ICOT Technical Report: TR-699

TR-699

A Cooperative Logic Design Expert System

on a Multiprocessor

by
Y. Minoda, S. Sawada, Y. Takizawa,
F. Maruyama & N. Kawato (l'ujitsu)

October, 1991

& 1991, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 ~5
" :D | 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Cooperative Logic Design Expert System on a Muitiprocessor
Yoriko Minoda, Shuho Sawada, Yuka Takizawa,
Fumihiro Maruyama, and Nobuaki Kawato
FUNTSU LIMITED
Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
phone: (044) 777-1111
E-mail: prol14@flab.fujitsu.co.jp

Abstract

CAD systems that can quickly produce quality designs are needed for the expanding VLSI
market. This paper presents a cooperative design mechanism in a cooperative logic design
expert system on a multiprocessor, co-LODEX. co-LODEX accepts constraints on area and
speed, and outputs a CMOS standard cell netlist that satisfies the constraints. The user can
even gel an optimal circuit for area or speed by iteratively strengthening the corresponding
constraint. Short wrnaround is expected through the combination of parallel processing by
several processors and their cooperation.

The cooperative design mechanism is based on an evaluation-redesign mechanism using
assumption-based reasoning within a single processor. Design aliematives are considered as
assumptions and constraint violations as contradictions. Redesign is implemented as
contradiction resolution. The evaluate-redesign cycle repeats itself until the design satisfies the
specified constraints. Global evaluation-redesign takes place by processors exchanging design
results for subcircuits in terms of gate counts and delays (in case of success) or justifications
for constraint violations (in case of failure).

Experimental results show that (1) co-LODEX can efficiently carry out global optimization.
For example, a circuit with the minimum number of gates has been obtained while satisfying
constraint on speed. (2) Linear speedup has been observed at best.

1 Introduction

CAD systems that can produce quality circuits quickly are needed for the expanding VLSI
market. One of the most pressing problems is the lack of a means to iterate evaluate-redesign
cycle until the design satisfies all given constraints. Without it, it would be impossible to
design a quality circuit with the desired characteristics (area and speed) by looking at the design
from a global point of view. There is also demand for CAD systems that can do global
optimization for the whole circuit. With such systems, designers can get a circuit with the gate
count minimized and the delays kept shorter than given constraints or vice versa.

Turnaround time seems to be another key issue. Short tumnaround allows designers to
rapidly implement a variety of architectural choices and choose the solution best suited for their

— 1 -

specific situation by comparing area and speed characteristics. Designers can thus explore their
options in a way that has not been practical before.

Since design decisions may be retracted after later evaluation, they can be thought of as
assumptions. Assumption-based reasoning uses both facts and assumptions that can be
rerracted [de Kleer 1986). Justification, originally introduced for wuth maintenance [Doyle
1979], is the key concept to manipulating information containing assumptions. In de Kleer's
Assumption-based Truth Maintenance System (ATMS), all assumptions are enumerated in
advance and all combinations are examined. In design, however, we are not interested in all
combinatons. This is because a decision’s significance depends on the decisions made earlier.
We can prune a considerable number of combinations.

A global optimization technique by formulaling as linear programming (LP) problem was
proposed [Kageyama 1990)]; however, we can not get the exact optimal circuit, because the
solution to the LP problem does not always give 0's or 1's for variables that must take 0 or 1.

We proposed an evaluation-redesign mechanism using assumption-based reasoning
[Maruyama 1988). In our evalvation-redesign mechanism, design alternatives are considered
as assumptions and constraint violations as contradictions. Redesign is implemented as
contradiction resolution. Justifications for violations, called nogood justifications (NJs), play
a central role in the mechanism. NJs enable us to drastically prune the search space for
constraint satisfaction or optimization problem [Maruyama 1991].

In this paper, we present a cooperative logic design expent system on a multiprocessor, co-
LODEX. co-LODEX divides the whole circuit to be designed into subcircuits in advance and
designs each subcircuit on each processor to exploit parallel processing. Global evaluation-
redesign takes place by processors exchanging design results {in case of success) or NJs {in
case of failure). In our cooperative design mechanism, NJs received from other agents help
narrow down the search space for an agent in the sense that NJs made out of the received ones
enable the agent to prune the search space, That is the reason why we claim co-LODEX as
"cooperatve”. Short turnaround is expected through the combination of parallel processing by
several processors and their cooperation. co-LODEX has also the faculty of exact global
optimizaton.

