ICOT Technical Report: TR-700

TR-T06}
A Forward-Chaining Hypothetical Reasoner
Based on Upside-Down Meta-Interpretation

by
Y. Ohta & K. lnoue

October, 1991

@ 1991, ICOT

Mita Kokusai Bldg. 21F (03)3456-3191~5
| [: D | 4-7% Mita 1-Chome Telex 1COT J32964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

A Forward-Chaining Hypothetical Reasoner
Based on Upside-Down Meta-Interpretation

Yoshihiko Ohta and Katsumi Inoue
ICOT Research Center
Institute for New Generation Computer Technology
Mita Kokusai Bldg. 21F
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
Phone:+81-3-3456-2514

{ohta, inoue}@icot.or.jp

Abstract

A forward-chaining hypothetical reasoner with the assumption-based truth main-
tenance system (ATMS) has some advantages such as avoiding repeated proofs.
However, it may prove subgoals unrelated to proofs of the given goal. To simulate
top-down reasoning on bottom-up reasoners, we can apply the upside-down meta-
interpretation method to hypothetical reasoning. Unfortunately, when programs
include negative clauses, it does not achieve speedups because checking consistency
of solutions by negative clauses should be globally evaluated.

We present a new transformation algorithm of programs for efficient forward-
chaining hypothetical reasoning based on the upside-down meta-interpretation. This
transformation algorithm analyzes dependencies among predicate symbols in pro-
grams by using an ATMS. By this pre-dependency-analysis, we are able to restrict
consistency checking to those negative clauses relevant to the given goal. The trans-
formation algorithm has been evaluated with a logic circuit design problem.

Topic: Applications

Subtopic: Knowledge-based systems

Keywords: Hypothetical reasoning, Default reasoning, ATMS, Upside-down
meta-interpretation, Program transformation

1 Introduction

Hypothetical reasoning is a technique for proving the given goal from axioms together with a
set of hypotheses that do not contradict with the axioms. Hypothetical reasoning is related to
abductive reasoning and default reasoming [17).

A forward-chaining hypothetical reasoner can be constructed by simply combining a bottom-
up reasoner and the assumption-based truth maintenance system (ATMS) [4] (for example
[7, 12]). We have implemented a forward-chaining hypothetical reasoner [11], called APRI-
COT/0, which consists of the RETE-based inference engine [9] and the ATMS. With this archi-
tecture, we can reduce the total cost of the label computations of the ATMS by giving intermedi-
ate justifications to the ATMS at two-inpul nodes in the RETE-like networks [16]. On the other
hand, Poole [18] has proposed hypothetical reasoning based on top-down reasoning. Compared
with top-down (backward-chaining) hypothetical reasoning, bottom-up (forward-chaining) hy-
pothetical reasoning has the advantage of avoiding duplicate prools of repeated subgoals and
duplicate proofs among different contexts. Bottom-up reasoning, however, has the disadvantage
of proving unnecessary subgoals that are unrelated to the proofs of the goal.

lo avord the disadvantage of bottom-up reasoning, both the magic set method [1, 2] and
the upside-down meta-interpretation [3] have been proposed for deductive database systems.
Stickel [21] has extended the upside-down meta-interpretation to abduetion and deduction with
non-Horn clauses. His abduction, yet, does not require consistency of solutions.

Since the consistency requirement is crucial for some applications, we would like to make
programs include negative clauses for our hypothetical reasoning. When programs include neg-
ative clauses, however, the upside-down meta-interpretation method does not achieve speedups
because checking consistency of solutions by negative clauses should be globally evaluated.

We present a new transformation algorithm of programs for efficient forward-chaining hy-
pothetical reasoning based on the upside-down meta-interpretation. This transformation algo-
rithm analyzes dependencies among predicate symbols in programs by using an ATMS. By this
pre-dependency-analysis, we are able to restrict consistency checking to those negative clauses
relevant to the given goal. The transformation algorithm has been evaluated with a logic circuit
design problem.

