TR-677

A Buchberger Algorithm for Distributed Memory

Multi-Processors

by
David Hawley

August, 199]

© 1991, 1ICOT

Mita Kokusai Bldg. 21F (3)3456-3191 -5

" :D I 4-28 Mila 1-Chome Telex ICOT J32964
Minats-ku Tokyo 108 Japan

Institute for New Generation Computer Technology




A Buchberger Algorithm for Distributed Memory Multi-Processors

David J. Hawley
institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108 Japan.
hawley%icot.jp@relay.cs.net

Abhstract

Grobner Bases are 2 mathematical tool that has received considerable attention in recent years.
Since the Burhberger Algorithm for computing shese objects is expensive in both space and time,
several attempts at parallelization have been made, with good resultz for shared-memory multi-
processors, but oot for distributed memory machines. We present an algorithm that delivers sub-
stantial speedups on distributed memory multi-processors, and an incremental version of the algo-
rithm which s suitable for use as the solver in a constraint logic language

1 Introduction

Lecently, there have been several attempts made to parallelize the Buchberger algorithm, with
generally disappointing results[6. 7], except for shared-memory machines[10, 3]. Parallelization has
been tackled at two levels: a coarse grain parallel rewriting of the 5. polynomials andfor testing for
suhsumption and critical pairs, and a fine-grain rewriting of single S-polynomials. The feasibility
of the latter seems restricted to shared-memory architectures. An interesting concurrent logr
programming {data flow) approach implemented on Transputers was reported by Siegl [B], with
good speedups on the small examples shown, but absolute performance was only fair,

We are interested in wsing Grobner Bases as the core of constraint selvers [or coneurrent con-
straint programiming languages.! In this application, the input set of palynomiale is not given at
the start of the computation, but 18 generated concurrently by some other process, possibly de-
pending on the intecmediate sets of basis polynomials, e this paper, we give distributed algorithms
suitable for two abstractions of this application: the static case in which the complete set of input
polynomals is available at the start of the Grobner Base calculation, and the dynamic case, in
which the input polynomials are senl st arbitracy ntervals from some processor(s).

We begin by reviewing some terminology. The standard definitions are augmented by some
usetul defimgions from the term-rewriting sysiems Literature. Let there be a certain ordering among
menomials and let a system of polynomial equations be given. An equation can be considered a
rewrite Tule which rewrites the greatest mencrmial in the equation to the polynomial consisting of
the remaining monomials. For example, if the ordering is lexicographic, a polynomial equation,
=X+ H=A, ran be considered as a rewrite rube, & = X = T 4 A Two rewrite rules Ly — f;
and Ly — Ha, of which £, and Ls are not mutually prime, are terned o crstical pair, since the least
cormnon multiple of their left-hand sides can be rewritten in two different ways. The S-polynomial
of such a pair is
lemi{ Ly, Lg)

Ly

IC!'E'II:L]_ . Lz]
1 Lo

S-polv(L,. L.} = R - Ry

Ome such langueage, GIMCC[4), is under development by the constraint logic programming gronp at [OCY]

N [



A rule Ly — Ay s said to subsume rule L. — fs if Lo 15 a multiple of L. Tmally, Grobner
Bases can be characterized by the property that for all pairs (P,Q) in the given set of equations,
S-poly( P Q) rewrites to zero.

There are two main sources of polynomial-level para”ﬂ“am in the B1_|r.|'||:n=.rgﬂr ﬁlgmithm, the
parallel reduction of a set of polynomials, and the parallel cheeking for subsumption and eritical
pairs of a new rule against the other rules. Sinee the latter is inexpensive, we must eoneentrate on
parallelizing the coarse-grained reduction component for shared-memory architectures. However,
since the convergence rate of the Buchberger Algorithm is very sensitive to the order in which poly-
nommials are converted into rules, an implement ation muast be careful to select “small” polynomials
early for inclusion in the developing hasis. The key idea underlying the algorithms in this paper
is that of sorting a distributed set of polynomials, and we will use the “asynchronous enumeration
sort” [1, pp. 178-181] as our point of departure.