The next section gives an overview of co-LODEX. Section 3 describes its cooperative
design mechanism. We give some experimental results in Section 4 and concluding remarks in
Section 5.

2 co-LODEX Overview

2.1 Inputs and Qutputs

The user specifies a behavioral specification, a block diagram of the datapath, and
constraints on area or speed. co-LODEX outputs a CMOS standard cell netlist that satisfies all
given constraints, The resulting netlist can be input to an automatic place-and-route system for
CMOS standard cells.

The specification language for behavior used in co-LODEX is UHDL [Fujisawa 1989], an

extension of DDL [Duley and Dietmeyer 1969]. Figure 1 shows the specification for a circuit
that solves a second order differcntial equation (DiffEQ). The program might be used to
describe a subsystem of a conmoller or have a digital signal processing application. [Brewer
1987]

A block diagram of the datapath is shown in Figure 2. The boxes signify functional
blocks. COMP, MULTI, ADD_SUB, MUX, REG, FF, and the others represent a
comparator, a multiplier, an ALU(add/subtract), a multiplexer, a register, a flip-flop and
input/output buffers, respectively.

Constraints on area are expresscd as inequalities in the gate count, for example, “(Total gate
count) < 2000." The user can specify as an area constraint the maximum gate count that could
be squeezed into a given LSI device. Constraints on speed are ex pressed as inequalities in the
propagation delay, for example, “(Maximum delay) = 120 ns.” The user can specify as a
timing constraint the clock cycle the LSI device should operate with.

2.2 Brief Overview

co-LODEX divides the whole circuit to be designed into subcircuits. Each subcircuit is
designed by a design agent. Figure 3 shows the five subcircuits for the DiffEQ example and
the agents in charge. It should be noted that the control circuit, CTRL, is included. co-
LODEX establishes a finite-state machine from the behavioral specification and extracts the
specifications for the control circuit in terms of logical expressions. It then divides the whole
circuit so that the blocks along critical path candidates are distributed to as few agents as
possible. It is likely that agenis along a critical path candidate needs a considerable amount of
mutual communication since agents sharing a constraint must communicate with each other.

Each agent designs given functional blocks hierarchically using the top-down method. It
keeps splitting up functional block and subblocks into sub-subblocks undl all given blocks are
implemented with CMOS standard cells. This is done by referring to the library that includes
knowledge about functional block design, knowledge abour rechnology mapping, and standard
cells data. Then it counts the number of gates and estimates delays (o cvaluate the implemented
circuit against constraints on area and ome.

An agent usually designs its subcircuit independently and in parallel with the other agents.
However, since the design results of the other agents are necessary for evaluation against
global constraints, agents exchange their results every time they finish design/redesign. An
agent redesigns when it detects a constraint violation for which it is responsible, for example,
when a path passing through it is too slow. If it designs a standard cell netlist that sansfies all
the local constraints, it notifies the resulting gate count and dﬂlhys. If it cannot, it notifies
informarion about constraint violaton.

3 Cooperative Design Mechanism on a Multiprocessor
We propgsc a cooperative design mechanism on a multiprocessor. It is based on the
redesign mechanism within each agent. Moreover, (1) exchanging design results and NJs

— 3 —

among agents and (2) combining the NJs received from other agents are necessary. Agents
exchange the design results (gate counts and delays) of subcircuits when they succeed in
design. They exchange the resulting NJs when they fail to design subcircuits without any
stored NJ satisfied.

3.1 Redesign Mechanism within Each Agent

The area a circuit requires and its delay are the sum of their constituent parts. The delay of
a path, for example, can be attributed to that of the components along it. This fact lets us break
a global condition into local conditions. A hierarchical structure 18 useful for this. We explain
a redesign mechanism using assumption-based reasoning, which operates on a hierarchical
design description.

