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Abstract

Feature structure is a record-like structure of information used as a partial description of ohjects.
The constraint logic programming scheme, CLP({X) (Jaffar and Lassez [39)), is a class of logic
programming languages based on constraint solving, which is a generalization of the standard
logic programming, where X is the parameter of the scheme. It has been an open problem
to instantiate X with the feature structure to obtain a constraint logic programming which
manipulates the partial information. This thesis reports the following three contributions to
the prohlem.

® We propose a logic programming language CIL and show applications for linguistic analysis.
CIL 15 an extension of Prolog with infinite record structures called PST ( Partially Specified
Terms) which 1s a generalization of the standard terins and record structures. Also PST is a
generalization of Colmerauer’s infinite trees. Hesides PST. CIL has useful asperts for linguistics
analysis. Amoug them are term constraints, arithmetic coustraints. and Boolean constraints.
Also CIL has a one-way unification as a primitive for the user to define his own constraints, CIL
build-ins complex indeterminates, which are basic objects proposed in situation semantics by
Barwise and Perry as building blocks for information and situations’. The studv of CIL started
around L983. Several versions of CIL Las been implemented hy the author. The earliest version
was implemented in Edinburgh Prolog on DEC-2060 machine. Then it was transplanted on
PSIII machine as a programming environment [8, 63] by some of his colleagues. This material
appears in Mukai [35], Mukai and Yasukawa [64], and Sugimura. Vivoshi and Mukai [S9].

® We introduce a class of algebras called record algebras as a mathematical model for the
PSTs. A record algebra is a partial algebra with an operator domain, The algebra, H. 15 a
commatative and idempotent partial monoid with respect to an operation called merge, The
operator domain, (7. 15 also a monoid calied an aceess monoid which acts on B as a monoid
from both sides, satisfying certain appropriate laws on the interaction between these actions
and the merge. Flements of /f and (& are called records and aceesses. respectively, Then we
embved Herbrand universe H into a record algebra (B, (71 so that the CLP over (R0 1s a
generulization of the definite clause grammar on H. Moreover, we show that DAGs used in
unification grammar formalisms are pictures of records and that records are denotations of
PAGs. Thus we integrate unification grammars and the standard logic programming into the
constraint logic programming over the record algebra. This material appears in Mukai 57) and
Miikai [61).

® We propose a theory of feature structures based on P. Aczel's non well founded sets (1]
{also called hypersets). A constraint language L4 over the class 1y of hypersets over A 15
proposcd. where A is a class of atoms. L4 is a quantifier-free first-order language with equality,
subsumption, disjunction, and negation. For a sublangnage L4, of L4 and subclass Vo of Vy.
it is proved that Vi, ts solution compact with respect to L4, and [, is satisfaction complete
with respect to Aczel’s hvperset theory ZFCA? in the sense of the CLP schema. In fact. Vi
is the class of hereditarily finite hypersets in Vi and L4 is the class of constraints in {4
consisting of finitary terms. Two applications are given by restricting Vi and [ 4 in a natural
way. One is an infinite tree unification in logic programming. and the other is a unification over
feature structures for unification grammar formalisms. We remark for implementation that a

HOIL stands for Complex Indeterminate Language.
YZFC minns the axiom foundation plus Aczel's anti foundation axiom



partition refinement algorithm on transition nets finds the coarsest bisimulation relation which
extends a given relation on hypersets. We show a basic fact that V, is compact with respect
to L 4. if and enly if 4 is empty, i.e., atomless. This material appears in Mukai [56, 59]. Then,
introducing new class of functors called form-based and coalgebras, we prove a generalized
unification theorem on coalgebras for class-valued functors which are form-based, conservative,
and set-based. Finally, we prove that every countable set of algebraic equations with countably
many variables is solvable in the complex number field if and only if so is every its finite subset.
The theorem is a foundation of the Grobner-base method working on perpetual process in the
CLP.
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Chapter 1

Introduction

The gencral aim of this work is to study informmation structures, constraints, and compulations.
The work is divided into the following three parts.

o CIL: a logic programming system which has built-in feature strictures.
e Record algebra: a partial algebra model of feature structures.

e CLP{AFA): a constraint logic programming language over hypersets,

CIL s described in Chapter 5. the record algebra in Chapter 4, and CL P{AFA]) in Chapter 3,
i Lhe reverse order of historical developments. These chapters are independent to each other,
and each of them has its own introduction and preliminaries. So. in this introduction, we first
describe quickly the contents of the following chapters, then, we explain a new perspective of
information structures developed during this work.

A feature structure is a {orm of partial description of objects. It came ont of the computational
linguistics. It is an abstraction of record-like structures: the frame proposed by Minsky, se
mantic nel in knowledge representation, record in programming languages, attribute-valne pair
list, association list, finite state aulomata, graph, first-order term, and so forth. The feature
structure is used by the agent in various ways; information is conveved, stored and processed
in the form of feature structures. Also fealure structures are used to classify objects and sit-
nations by the agent to pick up necessary information out of them for his real life. Thus. it
15 important to study the logic of feature structures for modelling information processing by
the agent. In fact, in recent years, many logics of the [eature structures have been proposed,
though the mathematical model of the feature structures has not been fixed vet (Moss [54]).

In this thesis, we propose two constraint theories over feature structures. One is an algebraic
model called record algebras, and the other is a set-theoretical one in the universe of hypersets.
We are interested in computational theories of feature structures that can be built-in actual
programming languages; we relate the structure to the constraint logic programming scheme,
CLP{X'} {Jaffar and Lassez [39]). The CLP is a class of logic programnming languages based on
constraint solving, and is a generalization of the standard logic programming, where X is the
parameter of the scheme. By instantiating X with a constraint theory over a problem domain,
), a constraiut logic programming language over £} is obtained. The built-in constraint theary
is called also a unification theory. In this thesis, we instantiate the paramcter X of the CLP

1



scheme with the two constraint theories over feature structures, i.e., a record algebra and a
domain of hypersets. and thereby, we obtain a family of CLPs over feature structures. Our
unification theory over hypersets extends Colmerauer’s unification theory over infinite trees
with equations (=) and unequations (#) {Colmerauer [21, 22, 23]).

The organization of this thesis is as follows. In Chapter 2, we prepare basic notions from Aczel's
hyperset theory, situation semantics, and unification grammar. The CLP scheme is reviewed
in the introduction of Chapter 3.

In Chapter 3, we describe the CLP over hypersets, First, a unification theory over hypersets are
described. The solvability of hyperset constraints is characterized by a consistent and closed set
of basic constraints. Then, semantics of the CLP over hypersets is described. It is proved that
the fair SLD computation rule is sound and complete. and then, that the negation-as-failure
rule is sound and complete. The semantics is described in the hyperset theory.

In Chapter 4, a CLP family over record algebras is described. The feature structures are
formalized to be a record algebra, and are given a compact constraint theory. As an application
of the record algebra, it is shown that unification grammars are Horn clause programs over a
record algebra.

In Chapter 5, a CLP system, CIL, is described. Syntax of terms and programs, operational
semantics, various built-in constraints and functions are described. CIL applies to linguistic
analysis, which includes PST. discourse situations, mental state representation taken from
gituation semantics. Section 6 concludes this thesis.

Now, we turn to the ahove mentioned perspective on information structures; the perspective
supports the hyperset-theoretical approaches proposed in this thesis. In general, a framework
of information structures requires two kinds of things: generating devices of universes of objects
and compntations for objects. Here, we view the unification or constraint theory on the objects
as an computational engine.

For example, take a logic programming [16], Prolog, as a framework of information structures.
The universe for a Prolog program is the set of first-order terms inductively generated from
function and constant symbols of the program. and computations are proof trees or derivation
trees. ‘I'he unifier of Prolog is the engine of the computation, namely, the resolution. There
are two alternatives for a choice of universes: a well-founded universe and non-well-founded
one. The former consists of the standard first-order terms, and the latter has Colmerauer’s
infinite trees. Let P be a Horn clause program, ie., a set of Ilorn clanses. Then, let Tp be
the transformation on the powerset of Bp induced by P, where Bp is the Herbrand base of
F. The fixpoint semantics of the program £ is defined as a special fixpoint of Tp. There are
two alternatives for a choice: the maximum one and the minimum one. Similarly, operational
semmantics of a Horn clause program can be viewed as a form of inductive or coinductive defini-
tions of proof trees or derivation trees. According to the two types of trees, Le., well-founded
one and non-well-founded oue, again there are two alternatives for a choice: inductive definition
and coinductive definition. The former has only finite length derivations, and the latter has
infimte-length ones as perpetual processcs.

Thus. we observe that duality of well foundedness and non-well-foundedness is in the infor-
mation structures: first order terms, infinite trees, records, proof trees, computation as state
transitions, graphs, feature structures, sets, and so on. We add even the semantics to this list,
because the semantics of a program is a structured object as a set consisting of ground atomic



formulae or a derivation tree. By duality, we mean category theoretic duality [45]. Thus, we
have the following table of dualities in information structures: -

Dualities on Information Structures

“component relation  well-founded non well-founded

definition method induction coinduction

operation algebra coalgebra

fixpoint minimum MMaximurm
limit object initial final
set theory 7FC ZFCA

Each pair on the table forms a dual notion. Recall the unification on first-order terms and
wnfinite terms differ only on the ‘occur-check’; they form a dual pair. Assuming an appropriate
metatheory, if one gets an object with some property, then he can get automatically another
object with the dual property. For example, suppose that we have the minimum class such
that M 2 pow(M), then also we can have the maximum class such that N = pow(N), where
pow is the power class functor. Tn fact, M is the universe of well-founded sets. and N of
non-well-founded ones.

The domain of the standard meta-theory. ZFC. of information structures is itself a well founded
universe. As the table suggests, the membership relation () can not be used for the component
relation on non-well-founded structured objects. In fact, non-well founded objects can not have
natural coding in ZFC: ZFC is not large cnough for the duality. It is this point that the duality
between first-order terms and infinite trees, for instance, is unclear in the existing models that
uses ZFC as a meta-theory. [or example, an infinite tree is defined as a function on a set
of finite strings closed under prefix, and, on the contrary. the first-order terms are defined
inductively [16]. The duality between the two universes is not clear from such definitions.

On the other hand. the universe of ZFCA is enough large to keep the duality: a final coalgebra
theorem holds for the category of classes of hypersets as well as the initial algebra theorem for
any set-based functor [1, 3], Using these initial algebra and final coalgebra theorems, universes
of gencralized terms are defined as fixpoints of set-based class-functors,

Using the duality of ZFCA universe, we will find in Chapter 3, in particular, Section 3.6, a
family of CLPs over structured objects. The outline of the finding story is as follows. First, we
can see clearly that the universe of ZFCA is constraint-definable and compact with respect to
the hisimulation theory [1] on the universe, where these two properties are what the CLP scheme
requires. So. the problem is to generalize the bisimulation to that on generalized terms and to
find a family of set-hased functors. T. such that the final coalgebra, J(T). for T is constraint-
definable and compact with respect to the relativized bisimulations on the generalized terms.
The family of CLP{J{T}) for such T will have the same properties as those of the CLP over
Colmerauer’s infinite tree unification with #.

lo find the family of 7', the membership relation is generalized so that the ‘argument-of ' relation
on standard terms, for example, is such a generalized one. Then, two properties on functors
are defined: form-based and conservative. Finally, it is proved that the final coalgebra for a
set-hased, form-based and conservative class-functor satisfies the CLP requirements.

Thus, due to the non-well-founded axiom, ZFCA provides an powerful metatheory for various
information structures, in particular, structured ohjects.






Chapter 2

Preliminaries

Each of the following chapters gives necessary preliminaries in the section after the introduction.
Chapter 3 and Chapter 4 are mathematical and self-contained; every technical notion is defined,
and every assertion is attached with a proof except the solution lemma [1] and the final coalgebra
theorem [3]. So. we review only sume background stuff for this thesis from the following:
situation semantics and situation theory (STASS, for short), unification grarmar, and hyperset
theory, The CLP scheme is reviewed in Chapter 3.

We begin with STASS. The situation semantics [18] is a relational theary of meaning [90, 67,
375 it can be seen a successor of possible world semantics. The standard version of situation
semantics asserts the following [18):

¢ The world consists of sitnations: a situation is a small portion of the world, which can
stand in relations to others, i.e., situations are objects.

* ['he meaning of a sentence is a relation between situations: the truth of sentences are one
of the attributes of sentences.

* Situation semantics treats attitudes, e.g.. beliels. The idea is to represent the mental
state by a pair of a frame and setting.

Indexicals such as *I', “You', 'now’, ‘here” and demonstratives such ‘that’, “this" are treated in
sthuation semantics. In Chapter 5. an example CIL program ireats these context dependent
elements of language uses,

Situation theory [14, 26, 10, 11, 15, 31] is a meta theory of meaning. logic, and information.
C‘ooper et al [21] is a collection of the state-of-the-art papers on the situation theory and its
applications. The following are efforts towards mathematical foundations of situation theory:
theory of relations (Plotkin (71, 75. 76]), theory of structured objects (Aczel [2, 3]), model of
silualion theory {Barwise [11]) based on Aczel's set theory, proposal of branch points of situation
theories {Barwise [14, 9]). Situation theory has many kinds of objects as first-class citizens: sets,
types, relations, propositions, state of affairs, and so on. Due to this rich universe of objects,
STASS is related to other [rameworks and meta-theories: property theory [20], Landman’s
model of information (44]. Martin-Lof's type theory [50], Feferman’s system [30], Montagovian
approaches 52, 53, 67, 68, 91|, etc.. However, the comparison of these frameworks is out of the
scope of this thesis,



Partial assignment is an incomplete list of arguments, i.e.. a partial function which assigns
values to argument places; it plays an important role in semantics [66]. According to situation
theory, each relation R is given a set arg( R) of argument places. A partial assignment for His a
function f which is defined on a subset of arg( R). Situation semantics asserts as a slogan that
not only total but also partial assignments are first-class citizens in semantics. Based on this
ontology, the important notion of dynamic interpretation of natural languages is captured as a
process which generates and modifies partial assignments. It might be useful to think that the
partial assigninent is the memory state of a computer. and that the rule of the interpretation
is a computer program. This is a relational view of meaning and an extension of the classical
model theory. In classical model theory, satisfiability is a ternary relation between models, M,
assignments f and formula v

M, [ .

