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ABSTRACT

Any constraint over sets can be represented in terms of a Boolean polyno-
mial ring whenever the family of sets that we consider forms 2 Boolean
ring. In this paper we give a camplete solution method for such con-
straints using Boolean Grobner bases. A Boolvan Grobuer base is a
modification of a standard Griboer base whiclhh we developed to soive

coustraints of general Boolean polyvnomisl rings.

1. Introduction

In constraint logic programming. there are often applications in which we want to write
wemnbership or inclusion of sets such as € and . A set which a compnter can handle
naively is a finite set or a co-finite set{ complement of a finite set). It is important that a
class of finite and co-finite subsets of a fixed gronnd set forms a Boclean ring. Almost any
constraint which we want to write can be expressed in terms of a polvnorial ring over this
Boolean nng which is called a Boolean polyvnomial nng. For example a e X AV X 2 F
are expressed as {a}X — {a}. {3}}Y = 0. XY = X. In order to deal with set constraints
represented in this form, we devised a Boolean Grobuoer base as a canonical form of a given
finite set of Boolean equations and developed a modified Buchberger algorithm to calculate
it. This algorithm gives a complete decision procedure. That is. for a constraint given in
a form of a finite set of Boolean equations, the algorithm caleulates the Boolean Grobner
baze as its canontcal formm whenever it 1= satnisfiable, otherwise 1t tells the constraint is
nnsatisfiable. One of the most important properties of 4 Boolean Grobner base is that it
dors not inelude any variable which 1s not included in the given equations, which does not
hold in the other existing methods([2].[3]). Especially in the case of set constraints, this

property makes solutions very casy to read. We first give a language which is sufficient
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to express our constraints over sets, and show how constraints written in this language
are expressed in terms of & Boolean polynomial ring. Then we give several important our
resalts of & Boolean polynomial ring such as Boolean Griobner bases, and show how they

are applied to give a complete decision procedure for solving constraint written in our

language,

2. A language for set constraints

Suppose we are given a fixed grouud set [ of elements, and we want to write constraints over
(finite or co-finite)subsets of U and elements of ['. In order to represent these constraints,

let us suppose that we can use the following symbols.

ay. g, ay. .. firsteorder constant svmbols for elements

Fleda.aye ... o Arst-order variables for elepents

fiofoo fso o0 ¢ funetion symbaols for functions from elements to elements
.T; a :{1. I;;. oo second-order vanables for finite sets or co finite sets
e Co bt predicate and function symbals for sets

= equality for sets
VoA o= logical symbals
{ The svmbol -7 15 a function syiubol which gives a complement of a set, |

Since we want to deal with ju:::1 two fvpes of Lmiljlrtrﬁ, elements and sets, we ﬁ.*-i:-iigtl. {-‘Kﬁ.{'t]:.'
one type for each sviubol. For example, we can not have an expression such as {a} € X,

The left side of € must be an element, however, {¢} is not an element but a set,

3. Expression of set constraints by a Boolean polynomial ring

For a Boolean algehra (B, v, A, —. 0. 1}. defiue
By =ge (A gV Ayl ey g Ay

Then (B, +.-.0.1) beeomes a commutative ring with a unit. This ring has the following

two properties.

(i} YreB ri=yu



it Y¥rxreB r+r=0
Conversely, for a commutative ring with a unit if we define v, A, = by
IVY=ded THY+T Y, TAY=det T0Y T8 et 1+ 2

it becomes a Boolean algebra. Therefore we can treat a commutative ring with unit which
has the above two properties as a Boolean algebra. We call such a ring a Boolean ring.
For a Boolean ring B, a polynomial f of a polynomial ring B{X,. X;..... X,;] is called
a Boolean polynomial if the degree of each variable of f is at most 1. Using a rule
X? = X for each variable, a set of all Boolean polynomials forms a Boolean ring. This
ring is called a Boolean polynomial ring and is denoted by B(X,. X,..., Xs). In
other words a Boolean polynomial ring B{X,. X,.. ... X, is defined as a quotient ring
BLY, X, .. X,.|/I. where I is an ideal generated by {X7 + X X5+ X5, .. .. id X, 1

A Boolean polynomial is considered as a representative of an cquivalent class.