Hierarchical Design Description

Design objects are represented in a hierarchy. Figure 4 shows part of the hierarchy
corresponding to Figure 3. There are three types of nodes; agent nodes (capsules), component
nodes (ovals) and alternative nodes (rectangles). An agent node is responsible for one or more
component nodes. A component node associates alternative nodes as possibilities of
implementation. There is a special component node called the chip node that corresponds to
the whole chip, An alternative node contains information about the connection between
subcomponents and has the subcomponent nodes as children. An alternative is called either
“in" or “our” based on whether it is adopted or discarded. Each component node has at most
one in alternative node. Other alternative nodes are stored in the our alternative list to be
recalled later if necessary. Each node is implemented as a perpetual process in KL1.

Figure 4 means the following:
‘The whole chip (Chip) consists of an input buffer (X), registers (REG_1 and REG_4),
multiplexers (MUX_3, MUX_4, MUX_5, and MUX_T7), an add/subtract unit (ADD_SUB),
and other parts.
-Agent3 is responsible for five components,
-ADID_SUB consists of an adder (ADD) and an exclusive or (XOR),
-ADD, the 12 bit adder, consists of three 4-bit CLA (carry-lookahead adder) cells connected
serially. Current our alternatives might include a serial connection of six 2-bit CLA adder cells
and 12 single-bit adder cells.

Justifications for Constraint Violations (NJs)

An NJ (nogood justification) 1s a logical expression that must not hold during design.
Satisfying an NJ means a constraint violation and invokes the redesign mechanism.

The following default NJ at Chip (in Figure 4) is equivalent to the original constraint on
gate count in that any design violating the constraint satisfies it.

X+ REG_1+ REG 4 + MUX_3 + MUX_4 + MUX_5+ MUX_6 + ADD_SUB + ... > CHIF (1)
This says that if the total gate count of the input buffer, the registers, the multiplexers, and so

—_— 4 —

on, exceeds the value of variable CHIP, it means a constraint violation. CHIP is the variable
that refers to the currently valid constraint value on gate count, for example 2000. co-LODEX
transforms each constraint specified by the designer into default NJs.

A timing constraint in terms of the clock cycle is transformed into a set of default NJs, that
is an inequality representing that the sum of the delays of the components along a path from
source to destination exceeds the constraint value. For example, one of the default NJs
represents that the path from REG._1 via MUX_4, MUX_5, ADD_SUB, MUX_7, to REG_4
is longer than the clock cycle. Itis as follows:

REG_1(p2) + MUX_4(pl) + MUX_5(p2) + ADD_SUB(p2) + MUX_7(p2) + REG_4(pl) > CLOCK (2)
The form, “component (‘p’ number)”, represents a path within ¢ach component. CLOCK is
the variable that refers 1o the currently valid constraint value on clock cycle, for example 120.

Starting from default NJs, new NJs are added during redesign through NJ expansion and
generation described below. NJs save us doing direct evaluation against constraints. All we
have to do is to check to see if any NJ 1s satisfied.

NJ Expansion

NJ expansion is used to narrow the scope and go down the hierarchy to resolve
contradictions, or constraint violations. Formnally, NJ expansion 15 defined in the following
three steps. The NJ to be expanded is one that is satisfied at the moment.

Step 1:Select a component appearing in the NJ to be expanded. Call it C.

Step 2: Replace C in the NJ with its in alternative’s subcomponents. If the in alternative is
at the leaf of the hierarchical structure (at the standard cell level), replace C with its actual gate
count or its delay value.

Step 3:Godown the hierarchy to the alienative node and store the NJ obtained in Step 2.

(End)

NJ Generation

If every alternative of a component causes a constraint violation, NJ generation enables us
to get a new NI, the logical product of the NJs corresponding to each alternative. The
generated NJ does not refer to that component. It is put at the alternative node one level up.
This procedure is justified by resolution [Robinson 1965]. In general, the generated NJ is a
logical product of NJs about gate count and NJs about delay.

Evaluation-Redesign Algorithm within Each Agent
The redesign algorithm within each agent uses NJ expansion and generadon. Redesign is
invoked when an NJ turns out to be true, since.satisfying an NJ means a constraint violation.
Step 1: Set ALT 1o the agent node and proceed to Step 2.
Step 2: Check to see if there is any sarisfied NJ at the ancestor alternative nodes (including
itself) of ALT. If 50, set ALT to the alternative node where the satisfied NJ is put, and proceed
to Step 3. Otherwise, go to Step 7.