If the model and the formula are fixed, then we get a unary relation relation on assignments.
Relational theory meaning extends the classical one, so that meaning of a sentence is a binary re-
lation on assignments. This is also called dynamic interpretation (Kamp [42] and Barwise [13]).
As these dynamic interpretation models suggest, the relational theory and operational seman-
tics of computer languages are close to each other. Also frameworks of computer langnages and
natural languages are getting closer {Benthem [92, 93], Mukai and Yasukawa [65]).

Unification grammar is a constraint theory on phrase structures and feature structures [32.
78, 82, T8]. Phrase structures are ordered trees. Each node of a phrase structure is assigned a
feature structure, Phrase structure rules describe constraints on phrase structures and feature
structure assignment. For example, the lollowing phrase structure rule

M — HC| Mhead = Hhead

means a local structural constraint. First. let m be the mother node and let & and ¢ be the two
daughter nodes. Suppose that M, #, and € be feature struciures assigned to the nodes m, h.
and ¢. respectively. Then the above rule says that the ‘head’ component of M is the same as
the “head’ componeut of H.

The semantics of a unification grammar is the set of phrase structures with a feature structure
assignment which satisfy all the local constraints expressed by the grammar rules. Namely, it
is a device which generates the set inductively or coinductively. The generating principle of
the unification grammar is the same as that of a constraint logic program, which is a device to
define the class of true propositions in the same way. Based on this observation, in Chapter 4,
we will identifv a unification grammar to be the corresponding Horn clanse program over the
record algebra.

We informally explain basic ideas of the hyperset theory. In the classical standard sct theory,
ZFC. it follows from the axiom of foundation that it is impossible to have an infinite sequence
such as the following:

cee B kg E Tpo] S 00 £ I £ To

Namely, the universe of ZFC set theory consists of only well-founded sets. P, Aczel began a
non-well-founded set (= hvperset} theory with a metivation to replace the graph theoretical
foundation of Milner's SCCS theory [51] by the non-well-founded sets. Aczel’s set theory is the
ZFC minus the foundation axiom plus the following anti-foundation axiom (AFA, for short):
every graph has a unique decoration. In general, AFA is equivalent to the following solution
lemma: every system of eguations (& = by );ex has a unique solution, where X is a set of

6



parameters and (b );ex is an indexed family of X-sets (parametric sets). Non-well-founded
sets are also called hypersets. For example, the following family of equations have a unique
solution:

r={a.x} y={by}
The solution lemma of Aczel's will be used heavily in Chapter 3. In the universe of hypersets,
the inductive definition is not available in general, since the induction is based on the well-
foundedness of the membership relation.

(Given a class-functor T, the coinductive definition means the largest fixpoint, J(T'), of T'. As
J(T') exists for any set-based class-functor I, and J(T') is the largest class M such that

M C (M)

The coinductive definition is useful to introduce infinite structures. For example, the domaiu
of infinite binary trees is defined to be the largest set B such that the following hold:

If z € B then either 7 = ¢ or « = (y.2) for some y,z € B.

In Chapter 3, coinductive meanings to infinite computations of Horn clause program will be
given,

Aczel [1], and Aczel and Mendler [3] proved a final coalgebra theorem: every set-hased functor
has the final coalgebra. This theorem will be nsed in Section 3.6. A bisimulation relation is
a equivalence relations on a graph which is compatible with the successor relation. [t follows
[rom AFA that a bisimulation relation on the class of hypersets is the identity relation.

Barwise [14] sees that the hereditary subset relation on sets can be a model of the {extensional]
subsutnption relation between feature structures. He proved a unification theorem that a con-
straint is solvable il it extends to some consistent constraint closed under the hisimulation
axioms and the subsumption axioms. This theorem is important in this thesis. In Chapter 3.
we extend Barwise's unification theorem in two ways.

Using AFA. Aczel proposes also a theory of structured objects [2, 3] o provide mathematical
tools for situation theory. For example, it is a generalization of the powersel operation in set
theory and term generating operation in a signature of algebra, According to Aczel [3], situation
theory is both set theoretical and syntactical in the sense that situations are set theoretical
objects, and propositions and states of affairs are syntactical objects. As we have mentioned
in the introduction, also we will generalize the membership and “argument-of ' relations to find
a family of CLPs over structured ohjects including infinite trees,






Chapter 3

Constraint Logic Programming over
Hypersets

A constraint language Ly over the class V) of hypersets over A is pruposed, where A is a
class of atoms. L4 is a quantifier-free sublanguage of the first-order language with equality,
subsumption. disjunction, and negation. For a natural sublanguage L 4. of L4 and subclass
Vo of Vit is proved that Vi, is solution compact with respect to L., A subtheory of L4,
is given that is satisfaction complete for positive constrainte in the sense of the constraint logic
programming (CLP) schema. In fact, Vy, is the class of hereditarily finite hypersets in the
universe Vy of Aczel’s hyperset theory ZFCA' and L4, is the class of constraints in L4 that
consisis of finitary set terms. A characterization of the canonical programs in L4 is given in
terms of extended bisimulation relations. Thus CLP{AFA) over the hypersets is obtained as a
new instance of the CLP schema.

Furthermore, the CLP scheme is reconstructed and given a foundation within the hyperset
theory. First a declarative semantics and an operational semantics of Horn eclause Programs
over La. and V,, are given based on coinductive definition. Then soundness and completeness
of the two semantics are proved by showing what we call a simulation relation between the two
semantic domains.,

Two applications are given by restricting Vy, and L4 in a natural way, One application 1s
an infinite tree unification in logic programming. The other is a feature structure unification
in unification granunar formalisms. It is pointed out that not only can the UNION-FIND
algorithm be applied to the restricted cases as usnal, but a partition refinernent algorithm on
transition nets can also be applied straightforwardly to find the coarsest bisimulalion relation
that extends a given relation on hypersets.

3.1 Introduction

Aczel [1] proposed the universe of hypersets (= non-well-founded sets} for madelling non-well-
founded structured objects such as streams in Miloner's SCCS [51]. He provided a powerful
coinductive method like the inductive one in the standard universe of well-founded sets. Barwise
and Etehemendy [16] and Barwise [14] apply Aczel's theory to circular situations and unification

'ZFC minus the axiom foundation plus Aczel's antifoundation axiom.



of feature structures respectively. ln the universe of hypersets, any collection called a system
of equations has a unique solution. This lemma is called the solution lemma. For example,
r = {r} has a unique solution, which is obtained by unfolding the right side of the equation
unboundedly to get, intuitively # = {{{---}}}.

Jaffar and Lassez [39] proposes a scheme CLP(X) as a generalization of standard logic pro-
gramming, where X 1s a parameter for constraint languages. A constraint language consists of
a syntax of constraints, a notion of solutions, and a set of constraint solving rules. Pure Prolog
is an instance of the scheme with X being the constraint language of the standard theory of
equality over the Herbrand domain. The CLP scheme requires X to be solution compact and
satisfaction complete to assure that SLD) fair computation is sound and complete. Moreover,
the scheme assures sounduess and completeness of the negation-as-failure rule (NAFR) [46] for
canonical programs. The notions ‘solution compact’, ‘satisfaction complete’ and ‘canonical’,
among others, are explained informally below and will be defined formally in a later section.
By soundness we mean that (2) V {3) = (1) for every goal g and by completeness we mean
the converse, where

(1) g has a solution.
(2) There exists a finite success derivation far 4.

(3) There exists an infinite derivation for g.

Also by soundness of NAFR we mean that (4) = (3] for everv goal g and by completeness of
NAFR we mean the converse, where

{4) ¢ has no solution.

(5) Every derivation for g fails in a finite number of steps.

A program is called canonical iff for every success derivation the constraints appearing in the
derivation have a solution. For example it will be shown that a program in CLP(L ) explained
helow is canonical if every parameter appearing in the negative part or on the right side of
subsumption () constraints in the derivation will be bound to nonparameter terms in a finite
number of steps in the derivation.

Remark [n Stuckey [88]. a canonical program. P, is defined to be a program such that the
maximum semnantics is reached within countable steps of iterations of the transformation T'p for
P on the power set of the Herbrand base of P. {Also see Lloyd [46].) If we have not negative
constraints. then it will be evident later that our program is always canonical in this sense. J

A constraint language X is constraint definable if for every element & in the domain of X
there is a constraint ¢ in X such that r is a unique solution of . In other words, constraint
definability means that every element is a limit of a sequence of finitarily representable elements.
For example, as every real number is a limit of some sequence of rational numbers, the domain
of real numbers is constraint definable w.r.t. (with respect to) < and rational number constants.
A constraint language X is called compact provided that for every set (" of constraints (" has
a solution iff every finite subset of (' does.

The solution compactness condition is divided into two parts. One half is the same as constraint
definability above. The other half is that for any given finite constraint e each element which
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does not satisly ¢ can be covered with a finite constraint ¢ that shares no solution with c.
Clearly it follows from these definitions that if X is constraint definable and compact then X
is solution comnpact. However, the converse is not always true.

Honghly speaking, the satisfaction completeness condition of the CLP scheme states unifiability
and solvability are equivalent. More precisely, it requires that the existence of solutions of given
constraints 1s characterized by the syntactic rules of the constraint language. For example,
standard unification language over the Herbrand domain, ie. first order term unification, is
satisfaction complete because unifiability and solvability of constraints are equivalent. Recall
that a given family of equations is unifiable iff there exists a congruence relation that extends
the given family.

Based on these notions, the CLP scheme provides a foundation for logic programming to treat
infinite ob jects such as irrational numbers through constraints [40] and perpetual processes [46].
We are interested in nonterminating programs that process non-well founded structures such
as streams. These applications need maximum semantics because the standard minimum se-
mantics does not give micanings to programs that treat streams, for example.

So far, the complete Herbrand domain, i.e. the domain of infinite trees, and the domain of
real numbers with a certain appropriate class of constraints have been counted as two major
instances of the CLP scheme. In recent years logics of feature structures have been studied
extensively. The reader is referred to Moss [54] as one of the most up-to-date works on a logical
foundation of feature structures. Several anthors, Rounds [79] for example, suggest that the
domam of feature siructures is a new important instance of the scheme. Barwise [14] shows
that feature structures can be modeled as hypersets in Vy (the full universe of hvpersets aver
A} with the hereditary subset relation as subsumption relation. Accordingly, the domain of
hypersets should be examined as a bridge that connects unification grammar formalisms and
constraint logic programming,

Guided by the CLP schema, first we propose a constraint language L, over the class Vy of
hvpersets over A, where 4 is a class of atoms. [ 4 is a quantifier-free sublanguage of the first-
order language with equality. subsumption, disjunction, and negation intended for application
to feature structure unification. We then propose a natural sublanguage L4, of L 4 so that I A
is the class of constraints in L4 consisting of finitary terms. We will show that Vi 15 solution
compact w.r.t. Li,. Asncgative constraints are allowed, L4, is not satislaction complete w.r.t.
Vaw. However. we give a complete characterization of solvable positive constraints. Moreover,
a subclass of L, which consists of constraints called canonical is proved to be satisfaction
complete. The Essential points here are that the solution lemma [1] is jusi constraint definability
and thal the class of positive constraints in L, is compact. We give more details for these
[EISTN R A

In tact, there are clear reasons why Vi, and L4, satisfy the CLP criteria. Constraint defin-
ahility 15 clearly satisfied because of Aczel's solution lemma. i.e. every clement of Vi, can
be represented as a unique solution of a system of equations in Ly, As will be seen in the
proof of solution compactness of L4, the second half of the solution compactness is obtained
from constraint definability and compaciness of the positive constraints. Barwise [14] gives a
characterization of solvability of positive constrainls in termns of a certain kind of extensions
of the given constraints. The extension is called a simulation pair. A simulation pair is a set
¢ of equations and subsumptions such that ¢ is closed under the rules for bisimulation and
subsumption relations and that every parameter in the constraint is bound to a set term. We
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refer to this theorem as Barwise's unification iheoremn. We need to extend the theorem to the
case in which constraints have free parameters. In fact, we will obtain Proposition 3.8 that
asserts that every simulation pair with ‘unbound parameters’ can be extended to a simulation
pair without unbound parameters. This is a key lemma in this chapter. We refer Lo this lemma
as the binding lemma.

A complete characterization of solvable constraints is an open problem at this time: we give
only a partial characterization. Barwise's unification theorem is a complete characterization for
the class of the solvable positive constraints over hypersets. We introduce a class of canonical
constraints explained above. The notion of canonical supports is an extension of that of simula-
tion pairs to the case in which negative constraints are allowed. Soundness and completeness of
both the SLD fair computation rule and the NAFR (negation-as-failure-rule) are proved for the
class of programs such that the accumulated constraints on the whole of unfailing derivation
always form a canonical constraint.

In an earlier stage of logic programming, Colmerauer {23} introduced the domain of infinite trees
for modelling circularity. We try to extend infinite trees to hypersets to see how well the CLP
<chema and unification grammar formalisins can be reconstructed. One technical advantage of
Liypersets over infinite trees is that the theory can he constructed in an abstract way which
is highly independent of the concrete structure of objects. Remember that the mathematical
formulation of the complete Herbrand domain needs auxiliary notions such as path, metrics
and limit [46], while in the universe of hypersets we can start immediately from the solution
lemma.

