_IcOT Technical Report: TR-693

TR-693

Logic-oriented Inferential

Framework Extensions LIFE-£)

by
J. Yamaguchi (Kanagawa Univ.)

Seplember, 1991

© 1991, ICOT

Mita Kokusai Bldg, 21F {03)3456-3191 -5

" :D '| 4-28 Mita 1-Chome Telex 1COT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Logic-oriented Inferential Framework Extensions

LIFE-Q

by
Jinsei Yamaguchi

Dept. of Information and Computer Sciences

Abstract:

Key words:

KANAGAWA UNIVERSITY

2946 Tsuchiya, lHiratsuka
Kanagawa 259-12, JAPAN

We give the philosophical background of LIFE-{l, a new
paradigm for AL. We begin our argument by listing some
properties LIFE-Q can provide as a paradigm. Then, we
resent a Boolean algebraic semantics of pure Prolog as a
anguage scheme and relativize this idea within LIFE-Q to
get a procedural semantics of LIFE- |, a Boolean-valued
logic programming language scheme. By generalizing the
idea further within gE-.l]l].‘gEr—i.’l,. we can propose other
language schemes for Al as extended versions of LIFE- 1,

logic programming, Boolean-valued medel, inference,
fuzzyness.

§0. Introduction

There are many concepts Al scientists have been trying to capture within
their own frameworks or more specifically by their programming languages.
Among them are those symbolized by the terminologies “uncertainty”,
“pegation,” “learning”, “common sense” and “creativity” ete. For example,
concerning the notion of uncertainty, many challenged through a variety of
approaches. Some generalized the notion of truth value to many-valuedness and
some others borrowed such techniques as probability, modality and fuzzyness
ete [3], [6]), [10]. Here, we would like to propose a paradigm for AI which, we
believe, may contribute not only to the notion of uncertainty but also to those
cited above. We call this paradigm “LIFE-Q", the naming comes from “Logic-
oriented Inferential Framework Extensions—infinite series” or “Logic-oriented
Intelligence for Future Environment.” To constitute the paradigm, we have
borrowed and transformed the idea of Boolean-valued universe in set theory. In
section 1, we see some properties LIFE-{ can provide as a paradigm. Then, we
present a Boolean algebraic semantics of pure Prolog as a language scheme in
section 2 and in section 3, we relativize this semantics to get the procedural
semantics of LIFE- | (Logic-oriented Inferential Framework Extension—class

1), a Boolean-valued logic programming language scheme which belongs to the
paradigm LIFE-Q. In section 4, by generalizing the idea farther, we propose
some other possible categories, on the ground of which we can construct a series
of language schemes LIFE-X (1] £ X <) as extended versions of LIFE- 1. The
theoretical background of the first three schemes LIFE- 1, LIFE-II and LIFE-III
is discussed in [11].

The broadness of the topics which LIFE-Q might cover states the fact that
this is rather a meta-scheme than a particular scheme. This fact is partially
supported by the idea of Boolean-valued universe itself. The most crucial point
concerning Boolean-valued technique is that this is not 2 mere aim to represent

many-valuedness of our belief but rather a means to express the semantical idea

of Forcing methodology and so is different from the other many-valued logics

from the viewpoint of possible applications. [5] is a standard textbook for those
who are not so familiar with the notions of Boolean-valued model, Forcing ete in

set theory.

§1. The Idea of LIFE-Q2

In the field of set theory, there is a notion called “Boolean-valued
universe”, This notion is the semantical version of Forcing technique and has a
resemblance with fuzzy set theory to the extent that both essentially treat
many—valuedness: of membership relations, though they are different in many
important ways. The idea of LIFE-Q) springs from the methodology of Boolean-
valued universe, In the following, let's list up typical properties that LIFE-Q
can serve when it is applied to the world of logic programming. For those who
are familiar with Boolean-valued model in set theory, the philosophical and

methodological similarity must be obvious.