Step 3: If there is a subcomponent of ALT appearing in the NJ, proceed to Step 4.
Otherwise, go to Step 5.

Step 4: Expand the NJ. Set ALT to the current alternative node and return to Step 3.

Step 5: Make ALT our. Select another alternative node that is not inhibited by an NI, make
it in, set ALT to it, and go to Step 2. If every alternative is inhibited by NJs, proceed to Step
6.

Step 6: Generate an NI. Set ALT to the current alternative node and go to Step 3. If there
15 no alternative node one level up, output the generated NJ and exit (Fail!).

Step 7: If there is no component node whose alternative nodes are all owr, exit. (Succeed!).
Otherwise, select an alternative node that is not inhibited by NJs, make it in, set ALT 1o it, and
Eo to Step 2.

(End)
In Step 5, selecton is done either by recalling an owr alternative or by generating a new
implementation.
The above algorithm starts when an agent receives information from the other agents. Once
the algorithm terminates in success or failure, the agent sends information to the other agents.

3.2 Cooperative Design Algorithm
We propose a cooperative design algorithm by describing the procedure for each agent.

Step 1: Design its subcircuit. Repeat redesign by the evaluation-redesign algorithm. The
gate counts and delays of the other subcircuoits are assumed to be 0. If any agent fails, the
algorithm terminates in failure. Otherwise, proceed to Step 2.

Step 2: Exchange the design results, that is the gate counts and delays of the subcircuits,
with the other agents. Proceed 1o Step 3.

Step 3: Set the gate counts and delays of the other subcircuits to the design results received
in Step 2. If no stored NJ is satisfied, go to Step 9. If some of the stored NJs are satisfied
and the design results of each agent are the same as in the previous cycle (caught in a loop), go
to Step 7. Otherwise, proceed to Step 4.

Step 4: Redesign its subcircuir. If at least one apgent succeeds in redesign without any
stored NJ satisfied, go to Step 2. Otherwise (all agents fail), proceed to Step 5

Step 5: Exchange the generated NJs with the other agents. Proceed to Step 6.

Step 6: Combine the NJs received in Step 5. Goto Step 1.

Step 7: Seta temporary constraint and proceed o Step 8.

Step 8: Design its subcircuit. Repeat redesign by the evaluation-redesign algorithm untl all
the constraints including the temporary one are met. The gate counts and delays of the other
subcircuits are assumed to be 0. If all the agents fail, the algorithm terminates in failure.
Otherwise, go to Step 2.

Step 9: Put together all the subcircuits. The algorithm terminates in success.

(End)
Initally only default NJs are stored. As the algorithm proceeds, new generated NJs and
combined NJs are added. In Step 7, select one of the violated constraints with the fewest

ﬁ

agents related, and set the current value corresponding 10 that constraint as a temporary
constraint.

Once the above algorithm terminates in success or failure (In Step 1, Step 8.and Step 9),
the design run is finished, and the user can retry by changing the constraints. The user can
look for a faster circuit by tightening the delay constraint, or can rerun by relaxing the
constraints in case of failure. When the constraints are changed, the system updates them and
re-evaluates by checking all the stored NJs. As more NJs are accumulated, the efficiency of
the algorithm is further improved.

3.3 Combining NJs

When an agent fails in redesign with the evaluaton-redesign algorithm described in the
above section, it generates an NJ and sends it out to other agents. Each agent “combines” the
NJs received from other agents and makes a new NJ out of them. Considering an NJ from an
agent as a condition where design is impossible for the agent, the combined NJ can be seen as
a condition where design is impossible for the agents other than the recipient agent. Agents are
required to design without any combined NJ satsfied.

For example, suppose Agent5 received the following two NJs originated from default NJ
(1) and (2) from Agent] and Agentd:

192 + Agent2(a) + Agenti(a) + Agenid(a) + AgeniSia) > CHIF A 19.2 + AgentS(pl) = CLOCK (3

Agentl(a) + Agent2(a) + Agenti{a) + 96 + AgentS(a) > CHIF {4)
Agent5 combines the ahove NJs and makes the following new NJs:

288 + Agen2{a) + Agent3(a) + AgentS(a) > CHIP A19.2 + AgenS{pl) = CLOCK (3)

06 + Agent2(a) + Agent3(a) + Agenti(a) > CHIP (6)
{5) and (6) are added 10 Agent3.