We use Aczel's theory in two ways. One is to define the semantics of a program coinductively
and its use as a domain of logic programming as described above. In the former, two classes are
defined coinductively, One is a class of non well-founded triples for the declarative sernantics of
the program and the other is the class of non-well-founded pairs for SLD-like fair computation
trees for queries (= goals). Soundness and cormpleteness resulls are proved by showing a relation
called simulation heiween them. Indeed, the simulation relates solutions to computations in a
hereditary and coinductive way.

Here are a few remarks on algorithm complexity which concern hypersets. First, one of the
partition refinement algorithms proposed in Paige and Tarjan [69] can be applied to check the
solvability of a given system of equations. Let n and m be the numbers of nodes and edges,
respectively, appearing in the svstemn, assuming that the system is represented suilably as a
directed graph. Then there exists an O(mlogn) time-complexity algorithm to compute the
coarsest bisimulation for a given partition of the system. Second, the subdomain of records in
V', has an cfficient implementation for a theory of = and #. In fact, these constraints can be
solved with UNION-FIND technique [].

This chapter is the fonndation of the the logic programming sysiem, CIL, described in Chap-
tor 5. Also. the idea of CLP over hypersets and the results on unification over hypersets pre-
sented in this chapter have been used as the kernel of the knowledge representation language
called Quixote (95,7

TIn addition to these results, we will prove that every countable system of algebraic equations
‘s solvable in the complex number field if and only il so is every its finite subsystem. This fact
gives a foundation of the meaning of the incremental algebraic constraint solver in perpetual

*Quixote is under development al jeot, Tokyo.
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process, in which an inhnite numbcer of variables and equations may occur in the limit of the
computation. Also we will show that Vi, is compact with respect to the class of L4, if and
only if a is empty. This result suggests some difficulty in computational treatment of the
subsumption constraints. As a demonstration of our theory of the hyperset constraint, we
will show decidability of Colmerauer’s infinite tree unification theory with uneguations in a
generalized form. See Section 3.6

Although only a non-deterministic algorithm is shown, the well known union-find algorithm
can be available if it s restricted to the case of terms or records. Namely, the set unification
presented not only gives a theoretical perspectives but also has a good subproblem for which an
efficient algorithin exists. The constraint language can be extended to have set constructors, U,
M. (set difference). pow (power set) so that it has a very similar characterization of sufficient
condition of the solvability. It is interesting to give a more powerful set constructors. we
will give a partial solution in Section 3.6 based on categorical notion giving an example of
merge operation on non-well-founded record structures in a similar way of Aczel’s treatment of
Miluer's process algehras.

We give semantics of the CLP over set constraiuts, using Aczel's set theory. The soundness
and completeness result is formalized in terms of certain kinds of correspondence hetween com-
putation trees defiued operationally and solution trees defined declaratively. the computation
is sound if every path of a computation tree compute a solution. For the converse, the com-
putation is complete if for every solution there exists a computation path which compute the
solution. these notions are formalized and proved in Aczel's set theory. The point is that Horn
clav=- nrogram is a form of inductive and coinductive definitions over an appropriate given
e ‘ounded universe.

3.2 Preliminaries

By & © y we means that r is a subset of y, including the case of + = y. also. by x T 3 we
mean that o is a hereditary subset of y, including the case of r = y. We use Aczel's hyperset
theary ZFCA [1] as a metatheory thronughout the chapter. The following concepts are from
Aczel [1]: coinductive definition, solution lemma, bisimulation relation [70]. The definition of
solution compactness and satisfaction completeness are from Stuckey [88),

l.et A be a possibly empty set of afoms and let X be an infinite set of parameters (=variables).
Vy denotes the class of hypersels over A, Vy[X] denotes the class of hypersets over AU X,
Sets in V[ X] are called X-sets (over A). Vy is a subclass of V[ X]. Vi, denotes the class of
hypersets in V) that are hereditarily finite, i.e. finite at all levels. V), [X] denotes the class of
Xosols over A that are hereditarily finite. Vi is a subclass of Vi [X]. An element of V,[X] is
also called o ferm.

The transitive closure of a set & € V4[X] is the least transitive set T in V3| X] such that z C 7.
frans(x ) denotes the transitive closure of r. For example

trans({a, {b.c}}) = {a, {b c}, b.c}
where a.b. ¢ are atoms. In general u appears in v when u € trans({{v}).
Definition 3.1 A set is rational il it has the finite transitive closure. (i
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Clearly a rational set is hereditarily finite but the converse is not always true. To see this, let
{Ai}ien be a family of finite sets of atoms such that A; is a proper subset of A; for v < j,
where N is the set of nonpositive integers. It is clear that the solution for rq of the system
{ri= AU {zin} |1 E N} of equations is hereditanly finite but it has no finite transitive
closure.

Definition 3.2 A system of equations is a collection of equations x = b, for x € X, where X
is a collection of parameters and {b;}.ex is 2 family of X-sets. m]

Theorem 3.1 (Solution Lemma (Aczel [1])} Frery system of equations has a unique so-
fution in V.

Definition 3.8 For any A and X, a set u in V4[X] is finitary if u is hereditarily finite and
well-founded. a

Let NV be the set of natural numbers. Then the set {N'} is finite but neither finitary nor rational.
The set € such that (} = {01} is finite. Moreover, it is hereditarily finite and rational, but not
hnitary.

Definition 3.4 We assume a collection of nodes. A system M s a collection of erdered pairs
of modes such that for any node a in the system, the successors of a forim a set (not a proper
class) which is denoted by ayy. m

Definition 3.5 A binary relation B on the system M is a bsimulation on Mif R C RY, where
for a. he M

alith == YrcaydyeburRy & Wyebylre ayrRy.
O

For the sake of convenience we represent a bisimulation relation R as the collection cg of
equations a — b such that aRh. A collection ¢ of equations is called a bisimulation constraint
if ¢ = cp for some bisimulation relation RB. e can be a proper class. We make no distinction
hetween the bisimulation relation and the bisimmlation coustraint.

3.3 Unification over Hypersets

3.3.1 Constraint Language L,

Tns this subsection we introduce a constraint language /.4 using the definition of Smolka [85]
and Hoehfeld and Smolka [36].

Constraint Language

Definition 3.6 A constraint language is a quadruple (X, C, V., T), where

(1} X is a set of pummc!c:rs{:varialilea;‘}.

3We make no distinction between parameters and variables.
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(2) " is a set of constraints,
(3] ¥ is a function which assigns to each consiraint, say 1, a set V(1) of parameters.

(4] I is a set of interpretations. An interpretation is given as a pair (D, 8) of a domain
D and a function 5 such that {or any constraint 1» € & assigns a set S(v) of partial
functions from X into D. An element of S{v'} is called a sofution of 1. IT the restriction

of f to V(v) belongs to S(4) then f € S{v).
o

Definition 3.7 A constraint language is compact if [or any countable set ¢ of constraints in
the language, ¢ is solvable iff every finite subset of ¢ is solvable. o

We fix the syntax of constraint languages L = L4 and Ly, by giving X and €. X is fixed to
be an infinite set of parameters. A set w is flat if every element of u is either the empty set,
an atom, or a parameter. A constraint is flat if ever sel term in the constraint is flat. Without
luss of generality for our purpose and for the sake of simplicity we use a convention that every
term in the formal part of the chapter is flat unless mentioned explicitly. A special constant
symbaol § is reserved to denote the empty set; § = {}.

Definition 3.8 An atomic constraint is an eguation (=, u.v) or o subsumption (C, u, v}, where
v £ V[ X[, The equation and subsumption are written as v = ¢ and u C o, respectively, as
usnal. -

Both u and » above are called arguments of the alomic constraint.

Definition 3.9 A lileral is an atomic constraint or its negation (-1} written as —u. where u
is an atomic constrainl. A elause is a set of literals. 0

Definition 3.10 A consiraint is an element of M. where M is the least subclass of ValX] such
that M has every literal and is closed under VoA e il te M,ou© M then (= 1), (V. u),
(Au) e M. a

Lhe above three forms are written =0, W u, A u as usual, respectively,

Let ¢ be a constraint in £4. The field of ¢ is the transitive closure of the set of arguments of
atomic constrainis appearing in ¢. fld{c) denotes the field of . For example,

fd({r = ay # {h.e}}) = {r.a,y, {b.c},b,c}

where u. y, . b, and ¢ are supposed to be not set terms. Clearly fld(e) is finite whenever ¢ is
finitary.

For a constraint ¢ in L, a lerm ( is called a term of constraint ¢ if ¢ € fldic). We assume
that constraints are elements of Vygs X, where § is the set of logical connectives and relation
symbols, e S = {WV. A=, .=, C,---}. But we need not assume that 4 and S are disjoint.
A positive constraint is a constrainl in which no negatton sign — appears,
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Definition 3.11 [ 4. is the sublanguage of L4 whose constraint consists of all finitary con-
straints in L. O

As a convention, we write u # v and u £ v for =(u = v) and ~(u & v) respectively. We also
write uV v and u A v for V{u, v} and A{u, v} respectively. We fix an interpretation I of L4 in
the following way. The distinguished constant symbol # denotes the empty set. Each constant
symbol denotes itsell. Let s be a set term and [ be an assignment such that each parameter
appearing in s is in dom(f), i.e. V(s) © dom(f). The interpretation of s w.r.t. f, denoted
by s[f], is induetively defined to be the set {u[f] | u € s} as usual, where z[f] = f(z) for z
in dom{f) and a[f] = a for any atom a. Noute that we have assumed that every term in L4,
is well-founded. The interpretation of the equality symbol *="in L4 is the identity relation in
the domain Vy.

Definition 3.12 The interpretation of the subsumption relation symhol ‘" is the largest re-
lation H on V4 such that if x Ry then one of the following holds:

(1) x =y € A, ie rand y are the same atom in A.

(2) 7 and y are sets in Vy and for each u € x there is some v € y such that = Ry.

O

Remark The C relation is a preorder on Vy but not a partial order. In fact the following are
true, which show a failure of the antisymmetric law for subsumption:

{0.{0}) = {{0}}.
{0} € {0. {0} }-

C

Remark Fven in the case of ordered pairs we cannot reduce subsumption to pairwise sub-
sumption. For example, though {a, ) T (b, a) 1s true by definition of subsumption. but also by
definition neither a © b nor b C a are possible, where ¢ and b are two distinet atoms. o

There are ‘minimum’ and ‘maximum’ elements in V4 wort. C. In fact § C 2 and x T 81y for
any set o in Vy, where 14 is defined by the equation 14 = A U {{24} for a set A.

Proposition 3.2 r C 0, for any set  in Vy.

Proof Let R = {({r,0,) | r € Vi}. R is a binary relation on Vy. Clearly R satishies all
clauses of definition of C. As C is the largest such relations we get R CC. 0

Definition 3.13 £ is a binary relation between assignments f and constraints ¢ such that
Vie) C domi{ f), which is defined inductively on the structure of e

(1) |y u=rvif u[f] =v[f].
(2) = u Cwif ulf] C o[f].
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(3} [y —eif it 15 not the case that k= c.
(4] Vuif =y d for some d € u.

(3) Er Auif =pdiorall d € u.
0

Definition 3.14 Au assignment f is a solution of a constraint ¢ in L4 iff =y . We also say
that ¢ is solvable or satisfiuble when ¢ has a solution in the domain. O

Now we have fixed the constraint language L 4. It is easy to see that a constraint ¢ is solvable
Iff some disjunct of the disjunctive normal form of ¢ is solvable. So it suffices to study the
solvability of clauses.

Constraint Rules

We define a list of constraint rules for the constraint theory in I,. We take constraint rules
to be condition on clauses in Ly It is straightforward to see that the logical reading of the
following rules is sound w.r.t. the constraint language [ 4. In the definition. ¢ is a clause being
conditioned. 7, y, = are any terms and u. v are set terms. So u and v are neither an atom nor
parameter.

Definition 3.15 Constraint Rules

(1) If 715 a term appearing In ¢ then r = 1 € ¢
(2) fr=yecthrny=xce
(3) Her=yeeandy ==& rthen #r=:z¢ ¢

{4) It w=v € e then for cach # € u there is y € v such that ¥ = y € ¢ and for each y € v
there 1s 7 £ u such that r = y € ¢

i) fr#y€cthen y #rece
(6) fr=yccandr#:€ctheny+#zeec

{T) If v+ v € ¢ then either Lthere s some r € u such that r #u € clor all y € v or there
15 some y € v such that r 2 y € ¢ for all 7 € w.

(8) If = is & term appearing in ¢ then 2 T r € ¢,
iMlizCyecandy z€rthenzC: €0,

(I fr=yecandsCzcCethenyC 2 €
(Il)fr—yecand:z:Crecthenz:Cyee

(12) Il & C y € ¢ and either  or y is an atom (in A) then & = y € ¢.
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(13) frChecthenz=0€ec

(14) Tf u C v € ¢ then for each = € u there exists some y € v such that s Ly € c.
(15) o =yeccandrLucctheny Zuec

(16) fz=yccandu r€cthenully€c

(17) fu Z v € ¢ then there is some z € u such that » I y € ¢ for any y € v.
O

In fact, these rules can be used as an effective method Lo solve finitary constraints as described
later, However, they are intended only for theoretical exposition, not efficient computation.
Record structures, for example, should be used for practical computation. The record structure
will be discussed later in the chapter as an implementation issue.

Support

Recall that by a clanse, i.e., a possibly infinite clause in L4, we mean the conjunction of literals
in the set. For example the clause {p,q, 7} means pA g Ar.