In Section 2, our hypothetical reasoning is defined with the Reiter’s top-down normal default
proofs [19]. In Section 3, the outline of the ATMS is sketched. Section 4 shows the basic
algorithm for hypothetical reasoning based on the bottom-up reasoner MGTP [10], which has
been implemented in KL1 [22], with the ATMS. Section 5 presents two transformation algorithms
based on the upside-down meta-interpretation. One is a simple transformation algorithm, the

other is the transformation algorithm with the pre-dependency-analysis. We have implemented
the hypothetical reasoner and these program transformation systems, and Section 6 shows the

result of an experiment to measure run times and transformation times. In Section 7, the related

works are considered.

2 Problem Definition

In this section, we define our hypothetical reasoning. A normal default theory (D, W) [19] and

a goal g are given as follows.

o W: aset of Horn clauses.

A Horn clause is represented in an implicational form,
A hay, — (1)

Qr
g Mo Aoy, — L. (2)

Here, o; (0 < i < n) and § are atomic formulas, and 1 designates falsity. All variables
in a form are assumed to be universally quantified in front of the form. All variables in
the consequent 5 have to appear in the antecedent a; A --- A ay. The Horn clause that
satisfies this condilion is range-restricted [2]. A Horn clause of the form (2) is a negative

clause,

o [); aset of normal defaults.

A normal defaulf is an inference rule,
g
= 3
:)
where o, called the prerequisite of the normal default, is restricted to a conjunction a; A
o Aoy, of atomic formulas and A, called its consequent, is restricted to an atomic formula.

All variables in the consequent 3 have to appear in the prerequisite . The normal default

can be read as “ if @ and it is consistent to assume 3, then infer 57.

e goal g: an atomic formula. All variables in g are assumed to be existentially quantified.

Let A be the set of all ground instances of the normal defaults of D. A default proof [19] of
g with respect to (I, W) is a sequence Ay, - -, A of subsets of A if and only if

l. WU CONSEQUENTS(Ao) F g,

2. for'1<i<k,
WUCONSEQUENTS(A;) W PREREQUISITES(A;-1),

3. Ae =1,
4. W UL CONSEQUENTS(A;) is consistent,

where PREREQUISITES(A) = Aa such that (e : §/8) € A and CONSEQUENTS(A) =
{8 | (a:8/8) € A} T W UL CONSEQUENTS(A;) | g0, where the sequence Ag, -+, Ay is
a default proof of g and # is some suhstitution, then # is an answer substitution.

The task of our hypothetical reasoning is defined to find every pair of (g8, M 5(g#)), where
¢ is an answer substitution of ¢ and M S(g#) is the set of minimal elements of

k
{z]2=|]) CONSEQUENTS(A,), a sequence Ag,---, A, is a default proof of g0 }.

=i

We call M S(gf) the minimal support of gff with respect to (D, W). As we will see later, M S5(gf)
can be given as the label of gf by the ATMS.

3 ATMS

The ATMS [4] is used as one component of our hypothetical reasoning. The outline of the ATMS

is as follows.
A ground atomic formula is called a datum. The ATMS represents data as A TMS nodes:

(datum, label, justi fications).

The ATMS treats L and [gaeum, which denotes an assumption of the datum, as special data.
Justifications are incrementally input to the ATMS. Each justification corresponds to a ground

Horn clause, and is denoted by:
A'l 35ty A, = C

or

Ay An = L.

Here, 4;(0 < i < n), called antecedents, and , called a consequent, are ground atomic formulas.
The ATMS records the set of antecedents of the justifications whose consequents correspond to
the datum in the slot just:fications for propagating changes of labels.

Let H be a current set of assumptions. An assumption set Fis called an environment, where
E C H. An assumption set F is called nogood if .J U E derives L, where .J is a current set of

justifications. A label of a datum (' is a set of environments {F;} that satisfy the following four

properties [4, 8]:
1. the datum C holds in each environment F; (soundness),

2. every environment in which € holds is a superset of some environment F; (completeness),
3. each environment E; is not nogood (consistency),

4, no environment is a subset of any other (minimality).

