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§0. Introduction

A program transformation would have two purposes which are related to each
other. One is to gain an efficiency and the other is to generate a variety of
programs from the original one. In anyway, the original and the transforoed
should have a certain kind of common property because we can’t use the word

“transformation™ if there cxists no relation belween Lhem at all. Talking the
case of the logic programming, the common property is embodied by the preser-
vation of the intended model. In other words, when we regard a logic progran
as a formal theory, the set of ground atoms proved by the original P and the
set of ground atoms proved by the transformed P' should ceincide.

{ {o€AplP—o) ={a ¢hp|P*+ o}, vwhere Ap is the set of all ground atoms
generated by the language which is used to describe P.)

Now, we can regard the execution of a pure logic progran as applying “a
set of inference rules” to a given “set of axioms”. (For cxample, SLD-resolu-
tion + NAF-rule to a set of Horn clauses.) SlLanding on this viewpoint, we may
be able to say that the target of the conventional notion of the (logic) prog-
ran transformation is solely limited to the case of Lhe change of a set of
anioms while preserving the inference rule(s) employed.(From an angle of a
formal theory, the change of, say, the backward and the forward reasonings are
trivial.) Here, if we stand for Lhe viewpoint that a theory is made from the
composition of a set of axioms and a set of inference rules where both concep-
ts are inherently relaled and influenced to each other, there ought to be an
approach to a theory transformation in a wider sensc that both axioms and inf-
erence rules are changed. (As for an extreme case, just consider two formaliz-
alions of Hilbert style and Gentzen style of the first order classical logic.)
0f course, to establish this new approach theoretically, a variely of inferen-
ce rules should be supposed to be available. In other words, we nust admit the

situation where where modus ponens is not the only inference rule employed by
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the logic programming.

For example, when an equivalence relation = over the set of all atoms
generated from a Horn clause progran P is defined by somehow or other, it is

natural for us to adamit the following form of the inference rule.

A, A'—>B
= , dhere A= A" and R = B'.

HF

The above stated inference transformation can be applied to this kind of infe-
rence rule as a simple case.

Here, let E be an equational theory (over a set of all terms generated
from the language Lp over P) which defines an equivalence relation =g. In
this case, we ab once notice the techinique of syntactically changing E to
another equational theory E' such that =g I'BpXBp = = [ BpXBp, where Bp
is the lerbrand base of P. (See, for example [j0].) llowever, there are many
cases where even two different equivalence relations = and =' can satisfy

the condition

=[BpxXBp # =" TBpXEp
but
{o €Bpl (P,=)g) =(0 €Bp| (P,=")¢g) (1)

In this paper, vwe would like to systematically consider inference transformat-
ions which treat the change from = to =" that preserves both the above cond-
itions (1) within the framework of DBoolean-valued logic programming (language)

scheme LIFE-II.



§1, Preliminaries

In this section, we define basic terminologies and notions which are used in
the subsequent sections. We employ Horn clause programs as the target logic
programs. Throughout the paper, let P be a Horn clause program and Up(Bp) be
the Herbrand universe (base) of the language Lp used in P. Moreover, let T(Zp, V)
(A(IIp, V)) be the set of all terms (atoms) generated from Lp whose variables are
picked up from V. Obviously, UpCT(Zp, V) and BpCA(IIp, V). Here,

Definition 1-1.

i)  Anequivalence relation = over A(Ilp, V) is substitution transitive iff
(YA, BEA(TIp, V)) (¥8: substitution over T(Zp, V)) (A=B—A0=B8).
ii) Let = be a substitution transitive equivalence relation over A(Ilp, V) and A,
BEA(Ilp, V). Then, a substitution 8 over T(Zp, V) is a =-unifier for A and B
iff

Af=DB0. -

Using the above defined notion of =-unifier, we can naturally extend the
notion of syntactical unification to that of =-unification which can be employed as

the base of inference rule over P.

Remarlk: Precisely speaking, we had better define the notion of =-mgu here to
ensure the realizability of logical completeness as a logic program (P, =).

However, without knowing the definition of =-mgu, we can continue the

following argument., =
In this situation, we obtain the following notion as a subset of Bp.
Definition 1-2.

Sp(=)={0¢Bp/PU{«o} has a refutation based on = -unilication }. -4



Now, let B be a complete Boolean algebra and F be a complete filter over B.
Then, using F, we can induce an equivalence relation =g over the set of all maps
{F|f:Bp—B}

in the following way.