Definition 3.18 A parameter r is bound in a clause ¢ if ¢ has an equation r = b where bis a
set (not a proper class). atom, or @ L

Definition 3.17 A clause ¢ is normal if each parameter » appearing n ¢ iz bound in « il
Intuitively, a normal clause is a ‘grounded constraint’, i.e., every parameter is fully instantiated.

Definition 3.18 A clause ¢ is canonical if the following hold.

(1) For each negative literal | € ¢ there is a finite normal subset ¢’ of ¢ such that { € ¢

(2) For each positive literal u C r € ¢ & is bound in ¢, where z is a parameter.

Note thal a normal clause is canonical but a canonical clause is not always normal. For cxample
the clause
[r#y,:Exy-0.7=10)

is canonical but not normal because = is not bound in the clanse.
Definition 3.19 A presupport is a consistent clanse closed under the constraint rules. That

is. it is a clause in L4 that has no complementary pair of literals and is closed under the above
constraint rules (1)- (17) of the langnuage 1. 4. O
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Everv bisimulation constraint and subsumption constraint is a presupport. Also “simulation
pair” in Barwise's unification theorem [14] is a presupport, which is, roughly speaking, means
the union ol a bisimulation and a subsumption constraint.

Definition 3.20 A support s is a presupport in L, such that there is no pair p and d that
satisfies the following:

e pis a positive subset of =
o =d is a negative literal in s.
e pU {~d} is canonical.

¢ There is a presupport s' in L, such that puU {d} C &".

Fvery positive presupport is a support by definition.

Example 3.1 Take a sel s
{r#pr={aby={hy# ozl =2y} =yx =2y =y {z} = {z}. {v} = {v}}.
Clearly s is a presupport. However s is not a support. To see this, consider the canonical subset
{r#ya={s}y={y})

of . It sulfices to show a presupport that extends the clause {& = y,o = {z},y = {y}}. In
fart the clause '

fr=yr={cty={yhy=alal =0 {yl=pr=2p=y {2} = {2}, {y} = {v}}
is immediately determined to be the presupport. O
Presupports and supports will be used heavily to characterize the satisfiahility {=solvahility)
of constraints. We say a clause p is a presuppor! of clause e if p is a presupport such that ¢ C p.

We also say a clause ¢ has a presupport p when p is a presupport of ¢. We say that p is a small
presupport of a clause ¢ if fId(p) € fld(c), i.e., only terms of ¢ appear in p.

Proposition 3.3 For cvery finttary constraint ¢ the following hold.

{1) The set of small presupports of ¢ is finite.
{2} The set of small supports of ¢ is finite.
{3) If there erists a presupport of ¢ then there exists also a small presupport of e,

{4} If there erists a support of ¢ then there erists also a small support of e
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Proof let  be the set of literals [ such that Adil) C fid(c). As ¢ is finitary fldic) 1s finite.
So (¢ must be finite. As every small presupport of ¢ is a subset of (), we get (1). Similarly, we

get (2).

Now we prove (3). Let p be a presupport of ¢. Clearly ¢  p. As @ is finite, pN ) is finite. It
is routine to check that the clause pni@Q satisfies the definition of presupport. As ¢ C () we get
¢ C pn Q. Therefore, p @ is a small presupport of c. Similarly, we get (4). o

Proposition 3.4 For every finitary clause ¢ the eristence of a presupport and support of ¢ are
decidable, respectively.

Proof In general, for a given finite set B, the existence of a presupport p such that fld(p) € B
is decidable by an exhanstive search method.

Clearly p is a small presupport of ¢ iff p is a support such that fld(p) € fld(c). Since ¢ is
finitary, fld(c) is finite. So it follows from the above general remark that the existence of a
small presupport of ¢ is decidable. Hence, from the above proposition 3.4, the existence of a
presupport of ¢ is decidable. Similar we can prove the case of a support. |

Motivating Examples

(enerally speaking, some infinite computations fail to have a limit solution even if there 15
no conflict found in the accumulated constraints on the way of computation w.r.t. the builtin
constraint rules. So it is necessary Lo find a subclass of possibly infinite computations that has
a ‘limit’. ‘Canonical’ supports characterize such a subclass of computations. More precisely,
every computation has a limit whenever the limit constraints on the computation has a canonical
support. In fact, as will be show later in detail, the constraint sublanguage L4, ol La has the
nice property that every canonical snpport is solvable in Vi, (theorem 3.11). We use several
motivating examples from some constraint languages which leads to the theorem.

First, the standard equality constraint language [y over Herbrand universe {1 is nob compact,
where H is the set of all first-order ground terms generated by given constants and function
symbols. To see this take a set ¢ of atomic constraints

ry = flag)oea = flra)o T = flTnss)o

where [ is  unary function symbol. Every finite subset of ¢ is satisfiable but ¢ itsclf is not
satisfiable in H. This example shows that there is a consistent constraint in Ly which 1s
unsolvable in . However it should be noticed that the compactness of the langnage L 4, over
V. holds only w.r.t. positive constraints. In [act becanse of negative constraints L4, is not
compact. Consider the constraint ¢ consisting of literals

I ?E Ta,Xg =,J£ T va 1 = {.T-;]',J:-g = {Ig},'--. {31}

Clearly every finite subset of ¢ is satisfiable. However, by the solution lemma the global solution
of the equations is uniquely determined as

nmas = an == (= {1

which does not satisfies any disequality z; £ z; in the constraint. Note thal constraint (3.1)
s normal but not canonical. Moreover, it is not the case that every fimte normal support is
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solvable. To see this let ¢ = {x = {«},y = {y},x # y}. ¢ has a finite normal support. However,
¢ 15 unsolvable becanse the unique solution for the equations is = €2 and y = 11, which does
not satisfy the unequation in ¢

3.3.2 The Constraint Logic Programming Scheme

The CLP(X) scheme of Jaffar and Lassez [39] is a foundation for treating infinite objects, e.g.,
irrational numbers and infinite computations in logic programming. There are two well known
instances for the parameter X. One is the domain H* of infinite trees. The other is the domain
R of real numbers. The CLP scheme assures soundness and completeness of the semantics
including the negation-as-failure rule. Also the CLP scheine gives a duality (called canenical)
between maximum and minimum semantics. That is, roughly speaking. the maximum model
of the program can be reached by a countable monotone decreasing sequence of approximations
as well as the minimum model by an increasing one. First of all, let us recall the definition of
‘solution compactness’ and “satisfaction completeness’,

Definition 3.21 (Jaffar and Lassez [39, 88]) A many sorted structure R is called solution
compael if the following hold.

{1} every element in R is the unique solution of a finite or infinite set of constraints.

(2} for every finite constraint ¢ and choice of n there exists a finite or infinite family of
finate constraints e, containing n parameters ;. - -+, 7, such that:

R™ = {{f(x1).- - flan)) | £ is R- solution of ¢}

= U{{H[ml:‘1' gl )] | g 18 R- solution of ci ).

rl

Intuitively speaking, the sccond condition of solution compactness says that for any given finite
constraint ¢ each element in the complement of r can be separated from ¢ by a “finite covering .
We shall treat only the case of n = 1, since the general case in which parameters 7,, -- -, o,
in the given constraint ¢ are chosen is reduced to this simple case by adding the equalion
r=(xy,---,7,) to ¢ in which the new parameter 7 is the only parameter chosen, where
15 @ new paraineler. In what follows, 3¢ means the closed formula ohtained by existentially
quantifying the parameters of . Similarly Ve means the universal closure of .

Definition 3.22 We shall say that a theory 7 and structure R correspond if

i1} R =T (R is a model of T) and

(2} R k= de implies T = Je for all constraints c.

In order to obtain negative informalion from a theory 7 we require a further condition,
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Definition 8.23 (Jaffar and Lassez [30, 88]) A theory T is safisfaction compleie if
T = V¥-c whenever not 7 E Jc
]

In other words. a theory T is satisfaction complete if whenever there is a model M of T such
that e is unsolvable in M., then ¢ is unsolvable in every model of 7. Satisfaction completeness
roughly means that solvability is characterized within the theory on the domain. For example,
standard unification theory over the Herbrand domain is satisfaction complete because, for any
set ¢ of equations, the solvability of ¢ is equivalent to the syntactic condition that there exists a
congruence relation that extends the given system of equations. Thus, the standard unification
theory T is the set of clauses of first-order equations which represents a congruent equivalence
relation over first-order terms with no clash between signatures.

3.3.3 Solvability of Hyperset Constraints

We relate ZFCA to the constraint logic programming scheme [39]. We show that the constraint
language .4, introduced above satisties the criteria of the schema,

MNormal Constraint

The following theorem is due to Barwise [14]. X and A are classes of parameters and atoms
respectively. We repeat the proof given by Barwise using normal supports instead of “simulation
pair” in Barwise

Theorem 3.5 (Unification Theorem (Barwise)) Given any set p of equations and sub-
surnptions over V[ X] the following are equivalent.

{1} p has a normal support.

(2) p has a solution in Vy.

Proof (1)=—>(2): Let ¢ be 4 normal support of p. Since g is normal for each r in V{g) there
exists a set term by such thal x = b, isin q. Let § = {& = b; | 2 € V(g)}. S is a system of
equations. Clearly S is a subset of q. By the solution lemma, there is a solution f for 5. Let
B be the set of ordered pairs { f{u), f{v)) such that u = v is in g. Let D be the set of ordered
pairs { fu), f{v})) such that u C v is in g. B and D are binary relations on V. Since pis a
support, B and D satisfy all defining clauses of the bisimulation and subsumption relation on
V4, respectively. Since the maximum bisimulation on V), is the identity relation [1], we obtain
D {(r.2) |z e Va}. Similarly £ is a subset of the hereditary subset relation on V4. Hence
we obtamn (2).

{2)=={1): Suppose f is a solution for p in Va. Lel P be the set of equations u = v such
that u and v are in fld(p) and f(u) and f(v) are the same element of V. Let  be the set of
subsumptions u = v such that u and v are in fld(p) and f(u)is a hereditary subset of fv) in
Vi. Let g = PUQU{r = flz) |z € V(p)}. 1t is casily checked that p C ¢ and g has a normal
support in La. O
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Note that this theorem does not assure that any normal suppert in the language L4, has a
solution in Vi, eveu if every atomic constraint in the given support is finitary. We will discuss
this later. By a positive suppor! we mean a support without negative literals, i.e., consisting of
only atomic constraints.

Lemma 3.1 (Binding Lemma) Any positive support has a positive normal support.

Proof Let p be a positive support. Let x be any unbound parameter of p, i.e., we suppose
that if 2 = u in p then u is a parameter. Let I, be the set of terms u such that « C € p.
Similarly, let U, be the set of terms u such that £ C u € p. As p is a positive support, if r = y
15 in p for some parameter y, then L, = L, and I, = ;. Let B, be the union of sets in L, and

P=pUf{uC B |uel}U{B Cul wel,JulB, =B }U{B.C A}

As p is a positive support it is certain that p' satisfies all the constraint rules. For example, we
can see that p' satisfies constraint rule {11) as follows. Let y € B, and suppose that B, C v € p'
for some set v. By definition of B, s S v € pand y € wand u = x € p for some u. As pis a
support u v € pand y £ 2 € p for some = € v. Hence, p' satisfies constraint rule (14). Thus
we can prove that p' is a support. Hence the reflexive closure p” of p' U {x = B,] w.r.t. the
equality = is a support. Note that Vip) = V(p"). By repeating this extension procedure for
each free parameter in p we get a monolone increasing sequence of supports of p. It is easy to
see that the union of supports in the sequence is a normal support of p. O

Example 3.2 Take a positive suppurt {{r} Z r}. Then the above proof constructs a positive
normal support {{r} C 2 = {#}} of the given support. o

I do not know whether positive” in the lemma can be dropped or not. In this case at least, the
above proof does not work. To see this. consider the support {{r} C 2,z # {x}}. The normal
constraint coustructed by the method in the proof is {{x} T x.2 = {r},= # {x}}. which is
not a support.

Theorem 3.6 Evcry positive support in [y 1e solvable in V.

Proof Let p be a positive support. p has a positive normal support p' by the binding lemina.
As Barwise's unification theorem 3.5 can be applied to arbitrary positive supports p’ has a
solution in V. o

Theorem 3.6 together with Proposition 3.4 gives a decision procedure for subsumption prablems.
More precisely, given a set of positive equations and subsurnptions, it is decidable whether the
st has a solution or not.

Remark The distinetion between atom and parameter 1s important. Consider the constraint
@ — {r}. If @ is an atom then, by definition, there is no support for this constraint. In fact
there is no salution in this case. Otherwise, if @ is a parameter, clearly a = {x} has a support
and iz in fact solvable. a

Hemark Applving this theoreni. | found an elegant decision procedure for a class of exten
sional subsumption problems over feature structures [60]. The procedure in [60] is & hyperset-
theoretical positive answer to the prohlem class, which was first solved by Dirre {April 1990).
On the contrary it was proved in [29] that the intensional version of subsumption problems is
undecidable. L
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Lemma 3.2 Given a countable clause ¢ of finitary literals, the following are equivalent.

(1) Every finile subset of ¢ has a suppert.

(2] ¢ has a support.

Proof (2) = (1): Obvious.

(1) = (2): Suppose (1) is true. If ¢ is finite, (2] is obviously true. So we assume ¢ is infinite:
¢ = {g, | 0 < n}, where g; are literals. Let S, be the set of small supports of {go," . qn}. It
follows from the assumption that S, is a nonempty finite set and that for any n = 1 and p € 5,
there is a support p' € S,_; such that p’ € p. For eachn 2 1, let T, be the set of all sequences
{p; Joejen of supports such that p; € §; and p,y S p; (7 # 0)- Clearly, every T, is finite and
nonempty. Also, T, and T,, are disjoint from each other for n # m. Let T be the union of the
family {T,}nz0. Let R be a binary relation on T such that Ri(p,p') is true ifl p is an initial
segment of p', i.e.. p' is an extension of p as a sequence. 1t is easy to see that (T, H) is a tree
with finite branches at each node. Applying the standard argument of Konig's leruma to this
tree. we can construct an infinite sequence {p;}oc; such that p, € §; and p;y € p; (7 # 0)-
Let p be the union of the sequence: p= U{p; [0 < j}. Ttis easily checked that pis a support
of e 0

Proposition 3.7 The following are equivalent for any counfable sel p of finite atomic con-
slrainis:

(1) Every finite subset of p has a support.
(2 p has a normal support.