4 Experimental Results

We implemented co-LODEX on Multi-PSI [Taki 1988] in KL1 [Ueda 1986] to evaluate the
performance of the cooperative design mechanism, and tested as examples to design specific
circuit and usuval circuits.

4.1 Optimization

Optimization using co-LODEX proceeds as follows: First, co-LODEX requests the user for
area and speed constraints and produces a solution satisfying the constraints. The user then
changes area or speed constraint value to the value for the solution just obtained minus 1, and
iterates while constraint satisfaction succeeds. Finally, constraint satisfaction fails, the optimal
solution has been obtained as the previous solution.

Figure 5 shows some of the results for the MAG example. MAG calculates approximation

of (ﬁl2 + hz) Y2 First, the area constraint was large enough, and the timing constraint was
130. We obtained the circuit shown at the right. As the area constraint was strengthened,
different results were achicved. It ended up the smallest circuit of all, shown at the left.

— F -

Finally, the above optimization failed in constraint satisfaction with NJ, 1224>CHIP. This
means that design is impossible if the specified set of constraints satishies the NI; we must
relax the constraints so that the above NJ is not true any more.

Table 1 gives the results of the optimization compared to constraint satisfaction in cases
where the constraint values are 1224 and 1223. It shows that direct constraint satisfaction
takes more time than iterative constraint satisfaction for optimizadon. This fact suggests that
the NJs generated for looser constrainis help narrow the design space.

4.2 Speedup

Speedups were examined by increasing the number of agents from 1 to 15. Apents
correspond to processors one to one. We had one extra processor for dismibuting the
functional blocks 1o subcircuits and taking statistics, so we used up to 16 processors
altogether. We expected that speedups would increase in proportion to the number of agents.

Specific Circuit

The example presented here is to design a multi argument adder (array adder). The
function of this circuit is to calculate the sum of 9 intepers represented as two's complement.
This circuit is adopted in ALUs and multipliers in other example circuits described below.
This circuit consists of 122 one-bit adders. The function of one-bit adder is to calculate the
sum and the carry-out of one-bit integers. Each one-bit adder has many design methods, so
the whaole circuit has over 530 million combinations of design method. Table 2 shows the
number of combinations for design method with the number of inputs and cutputs. Each one-
bit adder can be implemented with CMOS standard cells immediately. Thus, we have tested
only the cooperative design mechanism of co-LODEX. We put 30 default NJs.

Figure 6 shows a part of this circuit. The boxes represent one-bit adders and the number
inside them represent the number of input bit. The arrows represent default NJs. It is upper
and lower side or upper-left and lower-night side that the arrangement of neighboring blocks
has relation to the same default NJ. Accordingly, co-LODEX divided the whole circuit and the
boundary lines between subcircuits are horizontal or slanting (from upper-left to lower-right).

Moreover, we average design costs to agents in this test. We supposed that design costs
depend on total number of desipn methads of agent in charge, each agent take some one-bit
adders as the average number of whole one-bit adder’s design method. The dotted area in
Figure 6 shows a subcircuit of which an agent is in charge. It is easy that co-LODEX divides
this circuit with agents, because this circuit is considerably orderly constitution.

The relation between the number of agents and the speedups is shown in Figure 7, which
shows a change in design time according to the number of agents. The slanting straight line
represents ideal line. All agents are active in consequence of a change in constraint on area,
while some agents are active and the others are inactive in consequence of a change in
constraints on delay time. Thus, a change in constraint on area raises speedups, obviously.
The result surpasses ideal line. The reason seems to be that our cooperative mechanism

B

reduces the amount of computation. Initial design time is roughly constant, because the
following two factor are reciprocally balanced. First factor raise speedups in the cause of a
decrease in design work according to an increase in the number of agents, and second factor
reduce speedups in the cause of an increase in serving agents with specification.

Usual Circuits

Table 3 shows the best of speedups with optimal number of agents for usual circuits.
Speedups were not so much as we have expected.

