ICOT Technical Report: TR-676

TR-676

Exploiting Fine Gratn Parallelism in
Logic Programming on a Parallel

Inference Machine

by
M. Sato, K. Kato, K, Takeda & T. OQohara (Oki)

August, 1991

© 1991, ICOT

Mirta Kokusai Bldg. 21F (03)3456-3191 ~5
I :C] | 4-28 Mita 1-Chome Telex ICOT J32954

Minato-ku Tokyo |08 Japan

Institute for New Generation Computer Technology

Exploiting Fine Grain Parallelism in Logic Programming

on a Parallel Inference Machine

Masatoshi SATO, Kenji KATO, Koichi TAKEDA, Teruhiko OOHARA
Oki Eleetrie Industry Co., Ltd.
masatosi@okilab.oki.co.jp

Abstract

Parallel inference machine {PIM) svstems are being developed in the Japanese FOOCS project. A FPIM pilot
machine, PIM fi, is now being developed. This paper begins by describing the main characteristics of the target
language KL1, which is 2 concurrent logic programming language. The PIM /i processor architecture which is an
amalgamation of RISC, tagged architecture, pipelining and LIW approaches is proposed. This amalgamation
is Ltuned to KL1's main charactenstics such as high (requency of branches, By this amalgamation, the PIM /i
processor can exploit both temporal and spatial parallelisms from the execution of the target language KLE.

A language system and a simulator for this architecture have been implemented and some simulation results

are reported in Lhis paper,

1 Introduction

As part of the FGCS project[7], we are developing parallel inference machine (PIM)[9] systems based on & logic
programming framework. The PIM svstems consist of the kernel language (KL1)[8] as a target language, the
parallel operating system (PIMOS)[8] and the PIM hardware architectures. KLI1, which was designed based on
GHC{16], is a cancurrent logic programming language like Parlog[l] and FCP[15). The merit of using a concurrent
logic programeming language is in its imphicit concurrency feature. Without explicitly specifying in the program,
concurrency of the program is exploited autematically.

Several hardware architectures are now being developed for the PIM machine, The PIM/i is one of the PIM
pilot machines. The PIM /i has a hierarchical structure with a cluster concept|], as shown in Figure 1. Each cluster
consists of eight processing elements (PEs) which communicate through shared memory (SM) over a commen bus.
The clusters are connected by a network through a network controller (NC). Each PE includes o processing unit
(PU}ytwo caches (a Code Cache Memary (CCM) and a Data Cache Memery (DCM)) and twe local memories (a
Local Code Memery (LCM) and a Local Data Memory (LDM)).

Our PIM/i design goal is to realize very high execution performance for a knowledge information processing
system. To achieve this goal, it 15 essential to extract parallelism both in coarse and fine grain. In coarse
grain parallelism, we have studied the KL1 execution model for tightly coupled multiprocessor{0, 14]. The major
LT implementation issues are scheduling the processes on the available processors at run time, load balancing,
synchronization between processors, memory contention when processors share data, and communication delays
between processors. Coherent cache[l3, 5], which has been optimized for KL1, plays an important role for the

extracting of this parallelism.
This paper focuses on the processor architecture which is enhanced to expleit fine grain parallelism. The

L L PEi
P == === === = = 4 F o= = = = - - - = PU
| I 1 | |
FEF 1 {PEO| |PEL FPET| |NC| | I | I .
| [ro ' DM LGM'
f (| I 1 |
e B I By Lo |
I [(N I I I 'DCM GCMJ
I SM (I I I I
I Clwster-0 _: L lus l__r—_l,l :_Glgi ter- 11:
{a) PIM/i Configuration {b) PE Configuration

Figure 1: PIM/i Configuration

PIM/i processor architecture proposes four kinds of approaches for extracting instruction-level parallelism of logic
programs. RISC, tagged architecture, pipelining and LIW approaches are amalgamated and balanced in the
PIM/i processor. In other logic programming language, the VLIW([4] approach was adapted in parallel execution
of Prolog[3] and RISC approach in that of FCP[10]

In Section 2 of this paper we will describe a brief overview of the main characteristies of KL1, The processor
architectures for extracting fine grain parallelism of KL1 are discussed in Section 3. This section presents the
instruction set and the configuration of PU. The process of translating KL1 programs into PIM /i machine code is
outlined in "?oe-:tmn 4, nmi i Section & we evaluate the PIM/i processor architecture, based on simulation results,

Finally, in Secuon 6 we dls-:us& our conclusions and the status of the project.