Proof This proposition is a direct combinalion of the previons two lemmas. O The normal
support p in condition {2) may have infinile terms.

Proposition 3.8 For any normal support p the following are equivalen!.

(1) p has a solution in V.

(2) For each negative literal { € p, p'U {1} has a solution 1n Vi, where p' is the set of positive
fiterals in p.

Proof (1) = (2): Obvious.

(2) = (1): Suppose (2) is true. Let p’ be the set of positive literals in p. As p is normal, p’
is also normal and V{p) = V(p'). By the solution lemma, there is a unique solution f of p'.
From the hypothesis, the uniqueness of f, and V(p) © dom(f), it follows that f 15 & solution
of p' U {1} for any negative literal [ in p. Therefore, [ is a solution of p. i

Lemma 3.3 For a positive normal support p and an atomic consiraint d such thal Vid) ©
Vip)l, the following are equivalent.
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(1) pU{~d} has a solution in V.

(2) ploid} has ne solution V.

Proof  As pis a normal positive support, there is a unique solution f of p in V} such that

dom({ f} = V(p} and Vid} C dom(f).

(2} == (1): Suppose (2) is true. Then f does not satisfy d. Otherwise, f would be a solution
of pU {d} in V4., which contradicts (2). So f is a solution of —d. Hence, f is a solution of

pll{—d}.

{1} = {2} Suppose (1} is true but (2) is not, i.e., there is a solution g of p U {d}. So g
ust satisfy . On the other hand, it follows from (1) that f must satisfy —~d. As f and g are
solutions of p and V{d) < Vip), f and g must coincide on V{d), which is a contradiction. Hence
(2) must be the case. O Lemma 3.3 and the binding lemma
{Lemma 3.1) are a basis of a unification algorithm. To see this, let p and d be a finite normal
support and an atomic constraint, respectively, such that V(d) C V(p). Then it is decidable by
a naive saturation method whether p U {=d} has a solution or not by checking the solvability
of pU {d}, which can be determined by Barwise's simulation pair thearem. This remark will
be used in a later section for application to the usual term structures and record structures.

Lemma 3.4 (Compactness Lemma) For a posifive constraint ¢ = {d, | 0 < n}, the foliow-
g are equivalend,

{1} Each finite subset of ¢ has a solulton in V.

{2} ¢ has a solution in V4

Proof (2) = (1}: Obvious.

(1= (2): Suppose (1} is true. By the binding lemuma, since every finite subset of ¢ has a
sipport, ¢ has a normal support p. Then, by Barwise’s theorem, there is a solution of p in
V. o

The following lenuma is a corollary of the compactness lemma {Lemma 5.4).
Lemuma 3.5 For a sef ¢ of atomic constraints in Ly, the following are equivalent.

(1) There is no support of ¢,

(2} There is some finite sel o of ¢ such that there is no support of ¢,

Now we address the problemn of compactness of Vi, w.ort. L., Barwise's thearem is used
again. Consider a countable family of subsumptions {a;} = z for i > 0, where a; are distinct
atoms. Then every a; must be an element of . S0 r must be infinite. This means Vi is not
compact in general w.r.t. subsumption. The theorem below gives more precise information
about this problem. In the proof, we treat only positive constraint, which is a countable set of
equations and subsumptions between well-founded elements of V[ X]. Note that cach element

of a constraint 15 hinitely representable as a tree,
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Theorem 3.9 Lel A be a set of atoms. Vi, 1s compact w.r.t. the class of supports in La, off
A=10.

Proof Uunlike the other parts of the chapter, set terms here may not be Hlat. The proof is
divided into two cases, (1) and (2).

(1) Suppose A # 0 and a € A. Let {1, be the unique solution of z = {a,z}. Define a countable
sequence b inductively as follows,

(1) by = {2}
(2) b, = {a,bu_s}. (n>10)

Define a countable sequence d inductively as follows:

(1) do = {a}.
{3] d:t = {d'r.—l}‘ {Tl = U.I

Let e, = {d,,b,} for n = 0. It is clear that if d, C u then u must have the ‘path’ d. by
definition of d,. If u C e, and u has the path d, then « cannot have any path d,. for n' # n.
Hence for n # n' if d, CuC ¢, and d E u' E ¢, then u # u'. Consider the positive support
5 as the closure of the constraint

{d, Cx|nz20}u{zCe, |n>=0}

where r is a parameter. By Theorem 3.6 the support s has a solution in V4. It is clear that
every subset of s has a solution in V. But by the remark above, any solution for r rmust have
an infinite number of elements. So it is impossible for s to have a solution in Vy,. Therefore,
1"y, is not compact w.r.t. L4..

(2} Suppose A = . For u,v € V4, use Konig's lemma to easily prove that u v iff the *height’
of u is less than or equal to that of v. where the height of non-well-founded sets is oo and the
height of § is 0. The height of other nonempty set is defined to be 1 + the maximum of the
heights of members of the set.

Tet s he a clause, Consider functions h that assign nonnegative integers including o¢ to each
parameter r,y appearing in s in such a way that

hiy) < hirjiful > & sandy € u

hly) < hir)iffu=r¢€sand y € u

Aly) < hiz) if yEx € 5.

hMy)=hlz)ifr=yec s

where we use conventions oc < oo and n < oc for finite integers n. Intuitively, h(z) is the
‘height” of a solution for r satisfying s. Let H be the set of such height functions on s and
let h, be the least function in H, which is defined so that h.(r) has the least integers in
{h(z) | h € H}. I is casy to see that h, € H. Define a sequence p inductively as follows.

26



® poo = {pat, le, (L
[ ] pu = E'
¢t ={pu} (n>0)

Consider 8" = s U {r = py,() | ¢ i3 unbound in 5}. As 5" is clearly a support, s’ has a solution
in Vi, say f. Il follows from the definition of f that the height of flu) is k,(u), for u
appearing in s. For u © v € s, it follows from the remark above on the relationship between
the subsumption and the height that h,(u) < h,(v) and therefore f{u) C f{r). Hence, s is
solvable in V, . Therefore, Vy is compact wort. Ly, mi

Canonical Constraints

We treat a more general case of compactness in which negative information 1s involved. Note
that a canonical constraint does not always have a solution. For example the constraint con-
sisting of the literals

r#yx={r}y={y}

ts a canonical support but clearly has no solution.

Theorem 3.10 (Canonical Compactness) For a canonical set ¢ of literals in L 4., the fol-
lowing are equivalent.

(1) ¢ has a solution m V.

{2} Every finile subset of ¢ has a solution in V.

Proof Let ¢ = pUp' where p and p’ are the sets of positive and negative literals of e,
respectively.

{2}~ (1}): Suppose (2) is true, i.e., every subset of ¢ has a solution in V,,. So every subset
of p has a solution in V. It follows from the compactness of positive supports that there is
a solution [ in Vi, of p. We show that f is also a solution of p" in V,,. As ¢ is canonical,
then for each negative literal d in p’ there is a finite subset ¢ of ¢ that is a normal constraint
containing d. By condition (2) q has a solution in V.. say h. As Lhe set of positive literals in
q is normal and is a subset of p, it follows from the nniqueness of a solution that [ and f st
coincide on cach parameter of ¢. Thus f satisfies every negative constraint in p’. Therefore [
15 a solution of e in V.

(1} = {2): Obvious. O
Theorem 3.11 (Canonical Support) Fvery canonical support in L4, 15 solvable in V.

Proof Let ¢ — pUp' be a canonical support where p and p’ are the positive and negative parts
respectively. By Theorem 3.6, p has a solution in Vi, say f. As ¢ is canonical, f is defined on
every parameler appearing in p’. Suppose that f satisties d € p’. Then {d} U p has a support.
As e s canonical there 1s a normal finite subset p” of p such that {d} Up is also normal. Hence,
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{d} Up" has a support, which contradicts that ¢ is a support. So f is not a solution of d. Hence
f is a solution of ~d. Therefore f is a solution of c. o

By saving thal a constraint ¢ has a solution r = ! we mean that there is a solution f of ¢
such that f(r) ={. Let ¢ be a constraint in La,. x the distinguished parameter of ¢, and { a
hyperset of Vy,. Then a separating cover of t from ¢ is a clause s in L, such that s has a
solution z = #, but no common solution with ¢.

Theorem 2.12 (Solution Compactness) Vy, is solution compact w.rt. La..
P

Proof Let ¢ be a finite constraint in [ 4. By transforming ¢ into disjunctive normal form we
can assume without loss of generahty that

e=g Wep Voo Wy

for some positive integer n. Let z be the distinguished parameter in c. Assume t € Vi, such
that the constraint ¢ has no solution for x = 1.

Our goal is to find a finite separating cover s of ¢ from c. If ¢ is unsolvable in Vy, we can take
the constraint {0 = 0}, for example, as the finite separating cover of t from ¢. So we assume
that ¢ is solvable. Let E; be a system of equations

Iy = hn.I] :bl="'!Tm= E"m!"'

that defines { as the unique solution for zo. Note that, as # € Vi, clearly E; can be constructed
so that £, is a constraint in L 4. It suffices to show that for each 1 <1 < n, if ¢; 15 solvable in
1y, there is a finite subset s, of E, such that s; is a separating cover of { from ¢, because, if so,
then it clearly follows that s, - s, is a separating cover of ¢ from e. S0 let i be any integer
1 < ¢ = n such that ¢ is solvable in V.. Let p and p' be the positive and negative parts of ¢;
respectively. We show that there is a subset of E, that is a separating cover of ¢ from p U p'.
The proof is divided into two cases (1) and {2).

(1) Suppose that the constraint {r = xq} U F; U p has no solution. Then there is some finite
subset E' of E, such that {r = x5} U E'U p has no solution, for otherwise, by the compactness
leima (Lemma 3.1}, there must be a solution of {x = x¢} U £y Up. But this means that z = ¢
is a solution of p, which contradicts the assumption. Now we have obtained a separating cover
s={r =z} U E of t from puU p.

(2) Suppose that the constraint {r = x5} U £y U p has a solution. We divide this case into two
parts.

{2.1) Suppose that £, U pU {d} has a support for some negative literal ~d in p'. Then p U {d}
is a separating cover of ¢ from p U p'.

(2.2} Suppose that £, p U {d} has no support for any literal =d in p'. Let —d be any literal
in . Then no solution of {# = t} U p can be extended to that of {d}. So any solution of
[r =t} U p satisfies ~d. Hence any solution of {r =} U p satisfies p’. So & = t is an solution
of pUp’. This is a contradiction. Therefore, the last case is impossible. This concludes the
proof. o

The solvability of canonical constraints in [ 4. is characterized using a syntactic notion of the
support in the following theorem:
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Theorem 3.13 Lef ¢ = gUig’ be a canonical constraint mm L 4., with positive part g and negative
part ¢'. Then the following are equivalent.

(1} ¢ is solvable in V.

(2] ¢ has a normal support p such that p Uy is a canonical support.

Proof Use Lemma 3.3. O Now we establish the satisfaction completeness of
unification theory as a direct consequence of the results obtained so far. Let Ty be the theory
of ZFCA plus the theory of the constraint language [, taking the latter theory to be the set
of 3p, where p is a canonical support.

Theorem 3.14 (Satisfaction Completeness) For any canonical constraint e in L4,

Ta. | Ve whenever not Ty, = e

Proof We prove the contrapositive. Suppose that Ty, = ¥—c is not the case. Then there
must be a model of 74, that satisfies c. Hence, by Theorem 3.13, ¢ has a canonical support ¢'.
Then, by the canonical support theorem (Theorem 3.11). ¢ must be solvable in any madel of
T4.. Hence, sois c. Therefore. we get Ty, Je. O

We have proved the necessary properties required by the constraint logic programming scheme,
Thus we have CLP(L 4. ). for which also we write Joosely CLP{AFA;.

3.4 Coinductive Semantics of Horn Clauses

We turn to the constraint logic programming (CLP) over the hyperset domain Vi [X], where
sets A and X are assumed to be large enough to include all necessarv atoins and parameters
respectively, We start by defining two semantic domains. One domain consists of compulation
trees for the operational semantics and the other one consists of solution trees for the declarative
semantics. Intuitively speaking, a computation tree is ohtained from some solution tree by
‘forgetting’ information about solutions coded in the solution tree. Flements of the two domains
are coded in hypersets in a more natural way than the usual representation hy state transition

nets,

For a given Horn clanse program, the two semantic domains above are defined coinductively
in the domain Vi.. Soundness and completeness are formalized as a relation between the
computation trees and the solution trees. In fact, this relation is a ‘forgetful’ projection from
solution trees into computation trees. This simulation relation is defined coinductively in a
strajght forward way.

T'hroughout this section, A and X denote setz of atoms and parameters respectively. Tt follows
from this assumption thal various constructions given in this section never form sets but never
proper classes nnless mentioned otherwise.



3.4.1 Horn Clause with Constraints

We introduce a class of Horn clauses with constraints over the constraint language La.. Let A
and X be sets of atoms (= constants) and parameters, respectively, as before. Let II be a set
of predicate symbols. If p € 11 and .-+ 7, are parameters, then plT1, ... 2y ) 18 an alomic
goal. A goal is a finite set of atomic goals. A head is a form plz,,. .. , T, ) where p is a predicate
symbol and =z, (i # j) are distinct parameters. A constraint Horn clause is a triple (h, o, g),
where h is a head, ¢ is a constraint, and g is a goal. We write

h:=cl|b, b,

for (A, e, {by,- -, bu}). A program is a finite set of constraint Horn clauses, each clause in it is
called a program clause.