A basic algorithm to compute labels is shown in [4]. If the label of a datum is not empty, the

datum is belicved; otherwise it is not believed.

4 Hypothetical Reasoning with ATMS and MGTP

The MGTP prover [10] is a model generation theorem prover for checking the unsatisfiability of
a first-order theory P.
Each clause in P is denoted by:

ay A Na, = V-V Gy,

where both o;(0 < i € n) and §;(0 < j < m) are atomic formulas and all variables in g; have
to appear in a;. The MGTP prover consists of a translator and an interpreter. The translator
generates every KL1 [22] clause that corresponds to each clause in P. The range-restricted
condition allows us to represent object-level variables with KL1 variables. The interpreter
generates models on the basis of a set of KL1 clauses. The MGTP prover works as a bottom-up
reasoner on the distributed-memory multiprocessor called Multi-PSI [14]. A first-order theory
P, which is input to the MGTP prover, is called a program.

We are able to construct a hypothetical reasoner by combining MGTP as a bottom-up rea-
soner with the ATMS as shown in Figure 1. We can reduce the number of justifications input
to the ATMS by using TN strategy [8] with MGTP, and avoid duplicate computations for de-
termining all possible contexts of all data and maintaining consistency of multiple contexts with
the ATMS. Note that the range-restricted condition allows us to use the ATMS and MGTP. The
normal default theory (I}, W) is translated into a program P, where assume is a metapredicate

and

P= {31 h**'hnnqus“meiﬁ} | {aih"‘han:ﬂf{ﬂ.}eﬂ} U W

4

Suppose that there is no 1-ary predicate symbol assume in I and W.
If there is a (e A --- A @, — assume(8))o in a set of justifications generated by MGTP,
then the ATMS [5] interprets it as H := H U {[g,} and J := JU {(ay0,---, a0, T3, = fo)},

where J iz a current set of justifications and H is a current set of assumptions in the ATMS.

Inference Engine Justifications

MGTP " Beliels

ATMS

Figure 1: Forward-Chaining Hypothetical Reasoner with ATMS and MGTP

procedure R(g, P):
begin
By =10
i=
repeat
begin
Jip1 := GenerateJusti fications(By, P);
Biy1 := Update Labels(Jiy1, ATMS);
$i=1 4 1
end
until (B, — B;_,) = 0;
Solution := {;
for each @ such that gf € B; do
begin
L. = GetLabel(gh, ATMS);
Selution := Solution U {{g8, L)}
end;
return Solution
end,

Figure 2: Reasoning Algorithm with ATMS and MGTP

A reasoning procedure for MGTP with the ATMS, R(g, P), is as shown in Figure 2. The
reasoning procedure consists of the part for GenerateJustifications-UpdateLabels cycles and the
part for constructing the solution.

Let B; be a set of all believed data for each inference step ¢. Here, By is empty. The
MGTP prover generates a set Jiyy of justifications by matching elements of B; with the an-
tecedent of every clause related to each element of (B; — B;_;). We denote the procedure by
GenerateJusti fications(B;, P), which returns a new justification set Ji;,.

5

The ATMS updates a set of ATMS nodes by computing the labels that are just related to
a justification set J; given by MGTP. The ATMS returns a set B, of all the data whose labels
are not emply after the ATMS has updated a set of ATMS nodes with J; given by MGTD. We
denote the procedure by UpdateLabels(J;, AT M S), which returns a believed data set B;.

The GenerateJustifications- UpdatelLabels cycles are repeated until (B; — B;_,) is empty.

The procedure Get Label(g#, AT MS'), which returns the iabel of the given gf, is used in the
part that constructs the solution.

The hypothetical reasoner with the ATMS and MGTP can avoid duplicate proofs among
different contexts and repeated proofs of subgoals. However, there are a lot of unnecessary

proofs unrelated to the proofs of the goal.