2 The Algorithm

We begin by considering the “asynchroncus enumeration sort” algorithin, which is suitable for
distributed memory machines, In the sort algorithm, each processor has a complete set of the
input items, and a copy of the pwnership function which 18 a many-to-one funetion from items
to processors. Each processor independently compares the items it owns to all Lthe other items in
order to determine the items’ ranks in the sorted sequence. The method for outputting the items
in sorted sequence chosen, because of its applicability to the Buchberger algorithm, is that cach
procesaor listens to the output of all the other processors, and cutputs its equations when the count
reaches the respective ranks

The ﬁﬂftihg .a|g‘nr'|'r.]'|m " .a.f‘lﬂ.[ﬂ.r‘-l_‘l as follows. Each processor J:unt,ai.nﬁ a mnple[e sel of ba-
sis polynomials (called rufes) and non-basis polynomials, and a load-distribution function which
logically partitions the polynomials by specifying which processor “owns” what polynormials. Lhe
position in the output (rule) sequence of each polynomial s caleulated by ity owning processor
based on an associated key (for example, the leading power product) which is identical in every
processor, and does not change during reduction. Each polynomial is output when it becomes the
smallest one remaining, The critical-paies and subsumptions are calculated independently by each
processor, so that the processors’ sets of polynomials stay synchronized. As a background task,
each processor rewrites the polynomials it owns, starting with those lowest in the sorted order.
lermination of the algorithm is detected independently by each engine, when the inpul equation
stream is closed, and there are no non-basis polynomials remaining.

The dynamic problem requires more complex. control, in order to prevent the arrival of input
polynomials at different times at each processor from causing processors to have inconsistent views
about the sel of non-basis polynomials and possibly about the output (rule) sequepce. Figure 1
shows the algorithm for the dynamic case. This version requires additional information about the
basis and non-basis sets of each engine to be made known, eventually, to every other engine.

A sertous drawback to the algorithm is that it cannot take advantage of “magic polynomials”.
That is, since the key which determines the cutput position of a polynomial is fixed before reduction
begins, the key 15 only a rough approximation of the actual preferability of a palynomial after
reduction. A possible refinement is to resort the set of polynomials within each processor inside
the same “output slots” owned by that processor.

Since the result for the static algorithm is straightforward, and a special case of the result for
the dynamic algorithm, we will only prove correctness for the dynamic version. We would like to
show that the processors have the same view of the output (rule) sequence.

Lemma 2.1 For every t = 0, exactly one processor outputs to Channelft].

FProof by tnduction on . Assume § = 0. Siace I¥; 15 upd'r:tﬂf u:ncﬂ'y when £ 15 mmeremented, we
bkuve By = By =10 and F, = K;. We call a processor ¢ synehronized of 8 = Ki: only symchronized
processors can outpul (line 18] By definition, & C ﬂJ Ky, and so for all synchronized processors



comiment
5 = stream of polynomials.
8 = subset of § that engine ¢ knows has been received by every engine.
B; = subset of B, that enginc i knows has been received by every engine.
Code to maintain & and B 15 omitted.

i1 do =1, N~
(2 spawn engine(1,5.Channel) on processor i

i3] engine( [ 5. Channel)

(4} = Pi=R =0
(5) =0 t:=0

(63 do forever

(7Y choose

(&) i guard receive X from 5
(9} B, =B

(10) do K; = K; U{X}, P = BU{X)

(L1) guard (p= miﬂ?ﬁ-%% is irreducible w.r.t, B,
[12] wip) =18 = A

(13) do output pto UI!m.uan[E-i-—-l—]

(14) Py = Fiu{spolyip.q) | g € B} — {pl
(15) H, = B'.U'[?}]

(18] guard receive p lrom Channel[t++]