2 KL1 and KL1b

2.1 Target Language : KL1

KL1 is a parallel logic programming language based on GHC. A KL1 program is a finite set of guarded Horn
clauses of the following form:
~Gl,..,Gm|B1, .. Ba(m>0,n > 0)

where H, Gi, and Bi are called the clanse head, guard goals, and body goals. The operator, |, is called a
commitment operator. The part of & clause preceding | is called the passive-part (or guard), and that following it
is called the active-part (or body).

R,cail_urtion of a KL1 program, like that of a Prolog program, proceeds by reducing a given goal clause to the
empty clause. This reduction proceeds by attempting unification between a given goal and a clause head. I
unification succeeds, reduction of the guard goals are attempted. If the guard succeeds, the reduction “commits”
te that clause. After that, body goals are reduced.

The major differences between KL1 and Prolog are: (1) KL1 has no backtrack meehanism: (2} the execution
ul KL is done by the heap base operation not’ the stack base operation; {3) unification in the passive parts has -
the synchronization mechanism in KL1, i.e., it is restricted to be inpul unification only. If sutput unification is
attempted to the caller's variable in passive parts, the call potentially suspends until another process binds that

variable,

2.2 Hehavior of KL1b

Clauses in KL1 programs are compiled into a sequence KLIL[12] instructions just as Prolog is compiled to the
WAM([17]. A KL1b code for a set of candidate clauses includes passive unification instructions for head and guard
parts, active unification instructions, argument preparation instructions and goal fork instructions for the body
part.

Typical passive unification instructions begin with dereferencing of argument. If it is not instantiated, the test
for this clause is abandoned. Then execution proceeds to the next candidate clause. If no clause is selected and
there are variables that cause the suspension, the current goal is linked to these variables, setting the tag of the
variable by HOOK, to realize a non-busy waiting synchronization mechanism,

If a clause is selected, the bady part of that clause is executed. Active unification instructions are performed
for four kinds of actions depending on the argument data type: (1) in case of an uninstantiated variable without
suspended goals, the value of the argument is assigned into that variable; (2) in case of an uninstantiated variable
with suspended goals, these suspended goals are resumed before assignment; (3) in case of an instantiated cell with
a target tag, the unification is performed; and (4) otherwise, the unification fails. Several goal fork instructions
are provided to push and pop a goal context to and from a ready-goal-stack.

Consequently, most instruclions in KL1L inclede run-time data type checks and branches for the prcccding

actions.

3 Architecture for KL1

3.1 Design decisions

The characteristics of our target language KL can be summarized in that the branch frequency is very high,
ezpecially a conditional branch by data type. From these characteristics, the PIM/i processor combines several

new architectural technigues into a single design to reduce the branch penallies,

1. RISC Architecture

RISC approach has many possibilities Lo optimize the codes in their generations by the following arehiteetural
techniques. RISC architecture also takes advantages of VLS implementations. VLS is essential for practical
and large scale parallel systems. Our RISC approach is based on the following design principles. (1) An
instruction is reduced to a simple instruction (2) which can be executed in a single machine cycle at the peak
execubion rate. (3) Only reads and writes access memory; all others perform register-register operations.
(4) High-performance processor requires care in the design of the entire memory hierarchy. We enhance the

memery system to support local memories and caches which are split into for instruction and data.

2. Tagged Architecture

Tagged instructions are useful for implementing KLL, because the data type checks and the value calculations
can be executed by each of the operation units in one eycle. 40 bits are assigned for a tagged word. In the
data, eight bits are used for a tag and 32 bits for a value. All instructions are 40 bits long correspending

with the data size.