5 Upside-Down Meta-Interpretation

5.1 Simple Transformation Algorithm

Bottom-up reasoning has the disadvantage of proving unnecessarily the subgoals that are not
related to proofs of the given goal. There are the magic set method [1, 2] and the upside-
down meta-interpretation method [3, 21] in order to allow speedups of bottom-up reasoning by
incorporating goal information.

We introduce a simple transformation of program P on the basis of the upside-down meta-
interpretation in [21]. A bottom-up reasoner interprets a Horn clause ey A~ - Aay, — Sinsucha
way that the fact fJeo is derived if facts &, o7, - -+, v, are present for some substitution #. On the
other hand, a top-down reasoner interprets it in such a way that goals ayo, - - -, a,0 are derived
if a goal fo is present, and fact 5o is derived if both a goal o and facts eyo,---, .0 are
present. We transform the Horn clause &y A - -+ A a, — 8 into geal(B) — goal{m)(2 = 1,---,n)
and goal(F) Aay A+ Ay, — 3, where goal is a metapredicate, then a bottom-up reasoner can
simulate top-down reasoning if the predicate symbol goal does not appear in the original program
P. After some facts related to the proofs of the goal have derived with the upside-down meta-
interpretation, those facts may derive contradiction with bottom-up interpretation of orginal
program. Thus, we transform each negative clause oy A - - Aay = Linto g A~ Aoy — L
and — goal(a;) for every o; (1 <1 < n). This means that every subgoals related to negative
clauses is evaluated.

Suppose that all arguments of the goal g are variables. Then, only the predicate symbol in
the argument of the metapredicate goal has enough information to simulate top-down reasoning
if each element in the set of n-ary predicate symbols is not in the set of m-ary predicate symbols
(n # m). Let § be the predicate symbol of some atomic formula 8. An algorithm T'1 as

shown in Figure 3 transforms an original program P into the program P in which the top-down
information is incorporated.

The solution from T'1(g, P) is always the same as the solution from P because all subgoals
related to negative clauses as well as the given goal are evalualed and every label of goal(3) for

some atomic formula 3 is {0}.

procedure T1(3, P):
begin P := @
for each (ey N+ hay,— X)E P do
begin
if X=1 then
begin
Pi=Pu{ayh-Nap— L)
for j:=1 until n do P:=PU{— goal{c;)}
end
else if X =assume(F) then
begin
Pi=Pulgoal(BYAcy A Aoy — assume(d)};
for j:=1 until n do P:= P U {goal(8) — goal(a;))
end
else if X =7 then
begin
P:=Pu{goal(B)Aas A Aay, — A}
for j:=1 until n do P :=P U {goal(F) — goal(a,)}
end
end;
P:= Pu{— goal(§)};
return P
end.

Figure 3: Simple Transformation Algorithm T1

For example, consider a program,

F,=1{ — penguin(a),
penguin(X) — krd(X),
bird(X') — assume(fly(X)),
fly(X) Anotfly(X) — L,
penguin(X) — not fly(X) }.

By the simple transformation algorithm, we get
T1(fly,) = { goal{penguin) — penguin(u},
goal{bird) A penguin(X) — bird(X),
goal(bird) — goal(penguin),
goal(fly) A bird(X) — assume(fly(X)),
goal(fly) — goal(bird),
Fly(X) Anotfly(X) — L,

— goal(fly),
— goal(not fly),

goal(not fly) A penguin(X) — not fly(X),
goal(not fly) — goal(penguin) }
U { —goal(fly) }.
Next, consider the goal bird(X). Then, the transformed program T1(bird, F;) is the program

T1(bird, By) = { -
U { — goal(bird) },

where the last element — goal(fly) of T'1(fly, Fs) is only replaced with — goal(bird). Both

goal{ fly) and goal(not fly) are evaluated, even if the goal is bird(X). The number of firing rules

in R{bird(X), T'1(lrd, Fy)), however, is nearly equal to R(fly(X), T1(fly, F)) since T1(bird, F})

as well as T1(fly,) includes goal(fly) and goal{not fly) for the negative clause,

5.2 Transformation Algorithm with Pre-Dependency-Analysis

We introduce the following theorem for omissions of consistency checking by the negative clauses
that are not related to the proofs of the goal.