Lot U7 be the set of all ground terms using ay.az.ay. ... and fi. fo. fa... .. The set of all finite
or co-finite subscts of I denoted by PFO(I7) forms a Boolean algebra (PFC(I7 v, AL -.0,1)
taking a set union U for V. a set intersection 1 for A . a complement operation - for —. the
empty set @ as 0, and [ as L. Any constraint deseribed by the language defined u section
2 . can be expressed in terms of egquations of .F'FL.{ X Y. 2.0 ) using /. ,r""n,. T TR

Four vxnnlpl(\. o e AN |} o z:l 18 ei\‘].‘rré#s:{-:f.-"(.l as follows,

deEXNiIY'UZleoe XY 411242V + 11+ Z)=ae XY 24+ XY 4+ X
= {u} XY Z+XY +X)1 = {r‘r} = {r:}.'f\‘_z + {G}_Y}' +{alX = {a}

{15 abbreviated. as is customary. )

4. Boolean Grobner hases

We antline the methad to solve equations of s general Boolean polynomial ring by Boolean
Gribner hases, which is a base of our solution method for set constraints represented in
tertus of PPO{UW XY, Z.. ... The reader can be referred to [4][7] for more detailed

cleseriprion,

Finite multi-sets of variables are called power products. which are denoted by meta-
svinhols n.d.~..... Note that in any polvnomial ring a polynomial can be represented

As
g + dyevy + o0 T+ g
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with elements ag, @y..... ag of a coefficient ring and power products oy, ..., 6.

An ordering > over power products s called admissible if 1t satisfies the following prop-

erties,
(1} He 23 then a > 4,

(ii) o = J, thew avy > By for any power product v, where ey, v are power products

defined by multi-set unions of o and v, 7 and 5 respectively.

There are several examples of total admissible orderings over power products, bascd on
a lexicograplic ordering or total degree ordering. From now on, we fix a total admissible

ordering = over power products.
aa =3 1s an expression of a Boolean polynomial whose greatest power product is a.

For vach Boolean polynomial aa & o, we define a rewriting rule =40, over Boolean

polyuomials as follows.

For a Boolean polynomial o — v 4 ha 3, if ab &£ 0, then ¢ = .4 ¢'. where @' is a Boolean

polyvnomial given by o+ M1 1 alad +abde.

The soundness of this rewriting rule is explained as follows. Firstlv, note that bad .

Bl + alad + hand. Secondly, since an = & = 0 unplies ao = ¢, multiplving ab? from
Botly sides. we liave baad = abdo, Therefore under the condition aa & 4 = (0, we have
bov A = b(1 4+ aja 3 + ahdo, The reader who is familiar with the standard Grobner base (for
a polynoniial ring over field or Euclidean ring){1], should notice that our rewriting rule is
el different from its vewriting rule. This is explained as follows. Let o, d be elements of
Bsuch that ed = 0.0 # 0.d £ 0. {1 +0)X = 0, then dX = d{14¢).X = 0. However since
B is not a field. we cannot rewrite dX to U by a standard rewrite rule by a substitution.
Under the assumption of = 0, (1 + ¢)d = d # 0. Hence. we can apply our rewriting rule to

_E:PT !’Ir-..’ﬁ.- "i"“ bl (I,

Let £t be a set of Boolean polynomials. If there exists a Boolean polynomial ¢ such that
. . . - .
&= v, we write o =5 oo, The transitive reflexive closure of = 4 is denoted by => . That

15 0 =, 0 means ¢ 15 Tewritten to o by applyving = g finitely many{possibly 0} times.

Theorem 1.1

For each set of Boolean polynomials {2, + 5 has a termination propesty,
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Definition 4.2 Boolean Grobner base
Let I he an ideal of a Boolean polynomial ring B(X;..... X, ). A set ¢ of Boolean poly-
nomials is called a Boolean Grobner base of [ if it satisfies the following properties.

(i} GCI

(ii)  H f = glmodlie f+g € I), there exists a Boolcan polynomial h such that f R

and g :*?f,' h.
(111}  Each ¢ € G cannot be rewritten by =, for any g' € G which is distinet from g.
(iv) The greatest monomial of a Boolean polynomial of & i1s distinet each other.