3. Pipelining
To make convenient use of hardware parallelism, we Introduce pipelining. However, the instruction sel must
be carefully tuned to support pipelining. We adopt a three-stage pipeline not only to control pipeline stalls,
but also to reduce pipeline branch penalties at the dynamic behavior of branches. The three stages are:

(a) F (instruction fetch) Stage

(b) E {execution) Stage,
including instruction decode, register fetch, execution and effective address caleulation.

(e} W {write back) Stage.

Our three-stage pipeline can be explained in comparison with a five-stage pipeline (IF:instruction fetch,
IDanstruction decode and regisl.er fetch, EX:execution and eflective address ca.l:ula.tinnl MEM:H|E|“nr}r ac-
cess, WH:write back) which is discussed in [11].

There are two differences between our three-stage pipeline and the five-stage pipeline. First is the MEM
stage. In [11], the MEM stage is used for memory access or branch completion step, Tn PIM/i, memory
access is done by the separated instructions, which are the address generation instructions and the memory
access instructions, using the same E stage of a different cycle. The branches are realized by another field,
which is discussed in the next item. This separation makes clean the data hazard. Another difference is
both the ID and the EX stage are merged into an E stage, because the F stage takes much time to access
the outside of PU chip compared with the inside operations.

4. LIW Architecture

To make use of Lhe 40 bit instruction field effectively, we introduce an LIW architecture. LIWs use multiple,
independent functional units via multiple operations packaged into one instruction. A PIM/i instrusction
might include a Sequencer (S) operation , a Memory (M) operation and a Processor (P) operation. These
separated operations allow to be issued the processor operation and/or the memory operation at branch
points. The LIW architecture is net the only way to extraet low-level parallelism but is a siuple and

effective way to design the instruction set compared with the full collection on branch behaviors.

3.2 Instruction Set

1. Instruction Types

An instruction, which is 40 bits wide, has a set of operations, ie, 5, M and P operations. The feld size of
the S operation, 8, 16, or 40 bits, is altered by its operand size. The field sizes of S and M operations are
fixed at 8 bils and 24 bits respectively. Figure 2 shows three kinds of instruetion types.

o TYPEL (5+M+P)
TYPE1's S operation is an & bit branch operation including 6 bits of the PC-relative field. The remainder
iz assigned to both a M operation and a P operation.

« TYPE2 (5+P)

TYPE2's 5 operation occupies 16 bits. This field includes either the condition field (8 bits) or the
register field for indirect branch (5 bits). The remaining field can be used by a P operation.

+ TYPE3 (5)

TYDPE3's 5 operation use all 40 bits, including the 40 bit address field (PC-relative or absolute).

2. 5 Operation

This is the operation class to change the flow of control. As mentioned instruction types, S cperations
have three kinds of operation length. In addition to this, there are three kinds of methods for dealing

TYPEL| 5§ M F

TYPEZ| § (<) P

TYPES| 5

Figure 2: Tnstruction Types

with the pipeline stalls due to branch delay. Delayed branch instruction performs useful work for hoth the
branch-taken and branch-not-taken paths. Normal branch instructions perform useful work for only the
branch-not-taken path. Canceled delayed branch instructions perform useful work for enly the branch-taken

path.

3. M Operation
Loading and storing from memory is done with the address generation operations and read /write operations.
Read/write operations use the M operation field. Read/write operation might be overlapped with other P

and/or § operations.

4. P Operation
All P operations are register-register operations. The operations include integer arithmetic, logical, tag
manipulation, bit manipulation, byte manipulation, prierity encode.

Uperations are listed in the appendix. In this list, goto or gosub shows PC-relative branch, jmp or jmpsub
shows absolute branch,

3.3 Configuration of the PE

Figure 1 (b) shows the configuration of the PE. The PE includes local memories and caches for instructions and

data, This configuration provides a [ast, eflicient memory hierarchy.

The configuration of the PU is showed in figure 3. In this figure, the horizontal axis shows three independent
function units, so the PU can issue three operations in every clock eyele as m a LIW architecture. The vertical
axis shows three units of pipeline stages. In the P aperation of the E stage, the PU can execute the tag part and

the value part simultaneously as in a tagged architecture.

