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Abstract

There are many applications of qualitative reasoning to engineering
fields. The main application field is diagnosis, and there are also several
applications to design. We show a new application to design, supporting
decisions by suggesting valid ranges of design parameters after designing
structures. We use the envisioning mechanism, which determines all
possible behaviors of a system using qualitative reasoning. Our method:
(1) performs envisioning with design parameters whose values are initially
undefined, (2) selects preferable behaviors from all possible behaviors
found by envisioning, (3) calculates the ranges of the design parameters
that give the preferable behaviors. We built a design-supporting system
Desq (Design supporting system based on gualilative reasoning) by
improving an earlier qualitative reasoning system Qupras (Qualitative
physical reasoning gystem). We added three new features: envisioning,
calculating the undefined parameters, and propagating new constraints on
constant parameters. Desq can deal with quantities gqualitatively and
quantitatively, like Qupras. Accordingly, we may be able to find not
qualitative but quantitative ranges, if the parameters can be expressed
quantitatively.  Quantitative ranges are preferable to qualirative ones for
supporting the decision of design parameters.

1. Introduction

Recently, many expert systems have been used in engineering fields.
However, several problems still exists, One is the difficulty in building
knowledge bases from the experience of human experts. The other is that
these expert systems cannot deal with unimagined situations [Mizoguchi

87]. Reasoning using deep knowledge, which is the fundamental
knowledge of a domain, is expected o solve these problems. One type of
reasoning is qualitative reasoning [Bobrow 84].  Qualitative reasoning

determines the dynamic behaviors, which are the states of a dynamic
system and state changes, using deep knowledge of the system. Another
feature of qualitative reasoning is that it can deal with quantities



qualitatively. So far, there have been many applications of qualitative
reasoning to engineering [Nishida 88a, Nishida 88b, Nishida Y1]. The main
field is diagnosis [Yamaguchi 87, Ohwada 88], but recently there have also
been applications to design [Murthy 87, Williams 90].

In this paper, we show a new application to design that supports
decisions by suggesting valid ranges of design parameters after designing

structures. This application is not more innovative than previous
applications to design [Murthy 87, Williams 90], but it is one of the
important steps of design |[Chandrasekaran 90]. Envisioning predicts all

possible behaviors of a dynamic system. The valid ranges of design
parameters are found as follows:
(1) Perform envisioning with design parameters whose values are
initially undefined,
(2) Select preferable behaviors from possible behaviors found by
envisioning,
(3) Calculate the ranges of the design parameters that give the
preferable behaviors.

We used a qualitative reasoning system Qupras (Qualitative physical
reasoning system) [Ohki 86, Ohki 88, Ohki 91] to make a decision support
system Desqg (Design supporting system based on gualitative reasoning)
which suggests valid ranges of design parameters. Using knowledge about
physical rules and objects after being given an iaitial state, Qupras
determines:

(1) Relations among objects that are components of physical systems.

(2) The next states of the system following a transition.

We extended Qupras to make Desq as follows:

(1) Envisioning
In Qupras, if a condition of a physical rule or an object cannot be
evaluated, Qupras asks users to specify the condition. We extended
Qupras to allow it to continue assuming an unevaluated condition.

(2) Calculating the undefined parameters
After envisioning all possible behaviors, Desq calculates the ranges
of the undefined design parameters that give the behavior specified
by the designer.

(3) Propagation of new constrainls on constants



In envisioning, constraints related to some constant parameters
become stronger because conditions in physical rules and objects
may be hypothesized in envisioning. The constraints propagate to
the next states.
(4) Parallel constraint solving

Qupras uses a combined constraint solver which consists of three
basic constraint solvers: a Supinf method constraint solver, an
Interval method constraint solver, and a Groebner base method
constraint solver, all written in ESP. The processing load of the
constraint solvers was heavy, so we converted them in KL1 to speed
them up.

Desq can deal with quantities qualitatively and quantitatively like
Qupras. Accordingly, we may be able to get not qualitative but
quantitative ranges, if parameters can be given as gquantitative values.
Quantitative ranges may be preferable for the decision support. The usual
qualitative reasoning like [Kuipers 84] only gives qualitative ranges.

Section 2 shows how Desq suggests ranges of design parameters, Section
3 describes the system organization of Desgq, Section 4 shows an example
suggesting the value of a resistor in a DTL circuit, and Section 3
summarizes the paper.