[Theorem]
Set
D={(a A Na,:B/B)| (en A+~ Naw: BB) € D}
and
W={ (@A -ha,—8)|(ar AN, —) e W)
U{ (@A Ady— false(C)) | C=(ag A Aa, — L),0C e WL

Let 5o = {{(3, MS(g))} be the solution of § from (D, W) and 5. = {{false(C), M S(false(C))}}
be the solution of false(C) from (D, W) for a negative clause C € W.

If it holds that E ¢ MS(false(C)) for each E C Ej, where E; € M5(g), then the solution
of g from (D, W) is equivalent to the solution of g from (D, W — {C}).

8

[Proof]

Let " = (e — L} be a negative clause in W, where a is a conjunction of atomic formulas.

Set the solution of ¢ from (I, W) as

So = {{gbh, Folgbr)}, - -+, (gfn, Polgbn)}}
and the solution of ¢ from (D, W — [C}) as

51 = {(gbs, Filgbh)), - {gbu, Prlgfu)) },

where #; (0 <1 < N) is an answer substitution of g from (D, W), #; (0 <1 < M) is an answer
substitution of g from (D, W — {C}), Fy(g#) (0 <1 < N) is the minimal support with respect
to (D, W), and Pi(gf) (0 < i < M) is the minimal support with respect to (D, W — {C}).
Because C' is a negative clause, it is easy to see N < M. And for some #; (0 < i < M), it may
be the case that Fy(gf;) and Pi(gd,;) are different. To take these differences into account, let
5] = 55U 5; and M’ be the number of elements of 5. Note that N < M < M".

Assume that M’ £ N. Then, there is at least one (g, Pi(g6.)) € 5] (1 <m < M') such
that (g0, Pi(gfm)} & So. Let the solution of & from (D, W — {C}) be

8y = {{aoy, Pilaay)), - {aok, Pilaok)}},

where o (0 < k& < K) is an answer substitution. From the assumption M' # N, for some
Eq6n € P1(g0.,), there exists £ C I,y such that E € Pi(ao) for some oy (0 < k < K).

From the condition that & ¢ MS(false(C)) holds for each F C E; and E; € M5(§), for
each Ee € MS5(false(C')), there is a predicate symbol & such that Ty € Es and Ty, ¢ E;. From
the label completeness, for each oy (0 < k < K), it holds that for every E,,, € Pi{co:) and
Egs,, € Pi(g#,,), there is a ground instance 7p of the atomic formula whose predicate symbol is
7 such that T',, € E,,, and I';, ¢ E, . Therefore, for each Ly, € Fi(g0,.), every E C Ey
satisfies that F ¢ Fy(oay) for any oy (0 < k < K).

This contradicts with the assumption. Thus, if (g6, Fi(g0n)) € 5!, then (gf,,, Pi(gb,)) €
So. As a consequence, we have 55 = 5, . [end of proof]

On the basis of the theorem, we can omit the consistency checking for C if the condition of the
theorem is satisfied. We ean obtain both M5(false{C)) and E; by the label computations from
the justification set J based on (D, W) by using an ATMS. The ATMS used in the algorithm
can be seen as a dependency analyzer among the predicate symbols in the program only. So,
the label computation from J is called the pre-dependency-analysis. This ATMS computation is
not so heavy because the number of data is restricted to the number of predicate symbols and
the number of assumptions is restricted to the number of assumable predicates.