4 Code Generation

To transform KL1 programs into PIM/i machine codes, current code generator has four main phases: KL1 compiler,

KLib post-compiler, macro expander, assembler flinker,

1. KLI compiler
KL programs are eompiled into KL1E by the KL1 compiler in [12]. Figure 4 (a) shows a simple KLI program
to wait a atem 'a’. We ontline the translating process using this example. Figure 4 (b} is a correspouding

sequence of KL1b instructions.

2. KL1b post-compiler

[=1]

stage

DR

stage

stage

Because KL1b is an absiract machine instruction, it is necessary to transform each KL1b into the machioe
dependent format. This format includes macro definition’s corresponding to KL1b instructions. This trans
formation is done by the KL1b post-compiler. In this transformation, the KL1b pest-compiler adds the label
and contral information and optimizes the KL1b code. In the case of Figure 4, try_me_elze is eliminated
by adding label information to the vait_eenstant code. The wait_constant is also optimized to a specific
data type KL1b instruction, wait_atem. The transformed sequence is shown in (e). In this sequence, ::

Sequencer ! Memory I Processor
operation ! operalion] operation
——
L I Code Mem |
1 Y I
[_ : _ I [
[‘* 1 r imm
i | I ['
Decode P | Decode e | Decode | RF
abs. [I | a |;rh
l ¥ | r 1
i [+ . Data |l f [|
I Mem |l
i | Aluf [TOP || VOR
| I . i I
— —-1— : i ~on l
- . Y :.dr data Y : Y Y
code [1
adr Y i adr ' data 1 [rd F refrs
(Code mem) (i ! RF
| i

@Ig Mem)

Figure 3: PU Configuration

shows the contrel information for the assembler.

3. Macro expander

The maceo expander expands each machine dependent KL1b code into a sequence of PIM /i machine instruc.
tioms. To use the full set of macro functions, we use cpp, the preprocessor of the C language. Currently
each KLIb definition is generated from a template format to make the description of macra definitions easy.
In this template, complex transactions are ejected to local memory as run-time libraries, because the naive
expansion of KL1b causes an explosion of the static eode size. Figure 4 (d) shows an example of template

format. The information of external label, which is the entry for run-time libraries, is declared via %i, and

argument information via ¥ for register, ¥c for constant or %1 for label.

1 Assembler and linker

The assembler/linker produes the abject code file which will be allocated in the shared memory, Run-time
libraries, which are allocated in local memory, are linked with this object. Currently run-time libraries are

programmed separately by PIM/i assemble language.

pracaedure({(go) , {1}).

gofa) :- true | true. label((ge) /{107,
try_me_slse({ge}/(1}/(1}).
{a} KL1 prograsa wait_constant({a}, {1}, (ged {1}/ C10).
proceed.
label({ge)f(13/(1}]}.

suspend((ge)/(1)).

(b) EL1b code sequence

:: listing [predicate_id,go.1]. Jess gait_atom Al atom ==x/
t: label{go_1). %i Subd_pav_deref_if_unbound_then_push
:: lieting [(Llisting),(wait_atem}]. %Al ajh
vait_atom{a00,a, " Instr!label !0’ go_1_1} Yo C_ATOM a
11 label(’ Instrilabel!d’). W wait_atom Ai, htom
¢ listing [{listing),{proceed)]. griog := Ai,if(notREF(A1)} goto Fstart.
proceed{"Inatr!Labal!l’ nonal jmpsub Subd_psv_deref_if unbound_then_push.
:: label{ Tnacrilabel!it}. Jstart:
i1 label{ge_1_1). 4i = groo,if{notATOH{gr00)) goto Enci_atom.
11 listing [(liztimg), {suapend)]. SetAtom{gro0, C_ATOM).
suapend(ga_1,1, 'Inatr!Label!2’,nonel gro0 := -gro0+Ai,if(zero) goto Nexi_imst.
:: label{'Inatr!Label!2'}, $not_atom:
:: listing [end_precedure]. goto Alter.