1. Employ a complete Boolean algebra B and generalize the notion of truth-
value from 2 to B. By doing so, contribute to the notion of negation.

2. Using B, extend the world of logic programming to the world of Boolean-
valued logic programming within the paradigm of LIFE-Q,
The extended framework in the most simple case may be illustrated as the

following figure [1].

program Boolean algebra

mapping
P R
in

X il

logic
programming

\ / correspondence

a set of propositions

knowledge

Figure[1]

Given a logic programming language scheme for AI, we can obtain a
Boolean-valued logie programming language scheme LIFE-X by applying
the Boolean-valued technique considered in the paradigm LIFE-{.

To define procedural semantics of LIFE-X (I= X < =), essentially follow
the original construction method used in a (2-valued) logic programming
language scheme except generalizing the technique used at each
derivation step.

By choosing B+ B’, we can construct totally different (P, [[1lg) and (P,
([1l;). The choice of B depends on which knowledge we want to
formalize. The crucial point is that, firstly choose the concrete knowledge
E we want to formalize, then construct a suitable Boolean algebra B which
is hoped to reflect the essence of K. Next, construct (P, ([1ly) using this B
and check whether this (P, [[1]y) can serve to represent the wanted
knowledge K. I (P, [[1) can represent K usefully, then o.k. Else,
construct a different B' to apply as the second candidate.

The purpose of our considering Boolean-valued logic programming
(language) scheme LIFE-X is to manage new environments which usual
logic programming language scheme can’t attain or (by deciding a concrete
language based on it) to formulate elegantly some knowledge which may
(or may not) be expressed by the usual (2-valued) language but need an
elaboration.

Let G be a goal for a logic program P and suppose there is an output A of
PU{G}. Then, there is a certain kind of output § of PU{G} with respect to
(B, ([1) with the Boolean value v(E})€B. The point is that v(E)) is o new
output which assert something different from the original answer A
concerning G. (E) may be or may not be A.) Since [[1] depends on B, there
is a possibility that v(fy) has a new important meaning for a certain B, Of
course, there should be some connection between G and v(Fy). After all,

whenever we have an output A of PU{G), by using Boolean-valued method,

we can automatically obtain the output v(fy) for each different B we
choose.

8. There are cases that we ean obtain meaningful outputs of PU{G} w.r.t. (P,
§ 1) for certain kinds of goal G and map [[1], though there is no
substantial output of G w.r.t. P.

9. The method can be iterated, and a variety of techniques can be used for the

iteration.

In the following, as a simplest example that we can obtain within the
paradigm LIFE-Q, we briefly sketch the procedural semantics of Boolean-valued
logic programming (language) scheme LIFE- | , which is a direct generalization
of pure Prolog scheme. Before doing so, let's reinterprete the procedural

semanties of pure Prolog from a Boolean algebraic viewpoint.

§2. Boolean algebraic semantics of SLD-resolution

—a preparation for LIFE- | —

Let P be a pure Prolog program and G=<A,, -, Ak be a geal. Suppose
there is a SLD-refutation R of PU{G} with the sequence of mgus <6y, «, 65>
and the sequence of input clauses <(Cy, -, Cp>=. Then, we can interpret this
refutation procedure from a viewpoint of 2-valued Boolean algebra in the
following way.

I. Thereisamapl({ 1:Bp—2={1, 0}such that, for any clause Cin P,

(VCll=1, ie., i::'-i ([Cpil]l = 1, where {p; |i€1}is the set of all ground
substitutions for C.

This means, of course,
iﬁﬁi (LC*piN+~[[Cpill) =1

i.e.,

-6-

[[C*pll 2 [[C-pll forany ground substitution p for C, o)
where [[C-pll = [Bip J] A=A [[Bpp]l if C has the form C*« By, -, Ba. So,
especially in case of C~ =@, that is , in case that C is an unit clause, (U becomes
the form

[[C*p]l=1 forany ground substitution p for C.

