ICOT Technical Report: TR-669

TR-664

Experimental Version of Parallel Computer

Go-Playing System “GOG"

by
5. Sei, N. Ichiyoshi & K. Taki

July, [99]

01991, 1C0T

Mita Kokusa Bldg, 21F (03 3456-3191 —5

I(:D I 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology

Experimental Version of Parallel Computer
Go-Playing System “GOG”
(Extended Abstract)

Shinichi Sei Nobuyuki Ichiyoshi Kazuo Taki
selQicot.or.jp ichiyoshi@icot.or.jp taki@icot.or.jp

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

Ahbstract

We are developing a parallel computer Go-playing system *GOG". The
experimental version has been completed and a dynamic load balancing tech-
nigue is being tested. The next version will incorparate the concept of fiying
corps, a technique to make a game playing program stronger without losing
the real-time property.

1 Introduction

Unlike checker and chess playving compuler programs which have attained or are
approaching the highest human skills, there have been no Go-playing programs that
mateh average human Go-player's skills. (The basics of Go is given in the appendix.)

The difficulty of constructing a Go-playing program comes mainly from the fact
that (1) the fanout of an average game tree is too large for brute force search to be
feasible — the board of Go is 19 x 19 as compared to the chess board of 8 x 8, and
the player can put the next stone on almost any vacant board pesition, and (2) a
simple and good board evaluation function does not exist -— evaluation of a board
configuration needs understanding of relative strengths of groups of stones, which
involves pattern recognition.

We have developed a sequential Go-playing system in the Fifth Generation Com-
puter System Project [3]. 1t 1s written in the Prolog-like language ESP and runs
on the sequential inference machine P51 Currently, the system is stronger than an
entry level human Go player, but considerably weaker than an average-level player
(one who knows a number of established tactics such as opening moves, and has
played tens of games with stronger players).

There are a number of improvements (such as move knowledge of set moves,
tactics, better board evaluation, etc) that could make the system stronger, but
it would take much more processing time to incorporate them. Thus we started
the development of a parallel Go-playing system which will be stronger than the

1

sequential system but will retain the tolerable response time to make real-time play
with humans possible. The final system will run on the parallel inference machine
being developed at ICOT [1]. It will consist of the parallel code (written in parallel
logic langnage KL1) for deciding the nex* move and the sequential code (that runs
on the front-end processor (FEP)) for human interface. We have redesigned part of
the existing sequential program in kL1, and constructed an experimental version
{intermediate system) in which both the sequential and parallel code take part in
the next move decision. The system runs on the experimental parallel inference
machine Multi-PST {4, 2].

This extended abstract first describes the process of move making in the sequen-
tial system, and discusses what parallelism to exploit in the parallel system. It then
describes the experimental version and the load balancing technique employed in
the systemn with its results. Lastly, the concept of flying corps to be tested in the
next version 18 described.

2 The Sequential GOG System

2.1 Move Making in the Sequential GOG System

The outline of the process in which the sequential GOG system determines its next
moves comprises three stages.

I. Board Recognition

|

. Candidate Move Generation

3. Next Move Decizion

The raw data of board configuration is simply the state of every board position,
which is either {a) vacant, (b) occupied by a white stone, or (¢) occupied by a
black stone. In the recognition phase, the system slarts from the raw board data
and successively makes higher-level data structures — stones, strings (a string is
connected stones of the same color), groups (strings of the same color that are close
to each other), families (“loosely” connected groups), etc. —, and then determines
their attributes (polential value, area of surrounded territory, etc.).

Based on board recognition, the system lists up plausible next moves together
with heunistic value of those moves. Candidate moves include moves to enlarge a
friendly territory, moves to limit an opponent territory, moves to capture an oppo-
nent string (we call the task which decide whether the string is in danger by being
caplured caplure search), moves to avold capture of a friendly string, etc.

Finally, based on the proposed values of the candidate moves, the system decides
on the next move, and plays it.