9

procedure 12(3, P):
begin
P:=0;
j = ﬂ;
k= 1;
for each (myA---ANay, =+ X)€EP do
begin
if X=_1 then
begin
Pi=Pu{oyAAay — L1);
Ji=JU{(&,--, @, = false(k))};
k:=k+1
end
else if X =assume(d) then
begin
P:=PU{goal(B) Aoy A--- Aa, — assume(8)};
Jo=JU{{a, e, = naﬁsumc{ﬂ]}];
for j:=1 until n do P:=PU {goal(F) — goal(d;)}
end
else if X =3 then
begin
' :=_£3U{§0ﬂ|’[:|g;| Aoy A Aan —)
Ji=Ju {{ah'“-r&n = _”';
for j:=1 until n do P:= P U {goal(F) — goal{a;)}
end
end;
Updatelabels(J, ATMS);
L, := GetLabel(g, ATMS);
for i:=1 until & do
begin
L; := GetLabel(false(i), ATMS);
for each E e L, do
for each E,e€ L, do
if F;CFE, then
for each (&, +-,a, = false(i)) € J do
for j:=1 until n do P:= P U{— goal(a;)}
end;
Pi=PU{- goal(g)};
return P
end.

Figure 4: Transformation Algorithm T2 Using ATMS

10

Figure 4 shows the transformation algorithm with the pre-dependency-analysis, The pro-
cedure transforms an original program into the program in which the top-down information is
incorporated so thal consistency checking is restricted to those negative clauses relevant to the
given goal.

Consider the same example Py, shown in the previous subsection, in case the goal is bird(X).

The justification set J; is given to the ATMS, where

Jo={ = penguin,
penguin = bird,
bird = assume(fly),
fly Anotfly = false(l),
penguin = notfly }.

As the result of the pre-dependency-analysis, the label of false(1) becomes {{I's1,}} and the
label of bird becomes {@}. This means that every nogood environment associated with this
negative clause becomes a superset of {T'siy(x). }, where ¢ is some ground instantiation of fly{.X).
If the goal is tird(X), then we do not need to evaluate this negative clause. The transformed

]:]IUET&ITI
T2(bird,) = { goal{penguin) —+ penguin(a),
goul(bird) A penguin(X) — bird(X),
goalllnrd) — goal(peniguin),
goal(fly) A bird(X') — assume(fly(X)),
goal(fly) — goal(lird),
Fly(X) Anotfly(X) — L,
goal{not fly) A penguin(X) — not fly(X),
goal(not fly) — geal{penguin) }
U { — goal(bird) }

does not include — goal(fly) and — goal(not fly).

6 Evaluation with a Logic Design Problem

We have taken up the design of logic circuits to caleunlate the greatest commen divisor (GCD)
of two integers expressed in 8 bits by using the Euclidean algorithm. The solutions are circuits
calculating GCD and satisfying given constraints on area and time [13]. The program [16]
containg several kinds of knowledge: datapath design, component design, technology mapping,
CMOS standard cells and constraints on area and time. The design problems of GCD calculators
includes designing components such as subtracters and adders.

Table 1 shows the expermental result, on a Pseudo-Multi-PSI system, for the evaluation of
the transformation algorithms and transformed programs. The run time of the original program

11

Py is denoted by Thy, p,). The predicate symbol § of each goal g is adder (design of adders),
subtracter (design of subtracters) or ¢GCD (design of GCD calculators). Each run time on the
original program is nearly equal to the others because the information of the goal is used after
the GenerateJusli fications — UpdateLabels cycles.

On the simple transformation algorithm, Try(; p,) is the transformation time from the original
program Fy into T1(§, Fy), and T 11(5,p,)) i the run time of R(g, T1(7, Fy)). In this case, each
run time is also nearly equal to the others because constraints on area and time of the GCD
calculators is represented by negative clauses. Even if we want to design adders or subtracters,
the hypothetical reasoner cannot avoid designing GCD calculators. This is because the program
does not know whether the design of only adders or subtracters will not derive contradictions.