2. Method of deciding design parameters

In design, there arc many cases in which a designer does not directly
design a new dcvice, but changes or improves an old device. Sometimes
designers only change parameters of components in a device to satisty the
requirements. The designer, in such cases, knows the structure of the
device, and needs to determine the new values of the components. This is
common in electronic circuits. We apply qualitative reasoning to the design
decisions.

The key to deciding design parameters is envisioning. The method is as
described in Section I:
(1) All possible behaviors of a device are found by envisioning, with
design parameters whose valucs are initially undefined.
(2) Designers select preferable behaviors from these possible behaviors.
(3) The ranges of the design parameters that give the preferable
behaviors are calculated using a parallel constraint solver.
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If a condition of a physical rule or an object cannot be evaluated, Desq
hypothesizes one case where the condition is valid and another where it is
not valid, and separately searches each cases to find all possible behaviors.
This method is called envisioning, and is the same as [Kuipers 84]. 1f a
contradiction is detected, the reasoning is abandoned. If no contradiction is
detected, the reasoning is valid. Finally, we get several valid reasonings,
and Desq finds several possible behaviors of a device.

The characteristics of this approach are as follows:

(1) Only deep knowledge is used to decide design parameters.

(2) All possible behaviors with regard to undefined design parameters
are found. Such information may be used in safety design or danger
estimation.

(3) Ranges of design paramcters giving preferable behaviors are found.
If a designer uses numerical CAD systems, for example, SPICE, he/she
need not simulate values outside the ranges.

Figure 1 shows an example for suggesting ranges of a design parameter.
This example is designing a resistance value in a DTL circuit. The designer
inputs the DTL structure and the parameters of the components except for
the resistance Rb.

Desq checks the conditions of physical rules and objects. If they are
satisfied, equations in their consequences are sent to the parallel constraint
solvers, But, it is not known what state the diode D1 is in, because the
resistance Rb is undefined. The condition 15 whether the voltage over DI
is lower than 0.7 wvolts. Desq hypothesizes two cases; in the first the
condition is not satisfied, and in the second it is. The first hypothesis is
abandoned because the parallel constraint solver detects a conflict with the
other equations. In the second hypothesis, no conflict is detected. After
some more hypotheses are made, it is not known whether a condition
giving the state of the transistor 1r is satisfied. Desq similarly
hypothesizes this condition. Finally, Desq finds two possible behaviors for
the initial data. Then, Desq calculates the resistance Rb. The resistance
must be larger than 473 ohms to give the desired behavior, where the
circuit acts as a NOT circuit because the transistor is "on". If the resistance
is smaller than 473 ohms, the circuit shows another behavior which is
unpreferable. Thus the resistance Rb must be larger than 473 ohms. This



shows the advantages that Desq deal with guantities qualitatively and

quantitatively.
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Figure 1 An example of deciding an undefined parameter

3. System organization
This section describes the system organization of Desq. Figure 2 shows

that. Desq mainly consists of three subsystems:
{1) Behavior reasoner
This subsystem is based on Qupras. It determines all possible
behaviors.
(2) Design parameter calculator
This subsystem calculates ranges of design parameters.

(3) Parallel constraint solver



This subsystem is written in KLI, and is executed on PIM, Multi-
P35I, or Pseudo Multii-PSI.

When the designer specifies initial data, the behavior reasoner builds its
model corresponding to the initial state, by evaluating conditions of
physical rules and objects. The physical rules and objects are stored in the
knowledge base. The model in Desq uses simultaneous inequalities in the
same way as Qupras. Simultaneous inequalities are passed to the parallel
constraint solver to check the consistency and store them. If an
inconsistency is detected, the reasoning process is abandoned. Conditions
in physical rules and objects are checked by the parallel constraint solver.
If the conditions are satisfied, the inequalities in the consequences of
physical rules and objects are added to the model in the parallel constraint
solver. If a condition cannot be evaluated by the parailel constraint solver,
envisioning is performed. Finally, when all possible behaviors are found,
the design parameter calculator deduces the ranges of design parameters
that give preferable behaviors.