2.2 Design of the Parallel GOG System

The various tasks done by the sequential GOG system contain possibilities of various
forms of parallel processing.

¢ Independent parallel recognition of distinct objects (strings, groups, etc.)

Independent parallel capture searches of distinet strings

Parallel processing of single capture search

e Parallel generation and rating of candidate moves

Also, some of the tasks that could potentially strengthen the sequential GOG
system but were not incorporated because of processing time limitation can be
incorporated in the parallel GOG system, and they give added parallelism.

3 Intermediate System

The intermediate parallel GOG system consists of the parallel code that runs on the
Multi-PSI and the sequential code that runs on the front-end processor (FEP).

The Multi-PSI is an experimental parallel inference machine. It is a distributed-
memory computer, in which up to 64 nodes (processors plus local memory) are
connected by an 8 x 8 mesh network with cut-through routing. A FEP 1s a sequential
inference machine,

In the intermediate svstem, one of the processors of the Multi-P5I serves as
a manager processor, and the rest are worker processors. Each worker processor
maintains a local copy of the board, and updates it each time the manager processor
notifies a new move. This reduces inlerprocessor communication, since the master
processor needs only to specify which string is the target of the search.

The system configuration 15 shown in Figure 1. In this partly parallel GOG
system, the front-end sequential GOG system notifies the enemy's moves to the
Multi-PSI manager processor. The manager processor dispatches the capture search
task to the worker processors. (The capture search tasks are generated only by the
dangerous siring in order to keep executing time short.) When a capture search
is completed, a worker processor requests for a next capture search task. After
all capture search tasks of dangerous strings have been dispatched, a particular
kind of plausible move generation tasks are dispatched. Those are keshi candidate
moves that may restrict the enemy’s potential territories. The results are sent to
the manager processor and then to the front-end processor. After the front-end
sequential GOG system have received the candidate moves from the Multi-PSI, it
evaluates them with the candidates generated by itself. 1t then decides the next

Mive.

4 An Experiment of a Load Balance Technique

Good load balance belween processors is key to high processor utilization. The
dynamic load balancing technique is one of way to realize it. It is that the manager
processor dispatches tasks to worker processor which are detected to be idle. But,
even if we use the technique, load imbalance is caused by uneven granularity.

To alleviate this problem, we devised the following technique. At first, we classify
all of tasks into lwo groups: a task group with larger granularity and a task group

Multi-PSI

generation
of tasks

FEP FYTYN
position .
Recognition > Tasl
Move Decision |
dead falive Task
candidates

Figure 1. System Configuration

with smaller granularity. Larger tasks are given higher priority than smaller tasks.
Therefore after all larger tasks have been dispatched, smaller tasks are dispatched.
Then the smaller tasks tend to smooth out the load imbalance caused by uneven
granularity of larger tasks (Figure 2). This makes processor utilization rate higher.

We tested this technique on the experimental GOG system. In the intermediate
system, the larger-grain task group consists of capture search tasks, and smaller-
grain task group consists of keshi candidate move's, because the former tasks are
usually much larger than the latter.

We give the measurcment results in following graphs (Figure 3).

Processar
Utkllzatlon
(]
oo
wm
]
]
Large amd
B Sm |l Tazk
L1
Large Task
&0
n
m
h]
] FEs
1 2 4 B 12 113

Iigure 3. Processor [tilization

4

‘ PE 1 PE 2 PE 3 PE 4 ..

e
! Search . carch

Search

Search

Search

Kesha |

— m il Search |
| eshi)| ———
R)| et “—)

i

Figure 2. The smaller tasks tend to smooth out the load imbalance

In general, this technique can be employed when (relative) task sizes can be
roughly estimated in advance.

5 Flying Corps

The parallel GOG system can be made stronger by incorporaling more searches,
making more precise evaluation of candidate moves, etc. But, that would lengthen
the time to decide the next move, and even the parallel system might become too
slow for real-time game playing. To make the system considerably stronger while
retaining the real-time response of the system, we propose the concept of flying
COTPS.