Definition 1-3.
i)  Definearelation = pover BBr by

(Vg€ BPfr)(f=pg Iff (Vo€Bp)((flo)—glo))€F)).
ii) Define =pover B2 by

(Vg€ Bin)(f=pg iff f=pg and g=¢f). —

Here, define a partially ordered structure (Pp, <) such that Pp=BB/=§ where
<rover Pp is naturally induced from the corresponding relation =y over BEr,
That is, for any [f], [g] € Pp, |

[f] €plgliff f = pg for suitable repesentatives f € [fJand g € [g].
Obviously, the above < does net depend on the choice of the representatives and
so 18 well-defined. Then, (Pp, <r) becomes a complete lattice w.r.t. the operations
v/, M induced pointwisely from the operation on B.

(For example, for any XCPp, we can decide

NX=[g] so that

(VaeBp)( g[u}‘—-[ﬁ":)i;{a}]

where f is a representative of [f]. Again, it is easy to check that the definition is

well-defined.)

By the way, we can regard any f€ BUr as a B-valued interpretation of P. In

this sense, the following are those in which we are interested from a viewpoint of

model theory.



Definition 1-4. Let f€ BB, Then,
i) (Up, f) is a Herbrand F-model of P iff
(VCEP)ACIER) |
where f(C) is the abbreviation of
M (F(CHp)=fC—p)). (C* is the head of C and C~ is the body of C.)

p=ground
iiy (P,f)isaF-program iff (Up,f)lisa Herbrand F-model of P,
iii) Define a subclass of Pp so that

Mp(B, F)={[€Pp|(P, D is a F-program }. —

Here again, it is obvious that the above Mp(B, F) is independent of the choice
of a representative fof [f] and so is well-defined. In addition, it is not so difficult to
check that (Mp(B, F), <r) becomes a complete sublattice of (I’p, <¢). Lastly, we

define the following subset of Bp.

Definition 1-5. Let f¢ BEr, Define
Be[f]={c€Bp|fla)€F}. —

By definition, it is obvious that
(VIfle Pp)( VI, g€[f]) (Belfl=Belgl.



§2. Boolean-valued Unification

In this section, we define the notion of “Boolean-valued unification” which is
employed by LIFE-III and discuss the related topics including Boolean-valued

completeness.

Definition 2-1. Let ~ be a substitution transitive relation over A(Ilp, V)

and f¢ B®?, Let A, B€A(IIp, V). Then, a substitution 8 over T(Zp, V) is a B-valued

unifier for Aand B w.r.t. ~ and { iff
1. A6-~-BS
and
2.  f(ABp)=f(BAp) for any ground substitution p for AB and BB =

Remark: The second condition above isequal to A (f(ABp)+ f(BBp))=1 -
pi ground
As is obvious from the definition, the notion of B-valued unification is far
more complex than that of universal unification. However, it is this intricacy that
provides us a variety of benefits. For example, by employing B-valued unification
instead of usual =-unification as the basis of an inference rule which governs P,

we can obtain a subset of Bp in the following way.

Definition 2-2.
Sp(~, D={v€Bp|PU{+0c} has a refutation based on B-valued unification

w.r.t.~ and f}. —

Compared the above Sp(~, f) with Bg[f] of Definition 1-5, we can see that
always holds. (B-valued soundness property)

However, it is easy to check that the equality
Sp(~, ) = Bglf]



does not always hold for arbitrary ~ and f. From now on, let's investigate a

general condition concerning ~ and [ which permits the equality. For this

purpose, we need the following concept.

Definition 2-3. Let J:Bp—Bp be an idempotent function (J*=J). Then,
i)  Given arelation ~ over A(Ilp, V), J is ~-consistent iff (Vo€Bp}(o~J(a)).
ii) feBBrisJ-faithful iff

(Vo €Bp)((flo)={d(0))). -

Now, suppose an idempotent ~-consistent J is given. Then, we can consider
a subclass I'p(J) of Pp such that

I'p(J)={[f1€ Pp| fisJ-faithful}.
Here, it is easy to see that (U'p(J), <) becomes a complete sublattice of (I’p, <p).
Remark: By definition, for any [f]€'p(J), there always exists a representative
fe[f] which is J-faithful. However, owing to the flexibility of F, there may be an

element g€[f] which is not J-faithful. =

Example 2-4.