Generally, a block diagram of the datapath includes various functional blocks. Some
functional blocks, ALU for instance, are complex, and others are simpler. We ohserved that
one or two special agents work hard but the other agents waiting for messages from busy
agents. Processing time depends on the busy agents which manage complex functional
blocks, since evaluation-redesign costs as their complexity.

To take advantage of our cooperative design mechanism on a multiprocessor, distribution
strategy would need, in addition to focusing on critical path candidates, (1) to look ahead the
library when distributing the functional blocks, and (2) to set up sub-agents if necessary.

5 Conclusion

We presented a cooperative logic design expert system on a multiprocessor, co-LODEX.
co-LODEX divides the whole circuit to be designed into subcircuits in advance and designs
each subgircuit on each processor 1o 1ake advantage of parallel processing. Global evaluation-
recdesign takes place by processors exchanging design results or NJs. A cooperative design
algorithm based on assumption-based reasoning makes this possible. Short tumaround is
expected through the combination of parallel processing by several processors and their
cooperation.

co-LODEX can efficiently carry out global optimization. For example, a circuit with the
minimum number of gates has been obtained while satisfying constraint on speed. By
increasing the number of agents up to 15, linear speedup has been observed at best.

Our future plans include working on parallel processing of design, evaluation, and
redesign within an agent. It is also important for load balancing among processors to work on
distribution strategy.

Acknowledgments

This work has been done as part of the Fifth Generation Computer Systems (FGCS)
Project of Japan. We would like to thank Dr. Nitta, manager of the Seventh Laboratory of
ICOT, for his support.

References
[de Kleer 1986] J. de Kleer: “An Assumption-Based Truth maintenance System,” Artificial
Intelligence 28, pp.127-162 (1986).

9

[Doyle 19791 1. Doyle: “A Truth Maintenance System,” Arificial InteHigence 24 (1986).

[Kageyama 1990] N. Kageyama et al.: “Logic Optimization Algorithm by Linear Programming
Approach,” Proc. of the 27th Design Automation Conference, pp.345-348 (1990).

[Maruyama 1988] F. Maruyama et al.; “co-LODEX; a cooperative expert system for logic
design,” Proc. of FGCS'88, pp.1299-1306 (1988).

[Maruyama 1991] F. Maruyama et al.: “Solving Combinatonal Constraint Satisfaction and
Optimization Problems Using Sufficient Conditions for Constraint Violation,” Proc. of the
Forth International Conference on Artificial Intelligence (1991).

[Fujisawa 1989] H. Fujisawa et al.; “UHDL (Unified Hardware Description Language) and its
support tools,” Int. J. Computer Aided VLSI Design (1989).

[Duley and Dietneyer 1969] 1. R, Duley and D. L. Dietmeyer: “A digital system design
language (DDL),” IEEE Trans. Computers, Vol.C-17, No. 19, pp.850-861 (1968).

[Brewer 1987] F. D. Brewer: “Knowledge Based Conwol in Micro-Architecture Design,”
Proc. of the 24th Design Automation Conference, pp.203-209 (1987).

[Robinson 1965] J. A. Robinson: “A Machine Oriented Logic Based on the Resolution
Principle,” Journal of the ACM, Vol.12, No.1, pp.23-41 (1965).

[Taki 1988] K. Taki: “The Parallel Software Research and Development Tool: Multi-PSI
system,” Programming of Future Generation Computers (1988).

[Ueda 1986] K. Ueda: “A Parallel Logic Programming Language with the Concept of a
Guard,” ICOT Technical Report, TR-208 (1986).