(17) do Py = Fy U {spoly(p.q) [ g & Bi} = {p}
(18] B, = B, U {p}

(19 guard (L= {g |y € F.wlq) =i pis reducible by B;}) # @
(20 do Hewrite L by £,

{21) guard E =056 cleed

{22) do vutput By to Channel[t]

(23 stop

i24) endchoose

(28] enddo

*The choose (zuard Cond do Artion)® endchoose construct specifies a non-deterministic guarded
choice. Execution will suspend nntil at least one of the conditions obtains, and then the aclion corrspond-
ing to one of the gnards whose condition obtains will be executed; the testing of guard conditions has no

ohsprvahble effect antil an associated action is chosen. .
The algorithm for she static problem 15 ohtained by changing all references to the stream 5 to the set

of input polynomials P, replacing line(4} with “F = P, and deleting the framed code.

Figure 1: Algorithm for Dynamic Problem



Ny = K =1, K;. Therefore there 1s a wmigue maniwum p € By Let m = wip). If processor m
15 synchronezed, them if oulpuis p as soon as p has been fully rewridlen, otherwise o wedls unfel
synchronizadion (wheek wdl evenbually socur, of 5 ts fimede ). fn cother casc, s meremented. Afler
output, Ky will net change untid By, = B, (hee 9), whick alse freezes the value of K. We are
them guaranfeed that no [olher) engine can oulpul unldl receiving p, and imerementing 1,

Assume 8 =1, > 0. Now F; — K, are the rdentical sefs of critical pairs from the first t, rules. We
argue similarly to He base case fo oblam the required resull,

Cﬂmﬂh‘l‘}' 2.1 Fach ProCESSOT TECInes the same EEQuence r.!_f rade s,

Theorem 2.1 Forallp.g € 5, S-polypyg) rewrtles to zero,
The proaf follows casily from the above corollary.

3 Implementation and Results

The dypnamic algorithm was implemented on the Mult-P5S1, a distributed-memory multi-processor
designed as a development platform for operating systems and applications based on concurrent
logic programming concepts.  The vser-level language, KLI[0. 5], is a data-flow language that
executes at 128 K reductions/second on a single MMulti-PST node

The central data structure in the implementation is a sorted list of items of work, comprising
input polvnomials, eritical pairs. and requests to simplify rules. Prioritics correspond to the key
associated with cach polynomial. In the current implementation for rules and input polynomials
we use the largest power product as the key, and for S-polynomials we use the largest power
product after canceling the largest power pradurct of each of the two parent polyoomials. The
complete execution of one piece of work is broken down into stages, for example, a critical pair is
first. converted 1o & S-polynomial, rewritten, and finally normalized. Based on this breakdown, we
pipeline the execution of the entire list, giving us maximwm overlap between communication and
local computation. Although this implementation only deletes critical pairs arising from subsumed
rules, a full implementation of Buchberger's criteria for filtering wseless critical pairs should also be
possible,

The unplementation of the & and B variables in the dynamic algorithm is based on ACK
[acknowledgment) messages. However, the additional latency introduced applies only to the accep-
tance of new input polynomials. and the number of B related ACK messages can be decreased by
updating the B variables less frequently. Information about processor load is piggyvbacked onto the
ACHK messages, in order Lo construet the w load-distribution function dynamically (being careful
ter build it identically on each processor).

Finally, the caleulation of the coefficients of non-basis polynomials is improved by delaying
until a rule to rewrite the associated power product has heen found. At that point, the coefficient
expression 1s evaluated using divide-and-conquer, and compared to zero. This strategy results in
several fuld speed improvements in some examples.