Pa‘—
Let P= p~q-~r,

g+r ,
J(p)=p,d(g)=q,J(r)=p, B={1,0,b, 7 b}, F={1, b}.
Then, Bp={p, q, r}. Define f, g€ B® so that
fip)=fq)=Mr)=1, glpl=glg)=1, glrl=Dh.
Then, J is idempotent and ~-consistent, [[J¢ Mp(B, F)NI'p(J), [f]=[g] and fis
J-faithful.
However, it is obvious that g is not J-laithful, -

With the above observations in mind,
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Theorem 2-5. Let ~ be a substitution transitive equivalence relation
over A(Ilp, V) and J be a ~-consistent idempotent function. Let [p] be the least
element of T'p(J)NMp(B, F). Then,

Sp(~, p}=Bglu]
where 1 is a J-faithful representative of [u]. O

As a direct consequence, we notice that

Corollary 2-6. Using the notations in Theorem 2-5, let's uj, 112 be two distinet
J-faithful elements of [u]. Then,
Sp(~, u1) =Sp(~, pa).

By the way, during the proof of Theorem 2-5, we use the following lemma,
which will be used laier.

Lemma 2-7. Using the notations in Theorem 2-5, [u] always has a J-faithful
representative p2 such that

(VYo€Bp) (palo)=1or pg(o)=0). (]

For the proofs of the above results, see [8], [1].

=8=



§3. Theoretical Background of Inference Transformation

In this section, we consider the theoretical aspects of inference
transformation. To begin with, in general, there are many methods (at least
theoratically) which substantially embody the same effects as a given =-
unification by the tool of B-unification using suitable ~ and f€B®. As for the
simplest, just consider the case

==~ and f=T,i.e., (VocBp)ila)=1).

Now, suppose we can choose ~ and { such that
(Yo, t¢Bp)loa=t iffo~tand () ={(x)).
Then, our aim is to choose a representative g€[f] such that

g#fand Sp(~, H=8p(~, g) e (2)
through the flexibility of F. However, there is no assurance that (2) holds for any
candidate g of [f].

Here is the place where Theorem 2-5 in the previous section essentially

works. The main purpose of this paper is the following result.

Theorem 3-1. Soppose a substitution transitive equivalence relation =

over A(ITp, V) is given. Let ~, J, B, F, [u] be such that

1) B is an arbitrary complete Boolean algebra and F is an arbitrary complete
filter over B.

9) ~ is a substitution transitive equivalence relation over A(IIp, V) which
satisfies ~[BpX Bp2=[BpXBp

3) Jisachoice function of =, i.e.,
(Vo,t€Bpilo=t il J(o)=d())
(In this case, J obviously becomes ~-consistent and idempotent.)

4) [plisthe least element of I'p(JINMp(B, F).

Then, Sp(=)=5p(~, p)

for any J-faithful representative pof [u].

-H-



Proof: Let ~ and J be as in 2) and 3). Let B' and F" be complete Boolean algebra
and complete filter over B’ such that

[Bp/=|=|F|.
Consider the least element [p'] of Ip(d)NMp(B’, F"). Here, pick up a J-faithful
representative py of [p'] such that

(V¥ [ol,[t] €Bp/=)([o] #[t]* pjlo)7 pg () ).
That is,

(Vo,t€Bp)(o=1t iff pylo)=pg(c)).

{By the choice of B’, F", this sort of selection of pj from [p'] is always possible.}
Bp

Using this pJ, we notice that

(Vo,te€Bp){o=t iff o~t and pylo)=p, (1))
= fBisa{ground)=-unifier for A and B

iff

8 is a (ground) B'-valued unifier for A and B w.r.L. ~ and pj
= Sp(=)=5p(~, pa}h
So, by especially choosing p'z € [p'] such that

(Vo €Bp)(p'elo)=1orp'e(o)=0),
we obtain

Spl=)=5p(~, u'2).
Now, for any complete Boolean algebra Banda complete filter I over B, we can
consider the least element [p] of

Tp(J)NMp(B, F).
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Here again, we can choose a J-faithful representative pg of [u] such that

(Yo €Bp)(uzlo)=1orpzlc)=0).

Since both (Up, pg) and (Up, p'g) are the least J-faithful, 2-valued {1}-model of P,

P2 =H'2.
So, for any J-faithful representative p of [p], we get

Sp(=)=5p(~, ul.

{In this proof, we use the result of Lemma 2-7.) O

The necessity of conditions 3) and 4) of the above result can be guessed by the

next example.