We use a simple running example to illustrate the idea of the coinductive semantics defined
below. Let ¥, be the program consisting of three constraint Horn clauses:

(C1) bit(0).
(C2) bit(1).

(C3) streamix) = = ={(by) ! ht(h), stream(y).

Intuitively, the coinductive semnantics of the program ¥y is a [unction Ty such that To(bit) =
{0, 1} and Ty(stream) is the set of streams over 0 and 1. Note that the standard least semantics
of Wy is & function I, such that Tj(bit) = {0,1} but Ij(stream) =

3.4.2 Computation Trees

We introduce notions of a state and computation tree to give an operational semantics of the
program. Computation trees only have information about steps of suceessful computations. In
other words, they have no explicit information about failure branches.

Definition 3.24 A computation state (state for short) is a triple {c,g,£) of a constraint ¢, a
goal ¢, and a set £ of parameters such that ¢ has a support and V(g) U V(c) € £ 0

A set of parameters that is the last component of a state may be omitted when the context is
clear. Given a goal g. the initial stale is the state (§.g.V{g)), where the empty sct P means the
‘true’ constraint thal always holds. As the program W is finitary and X is finite, the collection
of states for the program ¥ forms a set.
Example 3.3 The triple

({r=(z,9).x =y}, {bit(z), stream(z), stream(y) }. {z,y, 2. u})

is a state. Note that u is a parameter thal does not appear in the first two components of the
triple. O
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Definition 3.25 A cheoice v on g is a function that assigns a program clause to each atomic
goal in g. That is, 1 g — W, where ¥ is a program fixed in the context. o

Example 8.4 Let g be the goal {bit(z), stream{x), stream(y)}. The mapping « which assigns
(C1), (C2), (C2) to the atomic goals bit{z), stream(r), streamiy), respectively, is a choice on
q. where (C'1) and (('2) are clauses in Wy (e

Let S, denote the set of choices on g. Then S, 15 finite because both g and the program ¥ are
finite.

Definition 3.26 Let 5 = (e, ¢.£) and 5" = (¢, ¢'.£') be two states. Let + be a choice on .
A triple (s.4.5") is a transition, written as s — ', if for each atomic goal @ € g there is a
‘renamed version” Oy by —ey | g, of the clause v(a) € ¥ such that

(1) V(Ca) NV(Cu) = 0. (a £ a)
(2) NV, =0,

(3) ¢ =U{g. |a € g}

4y ¢ =enA{a=h} e, la€ gl
(5) ¢ has a support.

() & = HVIC) | a e dom(7)}.

Example 3.5
({r =y o= (by)} {streamiy)}. {T.y. b}) —

({4 —y.r — (byyhow = you = (d,v)}, {dt(d), stream(v)}, {2y, bou, v, d})

where g 15 the choice that assigus the clause (C3) of ¥y to the atomic goal stream{y). u. v, d
are the new parameters generated for this transition. (]

We formalize the set of all possible “computations” for the program.

Definition 3.27 Cy is the largest set M such that if r € M then r = {5, b) for some state <
and a partial funetion b: 5, — M. where

(1} g is the goal component of the state s
(2) & — &"if 4 € dom(b) and b(~) = (&', ) lor some ¥

a

As the collection of states of the program is a set and the number of branches is finite at each
node, Cy for the program P forms a set.
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Definition 3.28 A binary order < is the largest relation on Cq such that if z < y then the
following hold for some s, b K

(1) = =(s,b) and y = (3, ).
(2} dom{b) C dom(¥).
(3) Tf v € dom(b) then b() < H(7).

Proposition 3.15 (Cy, <) 15 a partial order structure.

Proof Let R be a binary relation on (Cy, =) such that zHy if z <y and y < z. It is easy
to check that R is a bisimulation on (Cg,~). So the preorder < is a partial order. O

Definition 3.29 A computation tree is a maximal element of (Cy, <) ]

As will be shown later in Lemma 3.10, maximal computation tree in {Cy, =) exists.

Definition 3.30 A minimal element of (Cy, =) is called a path. O

3.4.3 Coinductive Semantics

Definition 3.31 An inlerpretation of the program is a function I which assigns a subset of
(Vau)" to predicate symbols p, where n is the arity of p. Interpretations are partially ordered by
pointwise inclusion. That is, T < T"iff I(r) € I'(r} for each predicate symbol of the program.

]
Definition 8.32 A model of the program W is an interpretation I of W such that for any
(ay. - .a,) € T(p) there exists a program clause
plry, ..., xq):—c| @

and assignment [ such that

(1) fleg) =aifor 1 <2< n.

(2) Vi, Er e

(3) (flz1),. ., flzm)) € T{q) for each atomic goal ¢(zy,....2m) € g.

where m is the arity of the predicate symbaol g )

Since the Horn clause program ¥ works as a monotone operator Ty on interpretations T w.r.t.
<, it follows from the general theory of Aczel [1] that there exists a largest model, denoted by
Mg, of the program W. The largest model My of the program W is also called the coinductive
semantics of the program. Note that Vi, is a set. So interpretations are also sets. Hence Mg

is a also set,
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3.4.4 Solution Trees

Definition 3.32 An assignment [ is a solution of (r,g) 1f Vy,, =y c and My =, g, where ¢
and g are a constraint and a goal, respectively, such that Vic) U ¥(g) € dom(f). d

Definition 3.34 _dyg is the set of triples { f. e, 9) such that [ is a solution of (e, g). 0

Definition 3.35 A binary relation — is the largest relation on Ag such that, if {(f,e.¢) —
(f,c',¢") is defined, there is a choice 4 on g such that for any @ € ¢ there is a ‘renamed program
clanse’ O h, 1 — ¢, | g, of v(a) that satisfies the following.

(1) f'is an extension of f.

(2) ¢'=Ulga la € g}

(3) ¢ =cAM{a=h)Ae,|acg)
(4) WICN V(U )=0(a#a)

(5) dom{f) " V(C,) =B for any a € g.

We write ( f,e.g) — (f'.¢.¢') indicating v explicitly. L

Lemma 3.6 [f == (f,c.g) s in Ay and g is nol emply then s —+ &' for some ' in Ay and
choice on g.

Proof Leta — plyy, - .ya) be an atomic goal in ¢. f 15 a solution of @ hy the hypothesis.
Then by the delimition of a solution, there is a program clause 4. a fresh copy h,— ¢, | g, of
il, and some extension f, of f such that f, is a solution of both {c,.g.) and a = h,. Let

.E':{.,I"I_.r.'.fil;"\{{f.r= hq}-"'x c, | a EQ}:U{:‘?.: acg})

where ' is an extension of any f, for a € g. So. by definition, we get s —— s', where ~ is a
choice on g such that 4(a) = =, for a € 4. (0]

Definition 3.36 Given the program W, Sy is the largest collection M ¢ V)| X] such that if
& M then » = (5,b) for some s = (f,¢,9) £ Ay and a function b such that the following
hald.

(1} dom(b) consists of choices on g.
(2} ran{b) T M.

(3) s T & il b} = (&', ) for some b

- . & . s I
Sy 15 a set for a similar reason Lo Cy's.
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Definition 3.37 = is the largest binary relation on Sy such that if z < y then the following
hold.

(1) = = (s,b) and y = (s.8) for some s, b, .
(2) domib) C dom(¥).
(3) If v € dom(b) then b(v} < B'{7).

O
(Sg,=) is a partial order structure for a similar reason to Cy's above.
Definition 3.38 A solution tree is a maximal element of (Sy, <. O
It will be shown in Lemma 3.10 that there exist maximal solution trees in (Sy, ).
Definition 3.39 A minimal element in (Sg. <) is called & path . m]

We illustrate a computation tree ¢ for the goal {stream{z)} of the program ¥y. f is an infinite
binary tree. t has all the information about how each stream is generated by the program W,.
The general form of states at nodes v of t is a triple {c,,g,, X, ), where

C. = {I={bnr1]eil=[b21-rﬂ1"'~1::—1 =[!:,..:r...]l,b1 =:i?|?“"-bn—1 =ﬁn—1}
g, = {bit(b, ), stream(r,)}
A'rl:- = {mibl\:r]'ll ”sbn1rﬂ.]'

where 3, is either 0 or 1. The other symbols are parameters. The state means that a finite
stream 3 - - - 1 has been produced as an initial finite segment of some stream. The node
# has two successor nodes vy and vy, whose states are

{(:b' U {Ist = I[,-"!a|1.1-"'-'=v,+l B b, = ﬂ}- {bi‘t{&n+l]! Stm“m{rnHHTXU L {bﬂ+1!‘rn-r| }}

{Ct.' L {'rﬂ = {b‘iil‘im'ﬂ-+] Lb,, = ]-}1 {ﬁff{bﬂ.‘.l],Sfi"E'fIml{.r“{.l}]',X,, U {|‘|I31'1+f|:‘:Il':ﬂ-l'l}‘;|
respectively.

An example of a solution tree for the same goal {stream(z)} is a tree ¢ with a single path.
Take the union of constraints on the single path to obtain a system of equations:

{.1" _llr.E'h-rllqu = {52'431'2]1"'1'1'71-] =(bn1rﬂ]="'1bl =.ﬁ11“'¢bn-l :-ﬂﬂ—h'“}

Let f be the unique solution of the union. The solution tree has the following information at
rach node:

(e, {bit(b,), stream({z, )} {z by oo by, 2n )

where f' is a restriction of f to the set {z,b,, xy, -, by, 2.}, and ¢ is the set

{I = (bnifj]lu‘!‘i = {'52112]'1“ Cydp—1 = '[bm'Tn}!bl =y, b = 311—1}-
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Lemma 3.7 If = {5,b) is a path such that dom(b) # 0, then there are some 5, s'. and ¥
surh that the following hold:

(1) dom(b) = {x}.

(2) b{y) = (", ) s a path.

(3) & — &
Proof It is obvious by the definition of a path. o

Lemma 3.8 Let W be a program and p be a predicate. Then the following are equivalent.

(1) (ay,-++, a,) € Mag(p).

(2) There is a path (.0, {p(21.---,2)}),b) € Su for some b such that flz) = a; (15 <
nj.

Proof (1)== (2): Suppose (1) is true. Then by repeated application of Lemima 3.6 we can
make a sequence of possibly countably infinite length in Ag

o W RET T
S 8 — sy

where 55 = (.0 {p(zy.-- . 2.)}) € A and fle,) = a, (1 £i < n). The path z; obtained by
solving the following equations satisfies (2).

£ (S0, {{70: 200 1)

= (s, {{’Fh 7-'::”]'

Zn = {1';Tr~{{-:r.'1';ﬂ+'i]}}

(2) = (1): Suppose {2) 15 true. Then [ is a solution of pla,, .. . r,) by definition. llence,
[ﬂlr"#ﬁn]=|:f{1'1:|,"'-f{1'n”C-M-P(P}- =

Lemma 3.9 (Sg. <) is chain complete,
Proof Suppose we are given the following sequence of elements of Sy:
Fg =@y = =y
Let us define a sequence X, (1 = 0) inductively:
e Xy={a, |i=0}
o X = {bix) | s {s,b) € X;,z € dom(b)}.
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Tet X = U{X, | ¢ = 0} and A = U{dom(b) | 3s (s.8) € X}. Let A" be the set of finite
sequences over A. Let us define a partial operation @ € A* onr = (s,b) € X inductively:

o z(ya) = b(y)e)
where ¢ is the empty sequence and 4 € A. Then consider the system of equations for a € A
Yo = (a0, Ys)

such that

e there is some z; in the given sequence such that r;(e) = (a,, b) for some b.

¢ (7.4ay) € Y, iff there is some z, such that r;{av) is defined.

This system of equations is well defined though some @ € A may fail to have a corresponding
equation. By the solution lemma, there is a unique solution of the system, Lel y be the solution
to y.. Now we show that y is the least upper hound of the family z; (0 < 1). Suppose that =
is an upper bound of the family, i.e., 7, < z for all 0 < i. By comparing the defining system of
equations for = with that for y 1t follows that y < =. o

Lemma 3.10 [f x is an element of Sy there is a mazimal element ' in Sy such that r < 2",

Proof Let X ={: € 8y |z <:}. By Lemma 3.9, any monotone family of elements of X has
a limit with respect <. Hence, by Zorn's lemma, there exists a maximal element 2" in X'. O

3.4.5 Soundness and Completeness

Let Sy and Cy denote the sets of solution trees and computation trees, respectively. We have
remarked above that they are sets when the program W fixed. We formulate soundness and
completeness of the semantics of programs in terms of a correspondence between Sy and Cy.
The correspondence will be called a simulation.

Before going into details, we introduce a notion of hereditary projection that will be used later.
Let T(5,%) be the largest class T of sets such that if * € T then r = {a. k), where a € S
and b is a partial function from T to T. An element of T is called a tree over S and I. Let
X, =T(5,%) for 1 = 1,2 and let f be a function from 5, to S;. Then there is a function F
from T; to T such that

Fila, b)) = ((f(a), F"b))

where F“b = {(z, F(b(2))) | z € dom(b)}. We write f~ for F. We call [~ a hereditary projection
if fis a projection.

Definition 3.40 A simulation between Sy and Cy is a subset R of Sy x Cy such that if rRy
then the following hold for some f, e, g, b, b"
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(1) z=((f.e.q).b) and y = ({c. g). b}
(2} If dom(b) # @ then b{v)RY(~) for seme v € dom(b} N dom(d').

