have
E(W] + E(W + E(WM

E maxw)+r,(maij+ﬁ[maxw J
155 5%

nipl =

Thus, if

E (max wr) ~ E(W]),

E(m“w") ~ E{W"), and
E(mpwr) ~ BOv
(as p = <),

then g(p) = 1. The above are also necessary conditions,
because all three summands are significant as p — oo,

The random variable &y, having a Poisson distribution
with parameter g8, has the same distribution as the sum
of g i.i.d. random variables If; (1 = j = g) with a Pois-
son distribution with parameter 3. Thus, we are led to
the study of the average maxiomun of p sums of g 0d.
random variables W, (1 <1 = p, 1 £ j < gq) with a
distribution that does not change with p and ¢ In our
distributed hash table example, we are interested in the
cases in which each w,-.,; is either a Poisson variable, Lhe
pl’DdllEl D{ Lwo PDiﬂEDI'.I va.ria.l:r]ﬁs, or a Pﬂl}l’nﬂrﬂiﬂl Df a
Foiszon variable.



4.3 Average Maximum of Sum of i.i.d.
Random Variables

We give sketches of the proofs or cite the resulis. The
details are presented in [Kimura and Ichiyoshi 1991].

4.3.1 Poisson Variable

The asymptotic distribution of the mazimum bucke!
occupancy has been analyzed by Kolchin el al.
(1978 The following is the result as cited in
[Vitter and Flajolet 1990].

Theorem 1 (Kolchin et al.) If X; (1 < i £ p/ are
iid. random variables having a Potsson distribution with
parameter g, the erpected mazimum bucket occupaney 2

o boif u=o(logp);
M.=E k-’{:‘?":ﬁx‘) - { g if p=w(logp),

where b s an inleger greater than g such that

—o Bkl

£
(B4 1)

e b
< Tk,
bt

M

1
P
When = 8(1), b~ log p/ log log p.

The proof is based on the obeervation that, as p be-
comes large, P {M, > &} as a function of b approaches
the step function having value 1 for b smaller than b and
0 for b larger than b, and the expectation of M, is equal
to its summation from b= 0to b = oo

We extend Keolchin's theorem to the product of Foisson
variables and polynomials of a Poissan variable.

4.3.2 Product of Two Poisson Variables

We introduce a partial order on the class A of non-
negative random veriables with a finite mean.

Definition 2 For XY € M, we define X « ¥ iff
Ei{max{X, c}) = E{max{Y,c}) for all c = 0.

There are a number of natural properties concerning
this partial order. For example, if X < ¥ and 2 i
independent of X,V , then X + 2 <Y+ &, X2 <Y 2,
max{X,Z} < max{¥,Z},etc. Note X < T and X < 1}
do not imply 2X = ¥] +¥;. The utility of = in analyzing
the expected maximum is ilustrated by the following
lemma.

Lemmal Let X; (1 <1 < pland ¥, {1 €48 < p)
be i.id random variables distrihuted as X and Y. If
X =Y, then

E(nm x;) EE(max v)

ity 1iap

SKETCH OF PROOF:
max{ Xy, X2, Ap) = max{¥y, Xz,..., X;}
< - <max{¥,....};} O
For the convex sum of i.id. variables, we have the
following lemma.
Lemma 2 Let X; (1 i< p) be ii.d. random variables
distributed as X. Forall g, > 0 {1 <4 £ p} such that
ay oo bap =1, 0 X 4 X <X,
SKETCH oF PROOF: Let gp,ay 2 0 and a1 + a3 = L
For arbitrary ¢ = 0, max{a, X, +a: Xy, ¢} + max{a, X3+
ag X1, ¢} = max{X,,c}+max{Xs, c]. Theexpectation of
the left hand side is equal to 2F (max{a, X} + a3 X3, c}),
and that of the right hand side ig
E (max{X;, ¢} + max{Xy, c})
= E(max{X;,e})+ E(max{Xs c})
= 2E[max{X, c}).
Thus, a;X; + a3 Xy < X. The case for p > 2 can be
reduced to p - 1 using the above. 0O
Finally, the following lemma gives an upper bound on

the sum of the product of two sets of i.6.d. random vari-
ables,

Lemma 3 Let X, (1 <1 <ras) and ¥7 {1 <10 = rs) ke
t.i.d random variables, We have
XV XY = (XY 4+ T

SKETCH OF PRoOOF: We can prove X, Y14+ X ¥+ 2 =<
Xy(¥i+- -4 ¥4 2 {Z independent of Xjs, ¥is] by con-
ditioning 2 and using Lemma 2. By repeatedly “collect-
ing" the X;;Y;'s and replacing them with the bracketed
terms, we have the desired resull, O

Theoremn 2 Let X, (1 < :< g} and ¥} {1 <4 < g} be
i.4.d. having e Foisson distribution with porameler o and

8. If g = w(log® p), then
Elmax ¥ XYl ~gaf=E| ¥ Xu}’u)
LEIER  oicy 1£5%q
fasp—+ oo),
SKETCH OF PROOF: Let ¢ = r?,

E ({g‘.ﬂg‘,':xiim + e +X-w1"-1])

= E (max[Xn ook XY - +Y.r})

- 15gy

E (max(Xu +--) E (max(¥a + )

by the Lemma 2 and 3. The sum of r i.i.d. Poisson
variables with parameter o is distributed as a Poisson
variable with parameter ra. Thus, if r = w(logp}, then
E (lnslTaS:;{X.'j o X.',-J) e e B X4+ Xy

by Kolchin's theorem. This is similar for the sum of ¥j;.
This is what we needed. O

1A



4.2.3 Polynomial of Poisson Variable

The treatment of upper bounds on the expected maxi-
mrum of the sumes of a polynomial of 1i.d. random vari
ables is more involved, We only list the result.