Example 3-2. LetP,B,F,~,f, gheasin Example 2-4,

i)

i1)

iii)

Suppose p=q=r,
LetJ be asin Example 2-4,
Then, Sp(=)=S8p(~, N=Blfl={p, q, r}
#{p, a}=3p(~, g).
In this example, [f] is the least element of Mp(B, F)NTp(J) and g€[f] but g is
not J-faithful.
Suppose p=gq.
Let J' be such thatJ'(p)=p, J'(g}=p, J'(r) =r.
Then, Sp(=)=8p(~, g)={p, q}
#8p(~, ) =B¢lfl={p, q, 1}
In this example, both [ and g is J™-faithful and [f]=[g], but [{] is not the least
element of Mp(B, F)NTp(J).
Suppose p=q=r.
Let J" be such that J"(p)=p, J"(qg)=q, J"(r)=q and h€B®" be such that
h(p)=1, hig)=h(r)=0.
Then, (h] is the least element of Mp(B, F)NIp(J") and h is J"-faithful.
Moreover, J" is ~-consistent.

However,
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Sp(~, h)={p}# {p, 4, r}=Sp(=).

This is because J" is not a choice function of =. =
iv) Supposeg=r.

Change ~ to ~' such that g~'r. Let J be as in i) and k€ B®" be such that

k(p)=k(r) =1, k() =0.

Then, Sp(=)=Sp(~', f)=3p(~’, k) ={p}

and f, k is J-faithful and (f] is the least element of Mp(B, F)NT'p(J). However,

[k]<g(f]. Thisis because [k]€Mp(B, F). In addition,

By(fl ={p, q, r}#= Sp(~', f).

This deficiency comes from the fact that J is not ~'-consistent. —

By combining the above theorem 3-1 and Corollary 2-6, we can obtain the
expected theory of inference transformation. Here again, by using Example 2-4,

let's grasp the idea of inference transformation in its simplest form.

Example 3-3. Let P be as in Example 2-4. Suppose = is defined so that
p=r. Then, obviously, B, F, ~, J in Example 2-4 satisfies the conditions of
Theorem 3-1. Let [p] be the least element of T'p(J)NMp(B, F). Then, fin Example
2-4 becomes a J-faithful representative of [p]. (The check is easy.)
In this situation, let p, p’ €[p] be such that

p(pi=nir)=1,ul(q)=b
and

p'(pl=p'{ri=b, p'(g)=1.
Then, by definition, both p and p’ are J-faithful. Here, note the fact that it is p
(butnotf) thatembodies the given equivalence relation = in the sense that
(VWo,teBp)o=t iff g~tand plo)=pn(x)).
Now, the inference rule based on B-valued unification w.r.t. (~, u) and the one
w.r.t. (~, [} become different. To see this, just check the query {«qg}. Though «q

and p< can’t be B-valued unified w.r.t. (~, p), «<—q and p+ are B-valued unifiable

-12-



w.r.t. (~, f). In this sense (of reducing the number of input clauses used), we gain
an efficiency by inference transformation from p fo f. A remarkable fact is that
this optimization is absolute in the sense that it does not depend on the character
of the given query. As far as Bp(={p, q, r}) concerns, for any query {«p}, {=q},
{«=r}, using (=, f) is always more eflicient than using (~, p).

On the other hand, there is a case of inference transformation whose

optimization entirely depends on each particular query,
As

an end to this direction, we enter the area of B-valued reasoning where the
evaluation of B-value at each unification step essentially works. In this example,
compare inference rules based on B-valued unification w.r.t. (~, p) and (~, p').
There is no difference between them except that B-values estimated by p during
B-valued inference becomes different from the one estimated by p’. An argument

concerning the availability of B-values will appear soon, too.(See [13]} -1

~-13-



§4. B-valued Interpretation of =-unification

In this section, we consider the embodyment of ~, J, B, F which are used in
Theorem 3-1. This becomes crucial when the resultis applied to a practical phase.
First of all, by reviewing the result of Theorem 3-1 carefully, we should notice
that, owing to the general property of the claim stated, there is a possibility that
[u] can’t witness the given = in the sense that

(Ip€lpl(u is J-faithful and (Vo, t€Bpllo=1 ilfo~v and plo)=n(x))) - (3)

does not held.

Example 4-1. Let P, ~, J be as in Example 2-4. Suppose p=r. Take

B={1, 0} and F={1}. Then B, F, ~, J satisfy the conditions 1) ~ 4) in Theorem 3-1.

Let [p] be the least element of T'p(J)NMp(B, F). Then, it is easy to see that
[w]={f}and [is J-faithful

where fis in Example 2-4. So,

Sp(=)=5p(~, N={p, q, 1}

surely holds. However,
p~q and f(p)=f(q) but p#*q.