Lemma 3.11 There is the lurgest simulation between Sg and Cy

Proof Take the union of all simulations hetween Sy and Cy. O We say that w simulates p if
whp, where R is the largest simulation.

Lemma 3.12 (Simulation) The following are equivalent.

(1} = simulates y.

(2) There erist paths p < x in Sg and q < y n Cy such that p simulates q.

Proof Let R be the largest simulation between Sg and Cy.

{2) == (1): Let S be the largest subset of S = Cy such that if 25y then there exist paths
p =< rin 8y and ¢ < y in Cy such that p simulates ¢. It suffices to show that § is a sirnulation
between Sy x Cy. Suppose rSy. Then by the definition of S, there are paths p < = in Sy
and ¢ < y in Cg such that p simulates g. As p simulates ¢ and both p and g are paths, we get
p={{f.e.g). {(%.p1)}) and q = {{e,g), {(7,p"1}) such that p’ simulates ¢’ for some f, ¢ g. 7,
7. ¢'. Furthermore, as p < x. we get & = ([ f,c. g}, b) for some b such that p' < b(+). Similarly,
as q = y, we get y = {(c,g).8') for some I such that ¢" < ¥(7). As p’ simulates ¢' we get
b(4)SH(+). Therefore, § is a simulation between Sg * Cy.

{l) = (2) : For the vonverse suppose (1) is true. By the definition of rHy, there exists a
sequence I,, y; (¢ = 0], where 1y = ¢ and yo = y, such that

o r Hy.

o = ((fivcoom) b

bl[‘l"f-} = 'rl'+]'

* = (e, g di)

dil ) = Vig1-
From this we get the following svstem of equations:
“:J = {‘,.fl'irl".rjz]t{{-:"r"ur'{ 1:'}:'

v = (e, 6 ) {{’:"H 1'-'=+17‘-|}'~'-

By the solution lemma. we can let p and g be the solutions for ug and vg respectively, By
definition of < and K, it is easy to see thal p < x, ¢ <y, and pHg. O

Let m be a projection such that ={{r.y.z}) = (v. z).
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Definition 3.41 Given a path p of a computation tree in Cg, let ¢, be the conjunction of
constraint components of stales on the path. The path p is s canonical if every disjunct
component. of ¢ is canonical. A computation tree is canonical il all paths of the tree are
canonical, o

Theorem 3.16 (Soundness) For any canonical computation tree y € Cy there is a solulion
tree r € Sg such that r simulates y.

Proof Let g be any path of a computation tree y € Cy. We apply the canonical compactness
theorem { Theorem 3.10) to select a global solution f to the path ¢. Make a family of solutions
by restricting f to cach step on the path of y. Write a system of equations

vi = ((engi)s2i)

&= {{Tuyl-l-l:'}
for i = 0 such that yo = g. i.e., g is the solution to yo. Then apply the solution lemma to the
system of equations

Ty = HL-C:*H:JTWI'}

wp = ‘[{':'!~-I'l+l }}
where f; is the above mentioned restriction of f to V(e;)UV{g,) for ¢ = 0. Let p be the solution
to Ty. It is clear that =*(p) = q. By Lemma 3.10, there is a solution tree r such that pis a
path of r. Hence, by Lemma 3.12, r simulates y. m]

Theorem 3.17 (Completeness) For any solution tree 1 € Sy there is a computation free
y € Cy such that 2 stmulates y.

Proof Let R be the largest simulation. By definition of <, xfin™(r] is true. By Lemma 3.10
there exists a computation tree y in Cy such that =*(r) < y. Therefore, we get r Hy. O

We turn to the soundness and completeness of the negation-as-failure rule (NAFR). Note that
soundness and completeness are almost obvious because of the maximum semantics, provided
only canonical programs are considered, An important point is thal the fonnulation of NAFR
needs ground goals. which may be infinite or irrational in the language L,,. whereas actnal
computations require that constraints and goals in computation states be finitary. Thus a
nontrivial aspect of the following Theorem 3.18 is that NAFR is given a meaning over a domain
of infinite and irrational ohjects such as hypersels through implicit and finitary representations
as approximations for those objects,

Theorem 3.18 (Negation As Failure) Let ¢ be a goal with perameters 1y, - -+ x, that has
the canonical computation tree ¢ = ((B,g),b) for some b. Lel [ be an assignment such thai
fla;) = & € Vao 15 not a solution of g. Then there is a finitary constraint ¢ such that fisa
solution of ¢ and there 15 no compulation tree for the goal ¢ Mg,

Proof Tor anv path p < g such that

g = p=l{co.gh{(r.-ql}
¢ = (g (g2 )
g = [{F2~H':]-{{T21F31?}]
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where co = B, go = g. and 7g € dom(b), there is some g; in the path such thai no extension of f
satisfies ¢;, for otherwise [ could be extended to the solution of . As every computation tree
is hereditarily finite, by applying the standard argument of Kénig's, lemma the set d of such
constraints ¢, must be fimite:
{!I = {Cl,"'1f.,.}

for some integer . Then by the solution compactness theorem {Theorem 3.12) there exists a
positive finile ‘covering’ constraint ¢ of (£;.- -+ &) such that ¢ has no commeon solution with ¢
above. It follows from the construction of the constraint ¢ in L 4, that there is no computation
tree for the goal ¢ A g. Otherwise, from the canonical computation tree gy, we could also get a
canonical computation tree that has the following path.

gy = licAcogo) {(voq1)})
0 ({e Aerg) {im.a)t)
g = (e enga) ({712,030}

By the canonical support theorem {Theorer 3.11). this implies that ¢ and A{e, [ i = 0} have
a common solution, which is also a solution of g. This is a contradiction,

a

3.5 Applications to Terms and Records

[t this section, we make several more specific remarks about implementation issues. First of
all, we point out that a partition refinement algorithm in Paige and Tarjan [69] can be used
to compute hisimulation relations over hypersets. Secondly we take the domains of trees and
records as two special subclasses of Vi, respectively, by making the following embedding of
standard constraint theories nto Ly, in a natural way.

e Unification theory over (infinite) trees,

e Unification theorv over {infinite) records.

3.5.1 Computing Bisimulations over Hyperscts

Recall the definition of V| Y| for a class X of parameters and a class A of atoms: Vi [X] is
the largest class M such that M C AU X Upou'{ M), where pow'{ M} is the set of finite subsets
of M. Let I/ be a transitive set of Va [X], ie. 7€ Vi [X] and for all x € U7 if y € x then
y € ', We modily the notions of partition and bisimulation slightly for our purpose: a binary
relation P on [7 is a partition of I 3f I is an equivalence relation on [7 such that the following
hold:

o falPrandacsl’"NAthen 2 =a.

e For any parameter r € [7 there is a sef y € I/ such that zPy.

34



A bisimulation R is a partition of U/ such that, for any sets z.y € U/, if z Ry then the following
hald:

o For any u € 7 there exists v € y such that uRv.

o For any v € y there exists u € r such that uRuv.

Then the following twa propositions are easy cousequences of Paige and Tarjan [69]:

Proposition 3.18 For a given partition P of [, there exists a coarsest bisimulation R that is
a refinement of P

Let n, e be the numbers of nodes and edpes, respectively, appearing in U7, provided that [7 is
represented suitably as a directed graph.

Proposition 3.20 There exists an ({mlogn) time-complexity algorithm to compute the coars-
5t bisimulation for a given partition P of [V

3.5.2 Hyperterms

Let ¥ and A be sets of funcfion symbols and argument places, respectively. oq is a distinguished
function symbol in ©. We assume that N € A, where N is the set of positive integers. Each
symbol @ € ¥ is supposed to be assigned a finite subset arg{e) of A, A function symbol & such
that arg(er) = @ is takeu as a constant symbol as nsual. A function b is a partial assignment
for a symbol & € & if dom(b) C argie). A function bis a full assignment for a symbol 7 € &
if dom{b) = arg(e).

Definition 3.42 H*(Z, A, X} is the largest set M C Vigua[X] such that M © X UIHA, |
o € L}, where A, = {{o,b) | b: argle}) — M {partial )} O

Elements of H*(¥, A, X} are called hyperterms over (£, A, X). A hyperterm u is called a
subterm of a hyperterm v il u appears in v. A fully specified hyperterm is a hyperterm u such
that for every subterm (a,b) of u, b is a full assignment for the symbol &.

Definition 3.43 H{%. A, X)) is the smallest set M C H*(EX, A, X)) such that X U|{A, |7 &
Y} C M, where A, = {(a,b) | arg(o) — M (partial)} o

It is clear that every element of H{ L, A, X)) is finitary and that H(Z, A, X} is the set of finitary
hyperterms in HY(E, A, X)L

We write a(b(1),6(2).- . b(n)) for hyperterms (o, b) it dom(b) = amgle) = {1,---.n}. Also,
we write record structures {(ay, b(ar)), -, (an, ba,))} for hyperterms {oq,b) if 0o € E is the
distinguished function symbol and dem(b) = {a;.---,a,} C arg(on). Thus we can see that the
usual first-order terms and record structures are special cases of hyperterms.
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3.5.3 Hyperterm Subsumption

Let &, A, X be the same as above.

Definition 3.44 A binary relation T on H*(E, A, Q) is defined to be the largest relation L
such that £ C y==2r C* y where »r C* y iff there are some & € ¥ and partial assignments u, v
for o such that

o r=(ou)and y = (o v).
o dom(u) C dom(v}.

o For all = ¢ dom{u) ulz) C vlz).

a

It is clear that the domain of hyperterms is ordered by T. The relation L is called hyperierm
subsumplion. Recall that the set subsumption relation as a hereditary subset relation was not
a partial order, but only a preorder on V. A decision procedure for hyperterm subsumption is
given in Mukai [60].

3.5.4 Unification over Hyperterms

A hyperequation is an expression of the form u ¥ v, where u and ¢ are parametric hyperters, A
set of hyperequations is called a solved form if every hyperequation in the set has a parameter
on the left side and no two equations have the same parameter on the left hand side. A
hyperequation u M v is a conflict if u = (a,b) and v = (o', ¥} for distinct function symbols &
and o'

The following algorithm is an extension of the standard unification to recards. The input of the
unification algorithin is a finite set of hyperequations. The autput is a set of hyperequations.
I'he unification algorithm proceeds as follows: Repeat applying the steps below to the input
set of hyperequations until no step is applicable. When this process terminates, check whether
there is a conflict or not. In what follows, z,y are parameters, o € X, and u, v,w are partial
assignments for «.

(1} I r#xis in the set, remove it,
(2) If r My isin the set, replace all occurrences of y with .
{3} I[ u ¥ ris in the set for a non parameter u, replace it with x 0w,

(4} If o M {e,u) and 2 ¥ (o0} arc in the set, remove it and add to the set all hyperequations
in the set

{e v {mae)y U {wia) Wula) | a € dom{u)} U {wla) M vla) | a € dom(v)}
where w is a parametric {partial} assignment satisiving the following:

(4.1) dom{w) = dom{u) ) dom{v).
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{4.2) wia} € X are distinct new parameters for a € dom(w).

Definition 3.45 A set F of hyperequations is unifiable if the unification process for E termi-
nates with no conflict. 0

Definition 3.46 A hyperequation u ¥ v is solvable (in H*(5, A, 0) ) if the equation 8{u) = 0(v)
is solvable, where @ is the translation satisfying the following:

(1) #ix) =2 if r is a parameter.
(2} B{(o.b)) = (o, V), where dom(¥) = arg(e), ¥(a) = B(b(a)) for a € dom{b) and ¥{a)
are new parameters for a € dom(b')\ dom(b}.

|

A set S of hyperequations is solvable if the set {#{u) = #(v) | u W v € 5} of equations is
solvable,

The following two propositions can be proved without much difficulty.

Proposition 3.21 The unification algorithm over hyperferms always terminates.

Proposition 3.22 For a set F of hyperequations, the following are equivalent:

(1} E is unifiable.
(2] E is solvable.

3.6 Bisimulations on Generalized Terms

This section is independent to the ather ones, In this section, two kinds of class-functors called
form-based and conservative, are introduced. For the set-based and conservative functors T,
three theorems so called unification theorem, compactness theorem, and independence theorem
which concern bisimulation constraints on the final coalgebra for T are proved. Moreover, for
the sel-based and form-baszed [unctors T, a constram! definability theorem 15 proved for the
final coalgebra for T

These results include Colmerauer’s independence theorem on the infinite tree unification with
unequations as a special case with 1' being the standard term-forming functor. From the
ronstraint definability and compactness on the final coalgebras, the final coalgebras for the
functors can be domains of structured objects with evident restrictions for the constraint logie
programming scheme proposed by Jaffar and Lassez.

Basic tools of this work is the final coalgebra theorem proved by Aczel [1] and and Aczel and
Mendler [3]. Barwise's unification theorem on bisimulations and subsumptions are used. The
restriction of the unification theorem to the bisimulations will he generalized in this section.

The objective of this section is to generalize the infinite tree unification in Colmerauer [23]
to the bisimulation constraints on the final coalgebras for some class of endo-functors on the
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category of classes. We assume that the reader is familiar with an elementary part of both set
theory and category theory [13] including the notion of a category, functor, {final} coalgebra
for a functor, and mediating arrow. A distinction between class and set is important in this
section, though not in a foundational sense but a concise expository reason. Darwise and
Etchemendy [16] gives an excellent introduction to Aczel’s hyperset theory. Also does Barwise
and Moss [17].