Roughly speaking, this Boolean interpretation of P means that any clause
C in P represent either a true assertion or a true rule with respect to [{
11:Bp—2. In other words, (Up, [[]]) becomes a Herbrand model of P where, as
usual, Up is the Herbrand universe of P and the assignment is defined by (Up, [[
) =vCiff[[vC]] = L.
So, we can say that the mapping [[]:Bp—2 should be determined so that the

program P becomes a consistent formal theory from a semantical viewpoint.

(Usually, the least Herbrand model of P implicitly plays the role of [[], though

the originally intended model may be different.)

I. By refutation, when R ends with the empty clause O, we get the following
sequence of (inJequalities.
By definition of unification.
([A16p T A=A T[AkBp]
@ = = [A1Bp NA-AlAmaBp)] A [[C176p]] A [Am+10p JIAA
[Axbp 1]

>,
where AL€G is the selected atom for 0y, 6 =018, and p is a suitable ground
substitution. For @, we use the fact @. Ending with the empty clause means

we must substitute each Boolean element in the right hand side eventually by a

the

Boolean value of a certain unit clause (groundly instanciated by 8p), i.e., 1. So,

we get the last inequality “= 17,

Now, deducing the empty clause from PU{«ABp, -, ALBp} means
PU{«A;8p, =, AkBp} is inconsistent from a viewpoint of Gentzen style proof
theory. Translating this fact to Hilbert style, we get the fact that
PU{1(A18pA--AAKBp)} becomes inconsistent as an axiomatic formal theory.
Since we already know that (YCEP) ([[VC]] = 1) by definition of [[]]: Bp—2,
in order to get a contradiction,

[[7 (A10pA--~AKBp)]] should be 0.
Sao, [A18p] Aen [[AgBp 11= L.
This is what the above sequence of inequalities asserts. From now on, under this
semnantics, let's define
pure Prolog = LIFE-0
asiBuulean-valued logic programming language scheme for the sake of

conceptual consistency.

§3. Boolean-valued logic programming language scheme LIFE- 1

——a sketch of its procedural semantics—

In this section, as a direct relativization of 2-valued Boolean algebraic
semantics of SLD-resolution, we give a brief sketch of the procedural semantics
of LIFE- 1 . (In the literature, this scheme is called “Boolean-valued Prolog (of
the first kind)™.) The precise definitions and some related topics including both
soundness and completeness are discussed in [11].

First of all, we generalize 2 to a complete Boolean algebra B. Then, choose
a complete filter F over B. Let P be a Prolog program and G=+A;, -, Ax be a
goal. Suppose there is a SLD-refutation R of PU{G} with the sequence of mgus

<81,+, 8p> and the sequence of input clauses <Cj,..., Cn>. Then, we can

interpret this refutation procedure in the following way from a viewpoint of B-

algebra.

I. Thereisamap([1]:Bp—B such that, for any clause C in P,

[[VC]leF,ie, P*:‘E [[C*pll{[C-pll) EF, (D
So, especially in case of C~ =@, (U becomes the form

p:gﬁm[[C*pll € F.

Roughly speaking, this Boolean interpretation means that any clause C in
P represents either a true assertion or a true rule to the extent of F over B with
respect to [[]} : Bp—B. In other words, (Up, [[]]) becomes a B-valued

Herhrand model of P modulo F.

1I. When R ends with the empty clause 00, we naturally get the two Boolean
values
w(B) = A }[[&1853]] A e A[[AxBp]]) i@
p: grven
and
u(R) = Er:iﬁndﬂcﬁﬂlpll JA e ACA [[Cp*Bnpl) w+(3)
where 8 = 8y---8,.