In the definition of a standard Gribner base, ususlly the property (111} 15 not included. We
require 1t in order to have the following property 4.3(iii). The property (iv) is also needed
for this, although which is a direct conclusion from the property (iii) in case of a standard

Grabner base,

Properties 4.3
(1} The ideal generated hy G is I,

(ii}  The constraint given by I, that is a set of equations {f = 0|f € T}, is unsolvable if
and only if the Grobuer base of I includes & non-zero comstant(a non-zero element of

B

(itil  The Gribner base G of I is unigue. Henece, we can consider & as a canonleal form

of the constraint given by I,

We give several definitions needed to deseribe an algorithin to get a Booleun Grobner base.
For & Boolean polvnomial a0 o, a Boolean polynomial ao + ¢ is called its coefficient
self-critical pair denoted by esefea & @) and a Boolean polynomial Xeo + ¢ for each
vartable X iu o 15 called its variable self-eritical pair. For Boolean polynomials aay &g
aned b5 o such that ab # 0.9 # 1, o and 4 do not include commeon variables, a Boolean
polvuomaial bdg + aaw is called their eritical pair. For example. a cocfficient self eritical
pair of a XY Z 3 YW is (ah + bYW, There are two non-zero variable self-critical pairs.
namely AXY 4 YW and bY ZW + 5. A eritieal pair of e XY Z + 02 and ¢ XZW + 1
such that ar # 0 is a}” + beZW. For a finite set of Boolean polynomials i and a Boolean
polynomial ¢, the set of all possible eritical pairs between ¢ and elements of R and variable

self-critical pairs of @ iz denoted by CPla R).

For @ finite set of Boolean polynomials 2, add all polynomials whose greatest power

products are same and put them together to form a set of Boolean polynomials denoted
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by Gluc( R). For example. let

R={aXY & X,bXY & V,bXZ & X, XZ® Z}, then

Glue(R) = {{a+ XY S (X + V) (b+ 1}XZ 0 (X + Z)}.

For a set of Boolean polynomials R and a Boolean polynomial ¢, ¢lg denotes one of

irreducible forms of ¢ by =g.

Theorem 4.4
For a given finite set Ey of Boolean polynomials, an algorithm to get a Boolean Grobner

base for an ideal generated by Ey is given as follows.

imput £« E, R« §
while E # @
choose ¢ € Eand & — olg ... ia)
ifo'# 0 then E—(E—{o}il{cscle")}
for everv a L € R
if aa = &
then F «— FEU{z+ v} and B e— R = {an &}
else B —— (R — {oa T 0 p U {ea & (v gugey 1
end-if
end-for
E+— EUCP¢" R)and R+— RU {2}
else E +— [E ~ {0}
end-if
end-while
output Gluetky L (h)

The emtpnut (Flue] B) of (b) 15 the desired Boolean Grobner base. The choice of an elemnent

of Foat (a) must be fair, that s any element mmst be picked up at some stage of (a).

An element of a polynomial ring B(X,,..... X ',-,, N ST 1,0 can be also considered as an el
ernens of a Boolean polyvnonaasl ring (B{X,.... .- AR T ST ¥, ) with variables Y7, .. .. Yo

and a coetficient Boolean ring B{X..... X, ). For exauple, a Booleau polyuowial
o XYV 24 NZ YW+ XY + X
in a Boolean polynomial ring B(X. Y. 2. W), 1s represented
(aXY + X)Z 4+ {6 W +{XY + X))
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as an element of (B{X, Y ))(Z. W), and
{aZ + VXY +(Z + L)X + (W)Y

as an element of (B(Z. W)X, Y), where a.b are elements of B. In the following, (B(X,.
XLy, Y, ) is abbreviated by B(X 1. .... X )(Y.. ... Yo} The next result is

very important for onr solution method for set constraints.

Theorem 4.5

Let G be a Boolean Grobuer base of a finitely generated ideal T i BIX, ..., X, )Y,

LY, For a substitution # of elements of B to variables Ay, . X ... 8 denotes the
set of all g# for g £ G such that {an )8 # 0 where o is the greatest power product in g and
a 15 its coeffieient. Then G# forms a Boolean Grobner base of a finitely generated ideal

I8 iu a Boolean polvnomial ring B{Y;.. ... ¥, ). Moreover, for any Boolean polynomial
feBlX, .. .0 X Y. . Yo 0. we have ( fA)[qe = ( fle)d.

5. How to solve set constraints

For constraints described by the langnage of section 2, we give a complete solution method
using Boolean Grobner hases, Note thal auy constraint cau be represented as the following

formn.

TLg
VH! {H,-=AH_’. H! s an equation or disequation. )

=1 =1

It sutbices to consider solving the following constraints consisting of equations and disequa
|

t1o1s.

i 7. [ aud X denote a finite number of first-order variables, terms which begin with function

svinbols aud second-vrder variables respectively. )
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This is transformed to the following using first-ordered variables v, ..., ym which are dis-

tinet from 7.