%} end of wait_atom

() macro format sequence (d) template format

Figure 4: Example codes

Table 1: Characteristics of the Benchmarks

I ks] qui 1 prm bup [han H a-.T|
size(Kw) 2.5 29 11| 135 1.0 4.1
ex.(Keye) | 3080 | 6092 | 2518 | 4599 | 3414 || 3008
code $ 99.99 [9999 | 59.09 | 9292 | DO.00 [90.68
data § 97.81 | 93.40 | 95.39 | 95.T1 | BR.4B || 93.56

Table Z: Hranch Behavior in Benchmarks (%)
I I3 P Py) Y
] br/inst [9.4 l il] .113_ EW@
Uncond | 86| 63 88[113[126] 95

Cond 16 [119 f147] 95 [155 [127
Tagcond | 19.2 | 114 [178 [175 | 45 || 14.1

5 Ewvaluation

To evaluate the PIM/i architecture, a register transfer level simulator has been constructed. The simulator com-
putes run-time statistics such as instruction frequeney, pipeline utilization, branch-delay slot utilizgation, frequency
of each operation type, and others.

The simulator simulates a single processor with code and date cache whose size is 32K words, respectively
Five benchmark measurements (two 8-queen programs (gk8 and qul), prime number geuerator program {pem},
bettom up parser (bup) and towers of Hanoi program (han)) are analyzed in this paper. High-level characteristics
of the benchmarks are given Table in 1. Static assemble code size, execution eycles, cache hits ratio of code and

data are given. The size of the run-time libraries is 4K words, and libraries are allocated in Lhe local memary.

5.1 Branch Behavior in Benchmarks

Since branch behavior is the starting point of our architecture, we should summarize the branch behavior in
benchmarks. Table 2 shows the percentage of branch instructions per executed instructions {brfinst) and the
breakdown data: Lhat of unconditional branehes {Uncond), conditional branches (Cond) and tagged conditional
branches {Tag_cond).

In RISC type machines, branch frequencies tend to be lower. However, Table ? shows 36% of the exceuted
instructions are used for branch instructions, higher than 26% for VAX {CISC type) and 14% for DLX (RISC
type}in [11]. The breakdown data shows tagged conditional branches are used very frequently, Half ef branches
are tagged conditional branches and they are more than that of VAX and DLX.

5.2 Reducing Pipeline Branch Penalties

Branches consume a large fraction of time because they canse pipeline stalls and pipeline flushes. Scheduling of the
branch-delay slot can avoid situations where cycles are wasted on decoding instructions that are never executed.
Table 3 shows percentage of the branch-delay slots in exceution time (DS/T)} and the wasted slots in execution
time (Wasted DS/T), the utilization of branch-delay slot. The utilizalions are divided into two classes: Uncond

shows that of unconditional branches, Cond shows that of conditional branches.

Table 3: Utilization of Branch-delay Slot (%)

L | qki I quf | prm | bup I hEn |I av. i
Ds/T 318 22.0 | 334 [31.3 | 22.7 || 28.2
\-'I.rﬂ.SLEd,.DSf"T_ 138 85 (122 94 4.5 ﬂ
Uncond | 70.1| 823 | 63.7 | 594 | 75.7 || 70.2 |
Cond 527 | o6 | 633 | 743 | BLZ || 655

Table 4: Utilization of instruction fields (%)

i gk8 I quf I prm I bup | han |! av.
. -F 2R.8 | 376 | 365) 20,0 [333 || M.
L7 (101 76 97| 59 8.0

s _ . 00| 00| 0O 00| 0.0 0.0
_HPF 115] 97| 44| 11.2 | 118 a7
5 _ 0.0y 0o 0.0 oy oo 0.0
S H_ 0.7 0.3 08 1.1 1.5 0.9
SHP 00 00 00| 00| 0.0 0.0

TYPE 1 | 52.6 | 57.7 | 49.7 | 50.9 | 574 || 53.7

55 _ 18] 41]118f107] 64 88
ssp |287 335|284 203|278 205
TYPE 2 | 39.5 | 378 | 40.2 | 400 | 34.2 || 38.3
558 78] 47101 91| 84 &0
TYPES3| 79| a7 | 101 | 91| 84 L 8.0

This shows that only about one-third of the branch-delay slots are wasted and that they are about 10% of the
execulion lime., We assume one null CPU cycle occurs on bolll & branch-taken and a branch-not-taken by relative
COMPpArson, as a worst ca&e[?] By the utilizations of branch-delay slot, the execution time is reduced about 16%
from the worst assumption. The difference between the utilizations of branch-delay slot in unconditional branch

instructions and that in conditional branch mstructions 1s small.