Initial data
Structure Behavior Reasoner Out
‘ o " I put | Design ———
Inpu Mﬂﬁ:ﬁn E | Envisioning —b parameter Regions of design
caleulator parameters
Knowledge base
Internal ‘;:.,_ on PEI »

output "o, Query %Guery

R

Parallel constraint solver

on Pseudo Mults-PEI

Physical rules
and objects

Yrl=Rrl*Iri
Vrl=Vdl

Id1=Irl1+Id2
Yril=5.0

Simultaneous
inequalities

Figure 2 System organization

3.1 Behavior reasoner
Next, we describe Qupras and explain the reasoning in the system.

3.2.1 Qupras OQutline
Qupras is a qualitative reasoning system using knowledge from a physics
or engineering textbook. Qupras has the following characteristics:



(1) Qupras has three primitive representations: physical rules (laws of
physics), objects and events.

(2) Qupras determines dynamic behaviors of a system by building all
equations for the system using knowledge of physical rules, objects,
and events. Users need not enter all the equations of the system.

(3) Qupras deals with equations which describe basic laws of physics
qualitatively and quantitatively.

(4) Qupras does not need quantity spaces to be given in advance. It
finds the quantity spaces for itself during reasoning.

(5) Objects in Qupras can inherit definitions of their super objects. Thus,
physical rules can be defined generally by specifying the definitions of
object classes with super objects.

Qupras is similar to QPT [Forbus 84], but does not use influence. The
representations describing relations of values in Qupras are only equations.
Qupras aims to represent physical laws given in physics textbooks and
engineering textbooks.  Physical laws are generally described not using
influences in the textbooks, but using equations. Therefore Qupras uses
only equations.

The representation of objects mainly consists of existential conditions
and relations. The existential conditions correspond to conditions for the
existence of the objects. Objeccts satisfying these conditions are called
active objects. The relations are expressed as relative equations which
include physical variables (hcreafter physical quantities are referred to as
physical variables). If existence conditions are satisfied, its relations
become known as relative equations that hold for physical variables of the
objects specified in the physical rule.

‘The representation of physical rules mainly consists of objects, applied
conditions, and relations, The objects are those necessary to apply a
physical rule. The representations of applied conditions and relations are
similar to those of objects. Applied conditions are those required to
activate a physical rule, and relations correspond to the physical laws.
Physical rules whose necessary objects are activated and whose conditions
are satisfied arc called active physical rules. If a given physical rule is
active, its relations become known as in the case of objects.

Qualitative reasoning in Qupras consists of two forms of reasoning:
propagation reasoning and prediction reasoning. Propagation reasoning
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determines the state of the physical system at a given moment (or during a
given time interval). Prediction reasoning determines the physical
variables that change with time, and predicts their values at the next given
point in time. Then, propagation reasoning determines the next states of
the physical system using the results of prediction reasoning.

3.2,2 Behavior Reasoner
The behavior reasoner is not much different to that of Qupras. The two
features below are additions to Qupras.
(1) Envisioning
In Qupras, if conditions of physical rules and objects cannot be
evaluated, Qupras asks users to specify the conditions. It is possible
for Desq to continue to reason in such situations by assuming
unevaluated conditions.
(2) Propagation of new constraints on constants
There are two types of parameters (quantities), constant and
variable. In envisioning, constraints related to some constant
parameters become stronger by hypothesizing some conditions in
physical rules and objects. The constraints propagate to the next
states,

Before the reasoning, all initial relations of the objects defined in the
initial state are set as the known relations, which are used to evaluate
conditions of objects and physical rules. Initial relations are mainly used to
set the initial values of physical variables. If there is not an explicit change
to an initial relation, the initial relation is held. An example of an explicit
change is the prediction of the next value in the prediction reasoning.

Propagation reasoning finds active objects and physical rules whose
conditions are satisfied by the known relations. If a contradiction is
detected, the propagation reasoning is stopped. If no condition of physical
rules and objects can be evaluated, the reasoning process is split by the
envisioning mechanism into one process hypothesizing that the condition is
satisfied and other hypothesizing that it is not.

Prediction reasoning first finds the physical variables changing with time
from the known relations that result from propagation reasoning. Then, it
searches for the new values or the new intervals of the changing variables
at the next specified time or during the next time interval. Desq updates



the variables according to the sought values or intervals in the same way
as Qupras. The updated values are used as the initial relations at the
beginning of the next propagation reasoning.