LIFE- | is the class of all languages having the organization < (P,[[1i),
B, F > which use the similar derivation method to pure Prolog and evaluate the

resulting values v(8) and v(R) at the end of each refutation, or more precisely,

calculate
M G 6ipl]) for 1=i=n
pigroand
at each unification step. Here an observation gives us the fact that
v(E) = v(8)
and
v(B) € F @

The latter result is a straightforward relativization (modulo Flof the 2-valued
case discussed in the previous section. Here, let's call a Boolean-valued program
(P, 11)“aF-program”iff (Up, ([1])becomes a B-valued Herbrand model of P
modulo F. Then the fact that
(P,[[]1)isaF-program = v(0)€F

shows the relativized soundness property of Boolean-valued derivation. For
precise relations between this fact and the original soundness property of SLD-
resolution, the reader are recommended to consult [11]. Here a natural question

is “Is there any relation between the notion of F-program and v(R)?"

The positive answer is also found in [11] as a strong soundness property.
Moreover, a variety of Boolean-valued versions of completeness properties are

discussed in [11], [12], [15], too.

&d, ngeralizatiﬂns

The Boolean-valued refutation discussed in the previous section depends
on the syntactical unification in the usual sense, that is,

BunifiesAand B iff AB=B0.
Let’s call this sort of unification with additional cumputatinﬂ:‘ﬁ[g ABpl]

“Boolean-valued unification of the first kind.”

Now, by using []]: Bp—B, we can generalize the notion of the 1st kind
unification and enter a new derivation world where conventional unification
methods have never experienced by themselves. For example, we can define

6 is a higher kind unifier for A and B iff

[[AGp 11 = [[BOp 1] for any ground substitution p for AG+B0, where AD
and BB satisfy a certain unifying condition concerning a relation ~ over the

class of all (not necessarily ground) atoms generated from P. What we really

-10-

perform by employing this kind of abstract unification is that we devide Bp into
a set of classes using both~ and [[]]. In [11], we discuss two simple examples of
this kinds of generalized unification and show that the generalized Boolean-
valued derivation still preserve both the soundness and the completeness
properties in their suitable sense. Of course, the purpose of our employing this
kind of generalized derivation is that we would like to obtain the case that, for a
suitable program P and a goal G, there is a higher kind refutation of PU{G} with
respect to a suitable F-program (P, ([1]), though there is no SLD-refutation of
PU{G} at all. (If there is a SLD-refutation of PU{G}, then there always exists
any higher kind of refutation of PU{G} with respect to any Boolean-valued
program (P, []]).) As a consequence, a higher kind unification can influence
CWA, inductive inference, universal unification, qualitative deduction,
quantitative deduction or Fuzzy inference, semantical negation, paraunification

including non-transitive deduction, ete.

So far, we have been considering only the unification-generalizing
direction starting from LIFE- I which depends on the organization < (P, [[1),
B, F, ~ >, where P is a Prolog-type program, that is, a set of Horn clauses.
Another interesting direetion is the one which generalize the type of P. Coming
soon LIFE-IV belongs to this category. As the basic type of P, we will allow the
set of Horn clauses with constraints which is the most simple but rather useful
generalizing way. However, there is no reason we should restrict our attension
only to those specialization of LIFE-{ whose object-level program P has the type
of Prolog-extension (and so whose derivation kind depends on unification
technique).

Farthermore, we can choose the third route to generalize LIFE- | , whose
signpost shows the notice stated in 9 in section 1. The shortest distance to reach
the destination is to choose finite different Boolean algebras Bj, -, By at the

same time for one object-level program P and consider independent maps [[]li:

-11-

Bp—B; (1=i=n). Any concrete logic programming language belongs to thus
obtained scheme < (P, [[11)), Bi, Fi, ~i >15isn Will be able to be managed by
the meta-level parallel processing method in an essential manner.

The fourth generalization depends on the choice of B. Instead of choosing
B as a set of simple structured symbols, objects or propositions, we can make use
of even more abstract and complex partially ordered
structures as candidates of B. If we employ this sort of complex-structured B, we
ought to n:ga.rls'i the resulting value u(Ey) as a new object to be analized by the
subsequent inferential steps or by object-oriented manners.