5.3 Multiple 1ssue of operations

Utilization of instruction fields shows the extracted parallelism in current KL system. Table 4 shows utilization
of instruction fields for each tyvpe. In this table, the combination with 5, M, P and . shows the percentage of each
instruction contained in each set of operations,

This table shows the most instructions, 54%, are used as in TYPE 1. The most frequently used combination
is that of § and P, branch and ALU clpcmtinn. which is a5 5 P in type 2. By multiple issue of operations, the

execution time is reduced hy about 24% from the cage in which each operation is issued mn cach cycle.

6 Conclusion

The processor element architecture for the PIM pilot machine, PIM/i, has been presented, The PIM/i processor

architecture is an amalgamation of four new architectural techniques, With the pipelining approach, it can exploit

temporal fine grain parallelism. With tagged architecture and LIW approach, it can exploit spatial fine grain
parallelism. With RISC approach, these approaches are naturally amalgamated into optimized codes We have
also presented the first simulation results. Our results indicate that the execution time could he reduced hy about
L16% fram the worst assumption by utilization of branch-delay slot and about 24% from the sequential executions
of each aperation.

Meanwhile, a PIM/i processor is being implemented in 1.2um CMOS VLSL The target of the basic machine
cycle 18 100 nanoseconds. The design of the processar chip is completed. The PE is implemented on a single printed
board wsing twe VLSTs such as processor and cache controller. In a cluster, cight PEs and a shared memory are
connected via an §0-bit wide common bus, The PIM/i has a 1T-byte global virtual address space on each cluster.
Lhe current implementation of the cluster includes 320M bytes of shared memory, We plan to precisely measure
and to evaluate the PIM/i processor and system during program execulion,

Acknowledgment

The authors would like to thank all of the PIM research members hoth at OKI Electric Industry and at the
Institute for New Generation Computer Technelogy (1COT). Especially we wish to thank 1COT researcher, Dr.
K. Hirata, for his useful comments. Finally, we would like to thank Dr. K. Fuchi, the director of TCOT and Dr, 5.
Uchida, the manager of ICOT’s Research Department, Dr. K. ‘Taki, the chief of the first research section in [OOT
Me Y. Haga, the director of the Systems Laboratory at OKI Electric Industry, Mr. A Yamamoto, the chiel of
the Parallel Processing research section at OKI Fleetrie Industry, for giving us the opportunity to participate in

tls research.

Refercnces

{1} K.L. Clark and S. Gregory. Parlog: Paraliel Programming in Logic. ACM Tran. on Programming Languages,
&{1), 1986.

[2] J. A. DeRosa and H. M. Levy, An Evaluation of Branch Architectures, In Ith Infernational Symposcam o
Computer Arch., Jun. 1987

[3] K Ebcioglu and M Kumar. A Wide Instruction Word Architecture for Parallel Execution of Logic Programs
coded in BSL. In FGCS 1948, pages 931 - 442 1OOT, Nov. 1988

[4] 1. B. Ellis. Bulldog: A Compiler for VLIW Archilectures. The MIT Press, 1986,

(3] A Goto ct al. Design and Performance of a Coherent Cache for Parallel Logic Programming Architectures.
In 16th International Symposium on Computer Arch. May. 1089,

[6] M. Sato et al. KL1 Execution Model for PIM Cluster with Shared Memory. In The Fourth Inlervational
Conference on Logte Programming, pages 338 — 355, 1987,

[7l 5. Uchida et al. Research and Development of the Parallel Inference Systein in the Intermediate Stage of the
FGOS Project. In FOOS 1088, pages 18 - 36, ICOT, Nov. 1988,