The idea is to find out the possibilities of potentially large gain (such as capturing
a large opponent group, invasion of a large opponent territory) or loss, and assign
the investigation of those possibilities to flying corps processes. The future system
which incorporates flying corps idea is consist of main corps processes and flying
corps processes (Figure 4). Main corps treats necessary tasks to play Go and to
keep strength standard level we can permit. A flying corps does the investigation
independently from the immediate next move decision process, and it notifies the
main corps when the investigation task is completed (that might be several moves
from the initiation of the task). Note that flying corps keep on running, while the
opponent is thinking of the next move.! A flying corps may be aborted if it has
become irrelevant or unimportant in the overall situation, or the local situation that
motivated it has changed by some later move. Main corps processes have higher
priority than flying corps processes. The time to decide next move depends only on

VI'his is common with 8 human player

Maln corps.

A well-known technique in game tree search of doing whatever can be done in
a limited amount of time is iterative deepening search. Flving corps is different
from iterative deepeming 1n that {1) 1t 15 independent from the main move deciding
procedure, that (2} it extends more than ene move, and that (J) it is aborted by
reasons that are not solely time related.

@anager of idie l’l.. CﬂllﬁEE‘[of 1dle PF)

for rna;ln c::urps for ﬂ‘. Y COrDS
@7 server ———m server
&
/ /
.) L
N

of main corps e of ﬂnng COTrps
main corps processes flying corps processes

Figure 4. Configuration of Future System

The initial design of flying corps is completed. We would like to test the utility
of Hying corps in the next version of GOG which is currently under development.
The candidate tasks for flying corps are large scale tasks like Tsumego (A Tsumego
task is the same as a capture search task, except the object can be a group or a
farmily).

6 Conclusion

We have developed the experimental version of parallel computer Go-playing system
“GOG" and tested a dynamic load balancing technique on the system. Our experi-
ments show that our technique minimized imbalance caused by uneven granularity.
We also described the flying corps idea.

We will develop flying corps. A new version of the “GOG” system is currently
under development. It will include an experimental flying corps mechanism. We
plan to demonstrate the final version in the FGCS5'92 conference.

References

[1] A. Goto, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto: Overview of
the parallel inference machine (PIM) architecture, In Proceedings of FGCS'8E,
pp. 208-229 (1988).

[2] K. Nakajima, Y. Inamura, N. Ichiyvoshi, K. Rokusawa, and T. Chikayama Dis-
tributed implementation of KL1 on the Multi-PSI/N2, In Proceedings of the
Sirth International Confercnee on Logic Programming, pp. 436451, 1959,

(3] N.Sanechika. “Go Generation™: A Go Playing System. ICOT Technical Report
TR-545, 1990,

[4] K. Taki. The Parallel Software Research and Development Tool: Multi-PST Sys-
tem, In Programming of Future Generation Computers, K. Fuchi and M. Nivat
(eds.), Flsevier Science Publishers BV, (North-Holland), pp. 111-426, 1983

Appendix: Basics of Go

Go is a board game, and is popular in China, Korea and Japan. The board is
a 19 x 19 grid. The two playcrs are named black and white. The black and the
white place a stone on a vacant intersection in turn (the black and the white place
black and white stones, respectively). Each player tries to gain as much territory
as possible (a black’s (white) territory is a vacant area surrounded by black (white)
stones). A group of solidly connected stones of the same color 15 caplured when all
adjacent positions are occupied by the opponent’s stones. The adjacent positions
that are vacant are called dames. When stones are captured, they are removed
from the board and are added to the opponent’s territory count. Thus, a player
places stones as efficiently as possible to surround vacant area to maxinuze his/her
territory. Inevitably, the black and white stones clash, which leads to compromise
or fight for capturing the opponent’s stones.