UHDL;

interface_view: interfnee_exampledl;
inputs: xi{12), yi(12) Axi(12h, w12y, ail2);
outpits: ol i3}, yo(12)

behavior_view: behavior_cxampled|;
deline: consts = 5, constd = 3;
perminak: ul(12), w212), u3(12), ud{12), uS(12), vi{12), ¥ 1(12),. FF:
operator; 2stage_pipelined_multiplier(x, y, 21 = {len=2) z<-x*y end_op;
function: main: clk;
while (FFydo
2u; Fsrape_pipelined_multiplier'{, dx, wl)
Ine oippe_pipelined_muidplicr(x, consth, ul);
du: 2sige_pipelined_multplier{zons, y, vl
Sa: ‘I-!i.l;:lgr._pipe'l'm:d_multipl.‘.:r’iu!, ul, wdl,

w<-n+ i

fa Psiape_pipelincd_mualipler{, dx, yt),
FFeox < a;

Ta: 2stage, pipeli|1r1|_11!1LI:ip!ir.l’{l.l'_'i. dx, ul),
T TR L H

Bary eyl +y
Ot €= 0l - 13, KO = K, YOS Y
enddo;
Ta: sioplx=a), & <- 1, ¥ <- ¥, de < dai, v =< i 22k
endUHDL

Fipure 1. Example of Behavioral Specification

T I S |

- [T
MLIX_6 MUX_7 REG 3 MLIK_E RELG_S
! : I | I
REG_O REG 2 REG 4 RELG_] HED 6
— :
1 i L1

[1 I
| | 1 L.
CoMP MLUIX_2 MUN_3 -| MUX_$
= —
FF | _MULT] | ADD, SUB
|

Figure 2. DBlock Diagram

MUY _6

— Ag&ni'} -——“rv-c.:')

I/n) f REG.2 l

| -+
L MUX_0 MUX_ 1

——
=

oM ™ i sine

/ FF
Apemtl
L

memzeess Critecal Math Candidale

Figure 3. Sub-circuits and Agents

Chig

—————

C‘:;H_ MLIXT, REG_A, —, WEGH, MUY} MUK 3, MUK_ AN “'"',::'

’ “AIILE_5UE
avn s 1

AN X

Al -""

Alund
ATHE
o b CLA ¢]

Figure 4. Hierarchical Design Description

> AREA-TIHE MAP ¢

a9 :
1200 1300 1400 1508 1600 1700
calls

Frgure 5

Experimental Result for MAG circuit

Table 1. Optimization versus Constraint Satisfaction

Area Consiraimt Fegult Processing Time (seC)
Chptimaization from 1639 o 1223 1224 . 08
En-;r:lim Savisfueiiom - 1224 12;1;_ . 10,7
Consteing Satislaetivn 1223 Fail 10.5

Tahla 2. The munber of combinations for design method

irpois| gum |earry eut] combinations

1 1] oo 1

2 1 1 1

3 1 1 1

4] 1 12
5 2 2 30
6 2 2 15
7 k) 2 1035
8 | 3] 3 420
El k] 3 B4

outpuls

Figure 6. Armay adder

speedup
£ - —
6 | /
14 L] ,,r‘-.
In_.__‘l/ "_."
Iz - L / ‘...""-
SN
LU * '._i'
8 - L
6 k ,,/ __,--"‘
,.-“- & : e e e ™R,
4 4 - : \
i N/ N\
I &
2 ._,-i".:' '—--|—l—_l____._.___.-_.__.__'_.
ot L L L i Il i i i] i i il I I

P2

i 4 5 & 7T B 9 10 11 ¥z 13 14 13

Figure 7. Relation bevween the number of agents and the speedups

=% initial design

-

w change in constraint
on area

. achanpe in constraint

on delay time

of agents

Table 3. Results for Experiments

_— Mumber of ; Optimal #
Circuit Components Main Componenis Spesdup of Agents
oD 1 1 subeacter, | comparaor 1.1 pi
DiffEQ 28 i mubtiplier, 1 ALU(add/subtract) 18 5

COmparalor
MAGEL) 14 1 A.LI:J(add!sublmt},l COMMPArator 1.7 4
1 two's complementer
MAG(2) 13 1 .-‘-.Ll:l{acld!suhlmcl:fmmpm} ra 3
twe's complementer
MAGE) 16 | adder, 1 subtracter, 1 compirator L& 5
2 pwio's complementers
. RAMs, T ALUmultiply/add)
Correlation 2 | adder, 1 comparator [.3 4

1 decrementer, | incrementer

GCD: Greatest Common Devisor
DIffEQ: Differential Equminn vy Sxy' +3y=0
MAG: Approximation of (a?+b?)'2
Correlntion: Correlational Function y{i] = E x[J]

x[i +]l