(8] I Chikayama et al. Qverview of the Paralle] Inference Machine Operating System {(PIMOS), In FGCS 1933,
prages 230 - 251, ICOT, Nov, 1988,

10

(9] A. Goto and M. Sato et al. Overview of the Parallel Inference Machine Architecture (PIM). In FGCS 1988,
pages 208 — 220, ICOT, Nov. 1988,

[10] A.Harsat and K. Ginosar. CARMEL-2: A Second Generation VLSI Architecture for Flat Concurrent Prolog.
In FOOS 1958, pages 964 - 869, 1COT, Nov. 1988,

[11] J. Hennessy and D Patterson. Computer Architecture: A Quantifative Approach, chapter 6 Pipelining.
Morgan Kaufmann Publishers Inc. San mateo, CA, 1990,

(12] Y. Kimura and T. Chikayama. An Abstract KL1 Machine and its Instruction Set. In [ni. Symp. on Logee
Programming, pages 468 - 477, Aug 1987

[13] A. Matsumoto and M. Sato et al. Locally Parallel Cache Designed Based on KL1 Memory Access Character-
istics. Technical Report TR - 327, ICOT, 1987

[14] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory Multiprocessor. In [F[F
Working Conference on Parallel Processing, pages 305 - 318. NOTTH-HOLLAND, Apr. 1888

[15] E. Shapiro. Concurrent Prolog: a Progress report. JEEE Compuier, pages 44 - 58, Aug 1986.
[18] K. Ueda. Guarded Horn Clauses. Technical Report TR - 103, ICOT, 1985,

[17] D H.D. Warren. An Abstract Prolog Instruction Set. Technical Report TR - 308, SR International, 1983

1i

Instruction Set

Sequencer Operation

5(39:32) | return Delayd .
goto_Delayd ir6 (jef: 6 bit branch offset)

S{3%:24) | goto_Delay2 rd
jmp Delay2 red
gosub Delay2 rd
jmpsub_Delay2 rd
return.Delay3.Cond -
goto Delay3_Cond jré
merge_tag rx, immé {immé&: 8 bit immediate)

S{(39.0) | goto_Delay? jr30 (jr30. 30 bit branch offset) T
jmp_Delay2 jad0 (jad0: 30 bit absolute jump address)
gosub Delay? jrin
Jmpsub_Delay2 jadd

NOTE Delayd: normal, delayed, canceled
Dielay?: normal, delayed
Cond: tag.eq, nol_tag.eq, fwd.eq(fwd:tagged full word}, not fwd_eq,
eq, not.eq, not.ovi, ovl, highsame, low, high, lowsame, gt, le, test_tag
. Memory Operation

M(31:24) | MemOp vl
LockOp rd
StrHesOp -

NOTE MemOp: read, write
LockOp: read Jock, write unlock
StrResOp: write, write_unlock, unlock
Processor Operation

Pl23:0) TagOp tag(k,)'ra, (n,m)'ch or tag(kl)'ra, tmm$ ((a,b): bit ficld froma to b) |
ValOp (k1) 'ea, (n,m)rh or (k])'ra, imm5
Pri0p ra, rh
Al ra, th, rc or ra, immd, rc or ra, rh <€ x, re or ra, imm3 <& ix, re
LOp ra, eh, re
AdrOp ra, rb < ix , (mar,rc) | mar

er ra, immd <& ix, (mar,re) | mar
AdrDbytelmmOp ra, immlé
DbytelmmOp ra, immlé
NOTE TagOp: depmir._tag, merge _tag, extracl.lag, merge tagimm

ValOp: deposit, merge, extract, merge dmm, merge_dynamicimm, deposit_dynamic,
merge.dynamic, extract_dynamic

Prifp: find first_zero, find_firstoone, reverse find _first sero, peverse_find_first_one
FLDP: arithmelic operateen

LOp: legieal operafion

AdrOp: setaadr, set_ade_postomadily, set_adr_pre_maodify

AdrDbytelmmOp: seteadriimm
DbytelmmOp: add_signed_imm load_low_imm merge_high imm

12