Fxample 1 PE 2 PE 4 PE 6§ FE aPE 12PE 16 PE
Runge-Kutta 1 2.335 1.841 1.493 1.704 1.334 L.514 1.751
Katsura 3 B.HAd A008 3.748 J.350 1.369 3.297 3463
Little Trinks 49.710 23.502 22086 14897 12351 14469  15.6R2
Big Trinks 188.641 94428 B4.028  6T630 46512 45070 45106
katsura 4 2000056  1520.289 T25.004 3TT.047  A01.324 243900  209.529

Table 1: Absolute Performance of Dynamic Algorithm (sec)



The benchmarks presented here are from Boege et. al.[2], with Katsura 4 modified to use total
degree reverse lexicographic ordering, as do all the others. Except for Katsura 4. the speedup
curve (Figure 2] eventually becomes flat, reflecting the limits of polynomial-level paralielism in
these examples. The absolute performance of the algonthm is only fair. However, reimplementing
the polynomial and rational arithmetic in a standard von Neumann language should bring about
a 1-2 order of magnitude performance improvement in the bulk of the computation (measured
at over #07), without affecting the parallelism. Although reimplementation would change the
ratio between computation time and conenunication t.imelv" latency, we conjecture a significant
unprovement in overall performance,

4 Conclusion

This contribution of this work is the parallelization of the Buchberger Algorithm on a distributed
memory machine exhibiting snbstantial speedups and reasonable performance. Reimplementation
of the low-level routines in a von Neumnann language should substantially improve the latter. The
algorithm uses broadcast messages exclusively, and it would be interesting to investigate its per-
forrmance on a hardware and software platform that supports broadcasting efficiently.

Speedup
124 .
104 ’.-'
Katd
8
B—
4 *BTrinks
T Trinks
v THata
24
- T T T T T 1 FI'K‘-I
- 4 a & 12 18 # PE
Figure 2: Speedup of Dynamic Algorithm
References

[1] 5. G. Akl Parallel Serting Algorsthms. Notes and Reports in Computer Science and Applied
Mathematies. Academue Press, 1085

[2] W. Boege, B. Gebauer, and H. Kredel. Some examples for solving systems of algebraic equa-
tions by calculating groebner bases. . Symbolic Computation, 2(1):83-98, 1986,

[3] E. M. Clarke, D E. Long, S. Michaylov, 5. A Sehwab J. P. Vidal, and 5. Kimura. Parallel
Symbolic Computation Algorithms. Technical Heport CMIU-U5-80-182, Computer Science
Department, Carnegie Mellon University, Oet. 1990

[4] D Hawley and A. Aiba. Guarded Definite Clauses with Constraints - A Preliminary Report,
Japan-ltaly-Sweden Workshop on Logic Programming and Parallel Processing, Stockholm,
Sweden, Aug. 1990,



[5] K. Nakajima, Y. Inamura, N. [chiyoshi, K. Rokosawa, and T, Chikayama. Distributed imple
mentation of KL1 on the Mu]T.i—PSU"L"?. In Prﬂc:tﬁings D_f ICLP AR, pages 436-451, 1088,

[i] C.G. Ponder. Evaluation of "Performance Enhancements’ in algebraic manipulation systems.
InJ. D. Dora and 1. Fitch, editors, Computer Algebra and Parallehism, pages 51-74. Acadzmic
Press, 1980

[7] P. Senechaud. Iimplerentation of a paralle]l algorithm to compute a Groboer basis on Buolean
polynomials. In J. D. Dora and J. Fitch, editors, Computer Algebra and Parallelism, pages
159-166. Academic Press, 1990,

[8] K. Siegl. Grobner Bases Computation in STRAND: A Case Study for Concurrent Symbolic
Computation in Logic Prograneming Languages, Master's thesis, CAMP-LINZ, Nov, 1980

[9] K. Ueda and T. Chikayama. Design of the kernel language for the parallel inference machine.
Cemputer Journal, Decernber 1990, To appear.

[10] J. P. Vidal. The Computation of Grobner bases on a shared memory multi-processor. Technical
Report CMU-CS-50-163, Computer Science Department, Carpegic Mellon University, Aug.
1960,