So, this [p] violates the condition (3). -
However, as far as the notion of inference transformation concerns, the

general form of Theorem 3-1 is enough to produce another inference rule from the

original one based on =. In this general case, the realization of =, J, B, F becomes
the following.

Suppose a substitution transitive equivalence relation = is given,

I.  J is nothing but =[ BpXBp itself and so oight to be known and uniquely
determined from the beginning. Here, note the merit
of determination of J instead of = itself. We may consider only =[BpXBp.

[I. There are many possibilities to decide ~ which satisfies the condition 2) in
Theorem 3-1. One possibility is to decide ~==. In this case, whatever B
and F may be, itis not difficult to check that the resulting [p] always witness

= in the sense of (3) by using Lemma 2-7. However, from a practical
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viewpoint, we often choose ~ to be trivial in the sense that

(WA, BEA(ITp, V)) (A~B).
In this latter case, we can ignore the rule of ~, but phenomina like Example

4-1 may occur.

111. Sincé B and F are permitted o be {ree, as an extreme case, we may decide
B={1, 0} and F={1}. However, from a viewpoint of inference
transformation, we had better choose an appropriate B and F because it is
the flexibility of F that permit essentially different candidates of
representatives of [p]. To tell the truth, if B={1, 0} and F={1}, then [pn]

always becomes a singleton.

Now, suppose the above B,F,~,J s fixed and we choose the least element
[u] of Tp(J)NMp(B,F) such that Lhe condition (3) is satisfied, where (~, p)
becomes the witness of =. Then, is there any intrinsic difference between the
original =-unification and B-valued unification based on (~, p) 7 At a first
glance, it apparently seems that there is no substantial difference between them,
though there really is. [t comes from the fact that [u] is the least element of
T'p(J)NMp(B, F),To explain the situvatien, let’s consider the following more general

case. Given —~ and I3, we can take two maps

(L 1,0 11": Bp—B such that
(Vo,w€Bp)([[a]] =[] iff [[a]]'=[[x]}").

As the result, we obtain

Spl~,[[ 11) = Spl~,[[ II').
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Once F is fixed, however, whether (P, [[ ]]) becomes a F-program or notis a
entirely different issue which concerns B-valued semantics. Standing on this
general veiw, we might be able to claim the following. On the one hand, =-
unification is the concept which does not distinguish the above [[ 1] and [[ 1I".
On the other hand, B-valued unification (w.r.t. ~ and [[ 1] ) is the notion which
inherently include B-valued semantics in the sense of F-model. Itisthisintention
toward model theory that characterize an advantage of B-valued unification

which usual universal unification can't provide.

By the way, in order to enjoy many advantages, we ought to discover the least

element [p] of T'p(J)NMp(B,F) at the starLing point. Here, even comparing Lhe
=. finding Lhe [u] is not so difficult. This fact depends on the following obse-
rvation. When ve try to program (or more generally, forsalize) a certain knowledge,
we ought to recognize what we are going Lo program (formalize) from the beginning.

This means it is the intended model that comes first. In other words, the procedu-
ral semantics (based on =-unification or (—, p) -unification) is nothing but one

realization of the declarative semantics of the (logic) program. In Lhis silualion,

our claim is that:

Mwe had better B-valued interprete the target knowledge so that the above initial

B,F,~,J are fixed and, at Lhe same time, [p] becomes the intended (B-valued)

model, instead of simply choosing a naive and primitive =.)

“ & little refinement ([p]) of the formalization of Lhe target knowledge (compa-

red with =) gives us a great gain.”

This is the catch phrase of our B-valued nethodology-

—16-



§5. Concluding Remarks

In this paper, we focus our attention to one aspect of several fealures
which Boolean-valued logic programming (language) scheme LIFE-II owns and
apply the character to the area of the inference transfoermatien, the concept
of which (a new methodology for the program Lransformation) is proposed in
this paper for the first time. As the result, we provide a theoretical backgr-
ound to a method which transforms the procedural semantiecs of a logic program
P as a whole by changing inference rules that govern P, instead of changing P
itself. This approach is our original, we dare claim. (Compare our result with

the conventional notion of the *partial evaluation”.)

As can be easily gpuessed, the techinique of the inference transformalion
is closely related to the machine learning, especially to the topics of chun-
king, category change, concept discovery ebc. Precise arguments will appear

S5000.
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