3.3 Design parameter calculator

The method of calculating the design parameters is simple.  After
finding all possible behaviors, the designer specifies which design
parameters to calculate. Then, the upper and lower values of the specified
parameters are calculated by the parallel constraint solver.

3.4 Parallel constraint solver
The parallel constraint solver tests whether the conditions in the

definitions of the objects and physical rules are proven by the known
relations obtained from active objects and active physical rules, and from

initial relations,.

linaar linear nonlinear nonlinear
Sguatiuns inequalities eOUAtIoNS inequalities
-l add constrainis ‘
T Communication I
AmMong consiraing control I
solvers 5
&M AEW
BN
lincar part
Simplex
methnd

Figure 3 Combined constraint solver

We want to solve nonlinear simultaneous inequalities to test the
conditions in the objects, physical rules, and events. More than one
algorithm is used to build the combined constraint solver, because we do
not know of any efficient algorithms for nonlinear simultaneous
inequalities. We connected the three solvers as shown in Figure 3. The
combined constraint solver consists of the following three parts:



(1) Nonlinear inequality solver based on the interval method [Simmons
861,

(2) Linear inequality solver based on the Simplex method [Konno B87],

(3} Nonlinear simultanecus equation solver based on the Groebner base
method [Aiba B8].

If any constraint solver finds new results, the results are passed to other
constraint solvers. This combined constraint solver can solve broader
equations than each individual solver can. However, its results are not
always valid, because it cannot solve all nonlinear simultaneous

inequalities,

The reason that we can get quantitative ranges is that the combined
constraint solver can process quantities quantitatively as well as
quantitatively.

3. Example
3.1 Description of Model

We show another example of the operator., We use a DTL circuit the
same as in Figure 1. In this example, however, the input voltage and the
resistance Rb are undefined.

The initial data is shown in Figure 4. The "objects” field specifies
components and their classes in the DTL circuit. The "initial_relations” field
specifies the relations holding in the initial state. For example,
"connect(t2!Rg, t1!D1, t1!1D2)" specifies that the terminal t2 of the resistor
Rg, the terminal tl of the diode DI, and the terminal tl of the diode D2 are
connected. "!" is a symbol specifying a part. "t2!Rg" means the terminal t2
which is a part of Rg. Rb is specified as a resistor in the "objects” definition.
"@" is specifies parameters. “resistance@RI]" means the resistance value of
Rb. ‘"resistance@RIl = 6000.0" specifies that Rl 1s 6000.0 ohms. The
resistance Rb is constrained to be positive, and the input voltage is
constrained to be between 0.0 and 10.0 volts. Both values are undefined,
and Rb is a design parameter,

Figure 5 shows the definition of a diode. Its super object is a
two_terminal_device, so a diode inherits the properties of a
two_terminal_device, i.e. it has two parts, which are both terminals. Each
terminal has two attributes "v" for voltage and "i" for current. A diode has
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an initial relation, which specifies the voltage difference between its
terminals. A diode also has two states. One is the "on" state where the
voltage difference is greater than 0.7. The other is the "off" state where
the voltage difference is less than 0.7. If the diode is in "on", it behaves a
conductor. In the "off" state, it behaves a resistor. A transistor is defined

like a diode, but it has three states, "off", "on", "saturated” (In the example
of Figure 1, we used a model of a transistor which has two states, “off" and
"on").

initial_state ddl
objects
Rl-resistor ;
R g-resistor ;
Rb-resistor ;
Tr-transistor ;
D1-dinde ;
D2-diode? ;
initial_relations

connect(t1'RLU'Rg) ;
connect(t2!Rg,t1!D1,t11D2) ;
connect(12!D3,11!Rb,tb!Tr) ;
connect(2!R1Lwe!Tr) ;
resistance@R1=6000.0 ;
resistance@Rg=2000.0 ;
resistance{@Rb == 0.0,
vigtlIRl=3.0;
vi@2!D1 == 0.0;
v@r2!D1 =< 10.0;
vi@te!Tr = 0.0 ;
vid@t2'Rb=0.0;

end.

Figure 4 [Initial state for DTL circuit

Figure 6 shows a definition of a physical rule. The rule shows Kirchhoff's
law when the terminals t1 of three two_terminal_devices are connected. Tt
is assumed that the current into tl of a two_terminal_device flows to the
terminal t2. In fact, three two_terminal_devices can be connected eight
ways according to which terminal is connected. In this rule, the equations
describing physical rules are known.
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object terminal: Terminal
attributes
V-
i;
end.