Of course, there should be many other possible paths which generalize the
idea of LIFE- 1 within the paradigm LIFE-{). Moreover, we must be able to
exploit totally different frontiers from those cultivated by the tools of logic
programming, because the spirit of LIFE-Q should be as free as human
intelligence. Thus, the truely new formulation of knowledge we can’t capture

today shall be done under the flag of LIFE-Q in future, we hope.

§5. Conclusion

In this paper, we have presented the philosophical background of LIFE-{
as a (language) paradigm for AI. LIFE-Q is the transcendental notation of the
series LIFE-X (1 =X <oo), Each LIFE-X is a logic-oriented inferential
framework having an abstract organization O with an inferential method D
based on O. As discussed in this paper, for some X, O may have the form <(P,
[f 1, B,F,~, >, where P is an object level program, B is a complete Boolean
algebra, F is a complete filter over B, [[]]: Bp—B is a map and ~ is a relation
over the set of all atoms generated from P, etc. Though D is a purely logical
derivation, each computation concerning [[1}, F, ~, etc may depend on other
programming technique. In this sense, each concrete programming language

belonging to a certain LIFE-X will be the fusion of different programming tastef

]2

This is the reason why we employ the terminology “logic-oriented” instead of
“logical”. However, at the same time, this terminology suggests that the hero of
LIFE-X should be the logical and other approaches are byplayers.

An example of our language scheme LIFE- 1 is the language “ProBoole”
being developed at IBM Tokyo Research Laboratories. (See [9] for an
application of ProBoole.})

In addition,
many languages so far exist can be reinterpreted by Boolean-valued te::l;.mique
and so belong tc:.uur scheme LIFE-X for a certain I= X <o, Here, we dare say
that the generalizing methods we present above have not yet exhausted the
possible schemes in LIFE-Q. From the nature, it is the destiny of the scheme
LIFE-X ever to evolve in order to cover new topics in the field of AI and to be
combined with related (language) schemes in the ocean of Al frameworks until a
completely new methodology which exceeds this paradigm will appear someday

in future,

13-

(1]

[2]

[3]
(4]

[51
(6]

[7]

[8]

{9]

[10]

[11]

References
K.A. Bowen and R.A. Kowalski, “Amalgamating Language and Meta
language in Logic Programming,” in : K.L. Clark and S-A. Tédrnlund (ed.),
Logic Programming (Academic Press 1982), 153-172,
M. Fitting, “A Kripke-Kleene Semantics for Logic Programs”, J. Logic
Programming, vol. 2 (1985), 295-312.
M.I. Ginsberg, “Multi-valued Logics”, Proc. AAAT-86 (1988), 243-247.
J. Jaffar, J-L. Lassez and M.J. Maher, “Some Issues and Trends in the
Semantics of Logic Programming”, The 3rd International Conference on
Logic Programming in: E. Shapiro (ed.) Lecture Notes in Computer Science
225, (Springer Verlag 1986), 223-241,
T.J. Jech, “Set Theory”, Academic Press, 1978.
W. Marek, “A Natural Semantics for Modal Logic over Databases and
Model-theoretic Forcing [”, Non-monotonic Reasoning Workshop by AAAI
(1984), 194-240.
C.S. Mellish, “Abstract Interpretation of Prolog Programs”, Proe. 3rd
International Conference on Logic Programming, in : E. Shapiro (ed.),
Lecture Notes in Comptuer Science 225 (Springer Verlag 1986), 463-474.
D.A. Millar and G. Nadathur, "Higher-order Logic Programming”, ibid.,
448-462,
S. Morishita, M. Numao and S. Hirose, “Symbolical Construction of Truth-
value Domain for Logic Program”, Proc. of the 4th ICLP (1987), 533-555.
N.J. Nilsson, “Probabilistic Logic”, Artificial Intelligence, vol. 28(1986),
T1-87.
J. Yamaguchi, “Boolean-valued Logic Programming Language Schemes :
LIFE- 1, LIFE-11, LIFE-Il —Theoretical Background—", NEC, C&C
Systems Research Laboratories, LR-5197 |

-14-