In the transformation algorithm with the pre-dependency-analysis, Ty p,) is the transfor-
mation time from the original program Fy into T2(F, F;), and TRy, Ta(3,p,) i the run time of
R(g,T2(g, Fy)). Each transformation time Tpa(p,) is a little bit longer (about 1 second) than
each simple transformation time Ty p,y. On the other hand, the run time of Rig, T'2(g, Fi))
for each design of adders and subtracters is much shorter than the run time for the design of
GCD calculators. This is because the program avoids consistency checks of negative clauses
representing constraints on area and time of the GCD caleulators when the design of adders or
subtracters is given as a goal. The results show that the total of the transformation time and
the run time on the transformed program is shorter than the run time on the original program

when the problem does not need the whole of the program.

Table 1: Transformation Time and Run Time

Goal g || Trigry [8] || Tragg.ry [8] | Trgmi.ra (8] “ Trag.py) 18] | Trigrag.ry) (8]

adder 10.33 .30 17.40 T.14 0.39
subtracter 10.30 6.28 17.15 7.05 1.72
eGCD 10.31 6.28 | 17.11 7.04 17.16

7 Related Work

The algorithm for first-order Horn-clause abduction with the ATMS is presented in [15]. The
system is basically a consumer architecture [6] introducing backward-chaining consumers. The
algorithm avoids both redundant proofs by introducing the goal-directed backward-chaining
consumers and duplicate proofs among different contexts by using the ATMS.

12

Their problem definition is the same as [20], whose inputs are a goal and a set of Horn clauses
without negative clauses, When there are negative clauses in the program, they briefly suggest
that forward-chaining consumer can be used for each negative clause to check consistency. On
the other hand, since we only simulate backward-chaining by the forward-chaining, we do not
require both types of chaining rules. Moreover, we see that when the program includes negative
clauses, it is sometimes difficult to represent the clauses as a set of consumers.

For example, suppose that the axioms are
fa—c, bod crhd—g ec—e, d—=f, enf— L}
and a goal iz g. Assume a set of consumers
{le=a), (d=b), (g=cd), (e<=e), (f=d), (e, f= 1)},

where “<=" means a backward-chaining consumer and “=" means a forward-chaining consumer.
Then, we get the solution {(g, {{I';}, {Ia, s}, {La, T} {Te, T} {Tea Tu} 1) 1.

However, the correct solution is {{g, {{1';}}}} because {I';, I';}, {Ls, ¢}, {Tc, I's } and {I'., T4}
are nogood. To guarantee the consistency when the program includes negative clauses, for ev-
ery Horn clause, we have to add the corresponding forward-chaining consumer. Such added
consumers would cause the same problem as the programs obtained by using the simple trans-
formation algorithm.

In [21], deduction and abduction with the upside down meta-interpretation are proposed.
This abduction does not require consistency of solutions. Furthermore, rules may do duplicate
firing in different contexts since it does not use the ATMS. This often causes a problem when it
is applied to practical programs where heavy procediures are attached to rules.

The other difference hetween the frameworks of [15, 21] and ours is that the frameworks of
[15, 21] treat only hypotheses in the form of normal defaults without prerequisites, whereas we

allow for normal defaults with prerequisites in theories.

8 Conclusion

We have presented a new transformation algorithm of programs for efficient forward-chaining
hypothetical reasoning based on the upside-down meta-interpretation. An ATMS is used in the
alporithm in order to analyze dependencies among predicate symbols in programs in order to
restrict consistency checking only to those negative clauses relevant to the given goal. It has
been evaluated by using a logic cirenit design problem on a Pseudo-Multi-PSI system.

13

Acknowledgments
Thanks are due to Mr. Makoto Nakashima of JIPDEC for implementing the ATMS and

combining it with MGTP. We would like to express our appreciation to Professor Mitsuru
Ishizuka of the University of Tokyo and the other members of ICOT ADS-Working Group for
the helpful discussion. We would like to thank Dr. Ryuzo Hasegawa and Mr. Miyuki Koshimura
for giving us the MGTP prover and for their support. We would also like to thank Dr. Koichi
Furukawa for his advise. Finally, we would like to express our appreciation to Dr. Kazuhiro
Fuchi, Director of the Institute for New Generation Computer Technology, who provided us

with the opportunity to conduct this research.