T

object two_terminal_device:TTD
parts_of
11 -terminal ;
t2-terminal ;
end.

object diode:Di
supers
two terminal_device;
attributes
v
1;
resistance-constant ;
initial_reladons
vi@Di=v@tl | Di-v@t2'Di ;
sIate om
conditions
vi@Di >=0.7;
relations
v@Di= 0.7 ;
@D ==0.0;
stare off
conditon
vi@Di < (0.7 3
relations
resistance@ Di=100000.0 ;
vi@ Di=resistance@ Di*i@Di ;
end.

L]

Figure 5 Definition of diode

physics three_connect_1
objects
TTD1 - two_terminal_device ;
TTD2 - two_terminal_device ;
TTD3 - two_terminal_device ;
T1-terminal parmame tl part_of TTD1 ;
T2-terminal partname tl pan_of TTD2 ;
T3-terminal parmame tl part_of TTD3 ;
conditions
connect(T1,T2,T3):
relations
waTl =v@T2 ;
v@T2 =v@T3;
i@TL +i@T2 +i@T3=0:
end.

Figure 6 Definition of physics
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3.2 Results
Table 1 shows all behaviors of the DTL circuit obtained by envisioning.

The state columns show the states of the diode, the diode2 and the
wransistor. The next columns show the ranges of the input voltage (volts),
of the resistance of Rb (ohms), and of the output voltage (volts).

Envisioning finds nine states. Because the input voltage and the resistance
of Rb were undefined, the conditions of the two diodes and the transistor
could not be evaluated. Desq hypothesizes both cases, and searches all
paths. Figure 7 shows the relationship between the resistance and the
input voltage. The reason that the ranges in Table 1 overlap is that the

models of the diode and the transistor are approximated models.

Table 1 Result of DTL circuit
Slale Range of input | Range of resistance value |Range of Output
1 ON-ON-SAT [1.40081 ~ 1.5381 [ 486.16 " infinite 0.2
2 ON-ON-ON |1.471.40081 482.75 " infinite 0.275.0
3 ON-ON-OFF [0.7 " 1.4 0™ 233,567 4.94
4 ON-OFF-ON |07 1.4007 100,44} ™ infinite (.84275.0
5 ON-OFF-OFF|0" 1.4 0~ 233,567 4.94
6 OFF-ON-SAT| 1.40081 " 10.0 | 460.9 " infinite 0.2
7 OFF-ON-ON 1.4 " 10.0 457.8 ~ 488.53 0.275.0
& OFF-ON-OFF|0.7 " 10.0 0~ 484.1 4.94
9 OFF-OFF- * [Conflict

A designer can decide by investigating Figure 7 the resistance Rb for the
DTL to behave as a NOT circuit. It is desired that Rb should be greater than
about 0.5 k ohms and less than about 100 k ohms so that the DTL circuit
can output a low voltage (nearly O volis) when the input is greater than 1.5
volts, and the output is high (nearly 5 volts) when the input is less than
about 1.5 The range shows the area enclosed by dotted lines in
Figure 7.

volts.

4. Conclusion

We have described a method to suggest ranges of design parameters
using qualitative reasoning, and implemented the method in Desq. The
ranges obtained are quantitative, because our system deals with quantities
quantitatively as well as qualitatively.
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Figure 7 Relationship between Resistance and Input voltage

We are currently working on how to find ranges of design parameters of

circuits that change with time, for example a Schmitt trigger circuit.

such a case,

solver to speed up it

This method does not suggest structures of devices like the methods of
Rather, it suggests ranges of design

This approach may be regarded as
In fact, it is

[Murthy 87] and

[Williams 90].

parameters for preferable behaviors.
one application of constraint satisfaction problem solving.
similar to using CLP(R) to design of electronic circuits in that it uses
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we need to propagate new constraints on constant parameters.
Moreover, we are investigating the load balancing of the parallel constraint



constraint solvers [Heintze 86]. However, several features of our method
are different:

(1) Knowledge on objects and physical laws is more declarative.

(2) Desq can design devices which change with time.

(3) Desq deals with nonlinear inequalities.

The method is not dependent on a domain of electronic circuits. If we
wish to apply the method to another domain, we need only change
knowledge base stored definitions for objects and physical rules.
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