Theorem 3 Lef X; (1 = < ¢} be i.0.d, having a Pois-
son distribufion with paremcter o, and o X} be a poly-
nomial of degree d = 0 with non-negative coefficients. If
g = wilog® p}, then

F (ma,x 3 n:{.‘ft,]) e g a) = E( 5 cl[.ﬂf,_,"j)
e tT ] 15150

fas p — oo), where (X ) = a3 X" + - + a; XU 4 ap,

and ¢*(X) = a3X + - 4 g X" + 0§ (X = X(X -

13- (X — k+ 1) is the falling power of X ).

As for corresponding lower bounds on the necessary
growth rate of ¢, we only know al present that if
g = o (log p/ log log p)?), the ratio between the expected
maximum and the mean tends to oo as p = 20

4.4 The Isoefficiency for Load Balance

Now, let us suppose g = w(log® p). Then,
£ (sG] ~EG) (p—o0)

15 immediate from Kolchin's theorem, Also,

E (fpax STA;+ l]B.-,-)

JEPIEJ,E“

= E (Eua;x bR A,-_,-.E.-_,-) + E (ma.x E.-_,—)

| EEL
== e == yepeg

~ E ( 3 A”-Bu-) + E( 3 Blj)

1agy leacy

by Kolchin's theorem and the proposition for the product
of two Polsson variables, Finally, since X{X + 1)/21s &
polynomial of degree 2,

E (max
Tzigp

if g = wilog” p).

We have shown that if g = u[lngt g, the average col-
lective load balance factor fip) — 1 as p — ==, There-
fore, W = O(pg) = wip ]nnga'] it & sufficient coopdition
for 1soefficiency for 1.

sy t<asq

4.5 Simulation

A simple simulation progeam was run to test the applica-
bility of the asymptotic analysis for p up to 4096, Fig, 1
shows Lhe results for o« = § = 4, p = 4, 16, G4, 256,

By By + 1 . By B+ 1
5 k:+3)wﬁ(z r2+})_

1024, and 4096 and ¢ = 1, lep, lg’p, and i’ p (Ig de-
notes the logarithm with base 2). The experimental load
balance factors (on the vertical axis) are plotted against
the number of processors [on the horizontal axis). The
experimental load balance factor T, for p,q are calcu-
lated by
E (Trgige Wai)

maXigige Ligige Vo

where Wi, is one of X, X,¥y and X[ ((a), (b)
and {c}, respectively in the figure), and the average
MaX;icp Loioioq Wiy 15 caleulated from the result of 50
siroulation runs.

X, and Y, are generated according to the Bernoulli
model (i.e., a table X[1..pg] is prepared, and n = pgo
random numbers z's with = > 0 were generated, each =
going to the ((xr mod p) + 1}-th table entry, etc.). The
coefficient of variation (the ratio of standard deviation
to average) of max) cicp 21252, Wy B8 larger for X and
XY than for X, and it decreases as p becomes larger or g
becomes larger. Table 1 gives the coeflicients of varation
for p= 64 and 4095

By and large, the results seem bo confirm the asymgp-
totic analysis. For the product and the second falling
power, Biog? p) appears to be a sufficient rate of growth
of g [or 7 Lo couverge Lo I Even logarithmic grawth
(g = lgp) does not lead to very poor load balanee fac-
tors at least up to p = 4006 (approx. 0.5 for XV and
approx. 0.4 for X @),

e = '

5 Communication Overheads

We briefiv discuss the communication overheads when
disiributed hash Lables are implemented on malti-
computers. A multicomputer (also referred to as a
distributed-memory computer and a message passing
parallel computer) consists of p identical processors con-
nected by some interconnection network. Qo such com-
puters, the time it takes to transfer a message of length
L I:iu wurds]l from a processor Lo another which is D
hops away in the absence of network contention' is
t,+iy D4t L, where {, is the constant start-up time, {, I8
the per-hop time, and 1, is the per-word communication
time. We choose the mesh architecture for considera-
tien {two-dimensional square meshes in particular) since
meny of the recent “second generation™ multicomputers
have such topologies. Examples mclude J-Machine, Intel
Paragon, and parallel inference machines Multi- P31 and
PIM/m.