References

[1] Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J. D., Magic Sets and Other Strange Ways
to Implement Logic Programs, Proc. of the ACM PODS, pp.1-15 (1986).

[2] Bancilhon, F. and Ramakrishnan, R., Performance Evaluation of Data Intensive Logic
Programs, Minker, J.(Ed.), Foundations of Deductive Databases and Logic Programming,
Morgan Kaufmann Publishers, pp.439-516 (1987).

[3] Bry, F.,Query evaluation in recursive databases: bottom-up and top-down reconciled, Data

& Knowledge Engineering, 5, pp.289-312 (1990}.
[4] de Kleer, J., An Assumption-based TMS, Artificial Intelligence, 28, pp.127-162 (1986).
[5] de Kleer, J., Extending the ATMS, Artificial Intelligence, 28, pp.163-196 (1986).
[6] de Kleer, J., Problern Solving with the ATMS, Artificial Intelligence, 28, pp.197-224 (1986)

[7] Flann, N. S., Dietterich, T. G. and Corpron, D. R., Forward Chaining Logic Programming
with the ATMS, Proceedings of AAAI-87, pp.24-29 (1987).

[8] Forbus, K. D. and de Kleer, J., Focusing the ATMS, Proc. of 7th National Conference on
Artificial Intelligence, pp.193-198 (1988).

[9] Forgy, C. L., Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem, Artificial Intelligence, 19, pp.17-37 (1982).

[10] Fujita, H. and Hasegawa, R., A Model Generation Theorem Prover in KL1 Using a
Ramified-Stack Algorithm, Proc. of the 8th International Conference on Logic Program-
ming, pp.494 500 (1991).

14

[11] Inoue, K., Problem Solving with Hypothetical Reasoning, Proc. of the International Con-
ference on Fifth Gencration Compuler Systems, 8, pp.1275-1281 (1988).

[12] Junker, U., Reasoning in Multiple Contezts, GMD Working Paper No.334 (1988).

[13] Maruyama, F., Kakuda, T., Masunaga, Y., Minoda, Y., Sawada, 5. and Kawato, N., co-
LODEX: A Cooperative Expert System for Logic Design, Proc. of the International Con-
ference on Fifth Generation Computer Systems, 3, pp.1299-1306 (1988).

[14] Nakajima, K., Inamura, Y., Ichiyoshi, N., Rokusawa, K. and Chikayama, T., Distributed
Implementation of KL1 on the Multi-PSI/V2, Proc. of the 6th International Conference on
Logic Programming, pp.436—-451 (1989).

{15] Ng, H. T. and Mooney, R., J., An Efficient First-Order Abduction System Based on the
ATMS, Technical Report Al 91-151, The University of Texas at Austin, AT Lab. (1991).

[16] Ohta, Y. and Inoue, K., A Forward-Chaiming Multiple-Context Reasoner and Its Applica-
tion to Logic Design, Proc. of the 2nd International IEEE Conference on Tools for Artificial

Intelligence, pp.386-392 (1990).

[17] Poole, D., A Logical Framework for Default Reasoning, Artificial Intelligence, 36, pp.27-47
(1988).

[18] Poole, D., Compiling a Default Reasoning System into Prolog, New Generation Computing,
9, pp.3-38 (1991},

[19] Reiter, R., A Logic for Defanlt Reasoning, Artificial Intelligence, 13, pp.81-132 (1980).

[20] Stickel, M., E., Rationale and Methods for Abductive Reasoning in Natural-Language In-
terpretation, Lecture Nodes in Arfificial Intelligence # 459, Springer-Verlag, pp.233-252
(1990).

[21] Stickel, M., E., Upside-Douwn Meta-Interpretation of the Model Elimination Theorem-Prover
FProcedure for Deduction and Abduction, ICOT Technical Report TR-664, [COT Research

Center (1991).

[22] Ueda, K. and Chikayama, T., Design of the Kernel Language for the Parallel Inference
Machine, The Computer Journal, 33, No.6, pp. 494-500 (1990).

15