FIELX)=0

! F i f.%)1=0
{n} = {n}G(F F. X}

| {um) = (4m}Gm(. 1K)

Substitute {r;},{f,;} and {yg} by distinct second-ordered variables S,, T, and Y}, which are

different from X. We get the following.

( FIET.X)=0
) FIUS.T.X)=0

G5 T.Y.Xy=0
G S T.V.X1=0

It the Boolean polynomial ring P¥CU 1 5. T. Y )( X}, caleulate its Boolean Grobner base

—s

(HyS.T.Y. X, H(5T.V.X) H(S TV

By resubstituting 5. 7,. Y, by {a:}, {f, ], {wa | we get the following equations.

By Theorem 4.5, 3t 1= satisfiable if and only if H'[.F,LF.E} = 0 has a solution for the first-

order variables 7, . Moreover, for any such solution & 4

Hia fla. . 5. X1=0
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iz a canonical formi(ie. a solution} of the originally given constraint. Before describing how
to solve H'(F, f.§) = 0, consider the cquation, {r}{a} + {y}{a} = 0. For the variables
r.y. there are the following 5 possibilities. (1) r =y =a (i) r =y F a (i) a =5 # y (iv)
r#Ey=a(vie#FyrFay#Fa {rHal+ {y}{a} is equal to 0 only in the cases (1).(i1)
and (v). It is equal to {a} in (iii) and (ivi. That is, {z}{a} + {yHa} = 0 is equivalent to
(i) or (i) or (v). It is easy to generalize this obervation to get the following formulation of

H'(Z. f.q =0
H'{7.fi =0\ A\GL
=1 =1

For each j.i,G? is an equation or a disequation. Each side of the equation or disequation
is cither a variable among 7.y, a term among f or a first-order constant svmbol which
appears in H'(7, f.ij) = (. Hence, a solution of H'(7. f.7) = 0 is nothing but a nnifier of

Ny G for sowe @

The above method is the most naive approach, In onr implementation. instead of solving
H'Z. [ = 0 directly as above we caleulate a Boolean Grobuer hase of H(S. 1Y | in

the Boolean polvnomial ving PP (01 8. T, V). and use it to aimpify Hyd ST V. X). ...
Hi S T. Y. X before resubstituting 5. T, Y by {4 fuehs

Ini the example of our program in the appendix. inchudef {s}.a" /e Lmemberi f{x1.x2).a/\ b,
member{ fl«1.g(22)1,c/\~b) and member{flex)b) mean (<} 2 o Ue, flogorz) € an b’
Flziogizadl & e b oand fle gyl £ b respectively, !_Lxl.x?._':.'.r.l.;ﬂ?] 1= a list of first-order

variables and [a.b.e] is a list of second order variables. The program ourputs a Boolean

Grobuer base and conditions to be unified. In the example, the unifier is { r) — =z
ro =gl =2 s = floroglzall leaywh #F (a9l i}, The ipstanciated Boolean Grobner hase

by this unifier 1= then {« = {Fizpegtze b o = { flz iz} ffle oy} + {flz gizal)bh
= | fle. g”} . The last equation means fle.y) € boand gz € b,

We can extend our method for more complicated constraint usivg quantifiers, see [8],
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APPENDIX

- setgbl[include({s}, a'/c) membar (f{x1,x2},a/\"b),
member{f{zl,g{z2) ), e/\"b],
member{f{e,y),b}],[=,x1,x2,7y,21,22],[a,b,c]).

GB =
(1+{s}+{f(21, g(22) )1} e = {f(21,g(z2))}
(1e{aks{f (21,2233 Na = {f(x1,22))}
({f0a,y e {t(x1,22) 3+{2 (21, 2(22) ) 3+ {1 (x1,x2)3/\{2(21,g(22) )20 \b = {f(e,y)}
{fla, ) {t(z1,gl=20)F = ©
{ak/ {2021, g022)0} = {2(z1,g(=2)}}
{2(xt,x2) 2\ {t(e, ¥y} = 0O
{akM{f{x1,x2)} = {£(x1,x2)}

Unify
s = 1(=1,g(=22))
g = f{x1,x2)
Tla,y) =\= (=1, gi=2})
£(x1,22} =\= f{a,y)
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