We note that the average traveling distance of & rao-
dom message (a message from a randomly chosen proces-
sor ¢ to another randomly chosen processor ¢, allowing
i=1"1s &I:v"?— #] ~ 2 7 om the meshes. It is ronghly

a

‘Communication latency in the abeence of network contention
is ealied zero-load laiency.
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Figure 1: Experimental Load Balance Factors (o = § = 4)

Table 1: Coefidents of Variation of Maximum Load (o= § = 4)

p =64 p= 4096
g=1] qg=6|¢g=36| g=1|g=12]g=144
X |110% ]| 6.3% | 26| T.lh| d.0% 1.0%
XV [ 178% | 12.2% | 5.0% | 123% ¢ 5.3% 21%
X 24 8% | 18.1% | 60% | 154% | 68% | 2.6%

1/3 of the diameter of the network, which is 2(,/F - 1).
We can easily see that W = {p"¥"} is & necessary and
sufficient condition for super isoefiiciency due to zero
load latency, which is a situation worse than that due to
load imbalance,

In real networks, the impact of message collisions must
be taken inte account. Instead of estimating the time
rcquirwd for data d.i.spat.ch u.s'inE a '[.JI!:L‘i.Et madel of con-
tention, we compare the ameount of traffic penerated by
random communication and the eapacity of the network,
The traffic of & message is defined by the product of its
traveling distance and its length. It indicates how much
network resource [measured by channel = network cycie
Li.mc} the MEessage CONSWITEes. The capaciiy of a network
is defined by the sum of the bandwidth of all network
channels {channels that connect routers). [t indicates
the peak throughput of the network. The basic fact is
that the time required for completely delivering a set of
messages is at least M/, where M is the total message
traffic and T iz the capacity of the network.

The average traffic generated by 1, & random
messages is ~ &p**gAL (L is the constant message
length). The network capacity is 2,/8(,/F — 1)/ty ~
2pft,. Thus, the average data dispatch time is at least
~ 3 /PafLt, = 8(,/Pq) = w(T(1)/p). This means that
meshes with constant channel bandwidth cannot sustain
the traffic generated by random ecommunication, forcing
the efficiency to approach zero as p — oo, The network
channel bandwidth must grow at least in proportion to
/P to maintain the commuunication latency under heavy
random communication within a constant factor of the

pero-load ]atenc}'.

A similar analysis for the hypercube architecture
shows that W = [{plog p) is a necessary and sufficient
condition for super-isoefficiency due to zero-load latency,
and is less than that due to load imbalance, and that the
network capacity has the same growth rate as that of the
random traffic.

The degradation of performance due to network eon-
tention inm the mesh architecturs has been pointed out
by several authors. Gupta and Kumar [1990] have done
scalability analysis for a parallel FFT algorithm, and
Singh ef al. [1990) for parallel auicksort algorithms.
Io both of these types of algorithms, the communication
patierns are nonlocal as i our distributed hash table
example, and the growth in the problem size makes lo-
cal computation per message increase very slowly, This
means that isoefficiency function must grow very rapidly
{nearly exponential). In our case, since local computa-
tion per message does not increase with problem size, it
is impossible to maintain efficiency as p gets larger.

Our analysis does not suggest that hypercubes are su-
perior to mesh networks for buildiag very large-scale mul-
ticomputers, On the contrary, Dally [1990] showed that
if we fix the wire bisection of the network, low dimen-
sional cubes [k-ary n-cubes with n small) provide larger
throughput than high dimensional cubes (k-ary n-cubes
with n large). We believe that future very large-scale
multicomputers should provide network bandwidths that
can meet the traffic generated by ponlocal communica-
tion, if they are to support a wide variety of parallel
algorithmes, not restricted to ones with high communi-



cation locality. Dally [1991] proposes a design of such
twork architectures,

6 Conclusions

An asymptolic analysis of the load balance of distributed
hash tabies was conducted, and il was [ound that, with a
constant load factor, m = w(plog® p) is a sufficient rate of
growth of table size m to balance the load as the num-
ber of processors p grows.  Communication overheads
on multicomputers was also briefly discussed. In the
case of mesh multicomnputers, unless the network chan-
nel bandwidth grows sufficiently as p grows, the network
will eventually become a performance bottleneck.

Because of the rather high overheads in encoding
and decoding message packets on the part of the
processing node, small- to medium-scale mu |t icom-
puters may nol genérate enough message traffic to
make contention—or, even communication latency—
a performanee bottleneck [Nakajima and Ichiyoshi 1990,
Chittor and Enbody 1990, But, the bottleneck is bound
to show itsell in very large-scale multicomputers.

The probabilistic analysis in this paper is fairly
general and can be applied to similar load balance
problems, such as parallel A* search with distributed
OFEN iists [Kumar ef af. 1988, Huang and Davis 1988,
Manzini 1990]. Wruskal and Weiss [1985] studied par-
allel muntimes when independent subtasks are allocated
0N Processors, with an {rather rn:st.rim.ivej assumption
that the distribution of subtask running times is one
with mereasing failure rate (IFR). Their analysis was
also asymptotic as the number of subtasks and proces-
sors becomes large. This paper differs from their study
mainiy 1o that (1) the IFR assumption does not hold for
the distribution of hash operation costs, and (2) asymp-
totic (super-liscefficiency is investigated.
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