Basic tools of this section is the final coalgebra theorem [1, 5] and the unification theorem
in Barwise (14]. This work is a generalization of some part of Mukai [59], which applies the
solution lemma to the constraint logic programming scheme. Barwise and Fichemendy [16]
also gives an introductory description to the final coalgebra theorem as a part of intreduction
of the hyperset theory. Aczel [1] and Aczel and Mendler [5] proved a final coalgebra theorem
that asserts that for every set-based endo-functor T on C. there is a final coalgebra for T
where ( is the superlarge category of classes of hypersets. An ordered pair {X. a) of a class X
and a function a: X — T(X) is called a coalgebra for T'. For cxample, {Xg, op} 15 a coalgebra
for pow, where Xy = {x.y}, and ag(7) = {r.y}, auly) = {r}. The final coalgebra theorem
says that there is a unique mediating arrow « such that =(z) = #{{r.u}) = {v(z},7{y}}. and
m{y) = #({x}) = {=(z)}. where 7 = pow(r) with pew as a functor.

A A 1

v I

TiX) _, T(JHT)
Tiw)

Several universes of familiar kinds of siructured objects such as infinite and rational trees [23].
finite automata. feature (=record) structures are constructed in a uniform way by specifying
corresponding functors T. A well-founded universe and non-well-lounded universe correspond
to a minimum fixpoint 7{T} and maximum fixpoint JiT) of the sare functor T', respectively.

We treats the following end-functors on C, pow, pow', H*, ¥4 map{ 4, —). map'{ A, ~) with A

being a signature, as main examples of set-based form-based, and conservative ones,

o HAY M) is the class of terms ¢ such Lhal prime function svmbols of £ is in A and arguments
of t are in M.

o pow'{ M) is the class of finite sets of M.
o map( D, 1)) is the set of total functions from [F into £V,
o map'([). ') is the sel of partial functions from £ into ).

e T4(M) means the set of possible transitions from states in M with actions in A, and
formally is the set {{o.8) |0 C {A} 4 € map'(A, M)}

H" is used as a Herbrand universe building [unctor. For example, suppose A = {f. g} is a
signature where f and ¢ arc unary operation symbols. H? is set-hased, form-hased and con-
servative. HA(M) = {f(m) | m € M} U {g(m) {m & M}, Then I{H") = 0 but J(HA) s
the set of infinite sequences of f and g. This functar H* has similar properties to the power
class functor pow. In facl we derive Colmerauer’s infinite tree unification {rom gencral proper
ties of pow in the form of set-based, form-based and conservative functors. The unary functor
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map'{ A, —) 15 used as a common building functor for domains of records, finite automata, ratio-
nal trees, with a slight modification for each class of domains. As a (deterministic) automata is
simply a coalgebra for map’(A, — ). from this view point based on the final coalgebra theorem,
a relationship is given between automata, rational trees, and regular languages.

Constraints are formalized as binary relations on coalgebras of these class functors. In partic-
ular, the notion of solutions in final coalgebras are defined as the mediating arrow from the
coalgebra to the final one assured by the Aczel’s final coalgebra theorem. More precisely, con-
straints are (p, X'). where p is a binary relation on V' and X is a collection of urelements of
V. Elements of X behaves as parameters in bisimulation theory. Bisimulation is a constraint
which means a kind congruence relation between parameterized terms. An general idea of the
constraint theory proposed goes like this: for a given constraint ¢, first find a bisimulation clo-
sure ¢ of e, and then find a coalgebra (X, a) for the given functor T in the closure ¢/. The final
coalgebra theorem assures that the mediating arrow to the final coalgebra for T is a solution
of . Here is a simplified example: let 1" = pow and ¢ = (p, X} = ({{z, {z})}, {z}). Then

¢ = {{z.z),({z} {x}). (r . 4rh) ({7} 7)) {2 1)

is a bisimulation closure of ¢, and T(X) = pow({r}) = {§,{r}}. Let a: X — T(X) so that
alz) = {z}. Note that {(r,a(r])} C p. So we get a coalgebra {X.a). In fact, by the solution
lemma, the solution of # = {r} exists in J{pow).

Barwise [14] gives a unification theorem for mixed constraints consisting of hisimulations and
subsumptions on the class V ol hyvpersets with urelements. His proof is based on Aczel's
Solution Lemma [1]. V' is the final coalgebra for pow the class functor and Solution Lemma is
a special case of the final coalgebra theorem, though the former is a foundation of the whole
hyperset theory. Mukai [62]— also see Section 3.6.6—treats external subsumption problems
on feature structures by introducing merge operations on final coalgebras for record forming
functors. Thus the infinite tree unification, feature unification, Barwise's hyperset unification
theory are integrated as bisimulations on the final coalgebras for set-based, conservative, and
form-based functors.

Using two simplified cxamples, we make a review on necessary aspects of the infinite tree
unthcation for this section.

Example 3.6

r=fly.z)

y=flrz

T# oy
This constraint is unsolvable in the domain of infinite trees. To see this, give arbitrary tree
in the domain as a value to the unbound parameter z. Then as in general a solved form

or system of equations without an unbound parameter has a unique solution, & and y are
determined uniquely by z. Unfolding the right hand side of each equation unboundedly, we
observe that r and y have the same value for any fixed value to z. Namely, any solution of the
first two equations can not satisfv the unequation r # y. In other words, no solution of the
equations satisfies the unequation. Hence there is no solution of the whole constraint. Notice
that {x = fly,.z).y = flz,2)} and {x = f{y,z).v = flz,2).7 = y} have the same singleton
{z} of unbound parameters, and moreover the same vacuous constraint i.e., {z = 2}, though
it 1= not explicit. In fact, solvahility of constraints is determined by behaviors of the set of
unbound parameters and equations between them. In this case, {z = f(y,z),y = f(z,2)} and
{r= fly.2).v= flzr, z). 2 =y} have the same constraint for the unbound parameter. o
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Example 3.7
z= f(4,2)
u= flz.z)
r#y

On the contrary to the previous example (Example 3.6), this constraint is solvable. To see this,
give any atom @ as a value to the unbound parameter z. Then evidently r and y determined
by = f(y,a), y = fla,z) must not be the same, for otherwise y = a and a = r are derived
from equational axioms, and hence f(y,a) = a and a = fla, ), which are conllicts. So the
given coustraint is satisfiable (=solvable), Observe that in this case the constraint on the
unbound parameters in {r = f(y,z},y = flz.2)} is {z = =}, which is the same as in the
previous example. But there is no unbound paramecters in {x = f(y,2),y = flz,z), 2 = u}.
In fact, as it follows from the simple equational theory that y = 2, the unbound parameter
= in the two equations now becomes bound in the whole constraint. So there is certainly a
difference between the constraints on the unbound parameters in {r = fly,z).y = flz, 2]}
and {z = f{y.z).y = f{z,2),z = y}. In fact, a change of state of the constraint on unbound
parameters means that the constraint is solvable. On the other hand, no change of the state
means that the constraint is unsolvable. i

Now we make a list of important properties used in Colmeraner’s infinite tree unification the-
orv [23].

{1) Every finite set of equations is decidable.

{2) Let p is a sel of cquations. Then p U {u # v} is unsolvable iff pU {u = v} has a
consistent closure set of equations that has exactly the same constraint with p on unbound
parameters. See Example 3.6 and 3.7 above.

{4} Let p be a consistent closed set of equations under the equational rules and g be a set
of unequations. Then p U ¢ is solvable iff p U {{} is solvable for all [ € ¢. This is called
Independence Theorem [23],

(4) A countable set of equations are consistent iff so s every subset of the given set. This
property is called compactness.

(5) A countable set of equations are solvable iff so is every suhbset of the given set. This
property is called solution compact.

(6) The domain is constraint definahle. Namely. every infinite tree is represented as a unique
solution of a system of equations.

Of course. Colmerauer universe J{ /) have these properties. However, the properties are
possessed by nol only the infinite trees but also hypersets (non-well-founded sets) [59]. In fact,
the properties in the list are derived from the simple fact that the functor H* is set-based,
conservative and form-based. Evidently, the power class building functor pow is set-hased,
conservative and form-based. Thus we have a new family of CLP{J(T}) indexed by the set-
based. form-based and conservative functors T. This result is a refinement of the CLP scheme.

We give an informal introduction of form-based functor, conservative functor, and component
function. First, in the standard first-order unification, we have never x = f from, for example,
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flz,y) = fly.z), where the prime functor f is not counted as a subterm. Derived eguations
such as r = y are always ones between subterms appearing in the given equations. In general,
elements of I(Ty) are called 1-terms. A conservative functor is introduced so thal given a
constraint or T-terms, every parameter s bound to a T-term in any bisimulation closure of the
constraint. H* and pow, for example, are conservative.

Given a first-order term, f(g(x),y), for example, the arguments of f(g(z),y) are g(z) and y.
The argument of g(x) is . The subterms of f(g(z),y) are f{g{z),y), g(x), r, and y, which are
obtained by applying the taking arguments in a transitive way. Note that all parameters appear
as subterms. Moreover, from an equation f(x) = f(a), we get z = a. In more general, from a
given equation p = q. we get equations between arguments of p and ¢. A component function
for T is, roughly speaking, a generalization of taking arguments of first-order terms to the T
terms. We will show that the existence of a component function implies conservativeness. Thus
unification theorem for the power class functor is generalized for the set-based and conservalive
functors, and we can verify that useful functors T such as H 4 are conservative by showing a
component function for T

Given a first-order term, f(g(a). b}, for example, we can represent this term with two equations
= flu,b), u = gla). Note that f(u, b} and g(4) are flal and also flg(a}.b) is a unique solution
of the two equations for w. Even il the given term is an infinite tree, we can represent it uniquely
by possibly infinite number of flat equations. This being representable is a property of H#4. We
ahstract it as a form-based functor T. More gencrally, for any element r & T{M ), there is a
parametric set u as a form wilth parameters such that r is obtained from u by replacing the
parameters with corresponding elements of Af. Namely, a form-based functors are essentially
term forming operations that fill argument places with elements of M. We will show that
constraint definability holds in the final coalgebras for set-based and form-based functors.

T'he section is organized as follows. In section 2, basic definitions and other preliminaries are
given. Among them are hyperset (Aczel [1]), bisimulation relation, term, and infinite tree. In
section 3. the notion of constraint is defined. In section 4, conservative and form-based functors
are introduced and some basic properties are given, Component function is introduced to give
a sufficient condition for a set based functor to be conservative. It is proved that form-based
functor implics constraint definability, An application to finite state automata is given. In
section 5, the unification theorem is proved. In section 6, negative constraints are treated,
and the independence theorem and solution compactness of the constraint for set-based and
conservative functors is proved.

3.6.1 Backgrounds

We assume a universe V' of hypersets with urelements for our metatheory. FElements of V
are called terms. A denotes the class of urelements in V: A © V. We will need sufficiently
many urelernents. So we assume that A is a proper class. Urelements will be called atoms or
paramelers depending on the context. Elements of V' that are not urelements are called sets.
The emptyset @ is a set but not an urelement. If z is an urelement then there is no y € V such
that y € =. A class functor is an endo-functor on the superlarge category C of classes on V.
Let T be a class functor. Given a class C C V', we use the notation Ti for the class functor
defined by the following.

e To(M)=C0T(M)for M CV.
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. I i M
o For 1M — M Te(fllx) = { i[ﬁ[x} :tt:z Z E{\;J{M]_

The notation Tp is lundamental in this section.

We use the symbol map( £, Q) for the set of total functions from a set P into a set @ and
map'{ P, Q) for the set of partial functions from P into @. A class A C© A is called a signature
if each a € A 1s assigned a non-negative integer.

We define functors pow, pow’, fot(A,—). aut(A,—), H*, and £4, which are easily verified to
be endo-functors on C, i.e.. the category of classes.

Definition 3.47 # K~ is a constant functor such that Ko(M) = O and Ko (f) = wde for
all M. M ' CV oand f: M — M', where (' is a given class.

e pow is the power class functor. pow(f): pow(M) — pow(M'), pow(f){u) = {f(z) | z € u}
foruC M,

e pou' is the functor that assigns to each class + € V' the class of finite subsets of .
pouw'( f1 = pow! fyfor 1M — M. M. M V.

e aut{A. X) = {ig.p) 1 ¢ C {Ah,p € map'(A. X)}. aut{A f)l{qg.p)) = [(g.p'). where
plla)= fipla)) for a € dom(p) and A C A,

o fot{d, X)) = {lo.p) | e & F.p:{l.-- -, arity(c)} — X}. fot(A, f){(e,p)) = (o.p'), where
plle) = fipli)) for | <0 < arilylo), and A is a signature,

o H4 = fot(A. —), where A ic a signature.

o U4 = qut{ 4, = where A € A,

Definition 8.48 ({[5]) An endo functor T" on the superlarge category of classes is called sef-
based if for vach class A and each a € T{A) there is a set Ay € A and ay € T(A,) such that

a=T, ,lal, where ¢4, 4 is the inclusion map Ap =+ A. m]

Tt i= obvious that pow. pow’, H'. ©4 are set-hased. [{T} denotes the minimum fixpoint of T'.
J(T) denotes the maximum fixpoint of T If T is set-based then I{T) and J(T) exist [1]. It
follows that V' is the maximum fixpoint of a functor pow,. On the other hand, the universe of
pure sets is the minimum fixpoint of pow.

Given a signature A € A, it can be proved that J(H{) forms a set if A and X are seis.
Elements of J{H{) and. in particular, I1H") are called Herbrand terms and Herbrand trees,
respectively. It is clear that I{ H{) is a proper subclass of Vi, [X]. There is an evident bijection
i from the the standard first-order term notations onto the finitary Herbrand terms such that
el firye.oxad) = (f, {{i.w(z)) | 1 <1 < n}). In this translation we have identified each

atom a of arity 0 with (a,@).

An re-ary relation on a class M is a subclass of M™. The carrier of an n-ary relation r is the
class {r; € V | rizy, -t xa). 1 £ = n). carri(r) denotes the carrier of r. A class { is

47



called transitive if t C pow(t). Given a class u € V, truns{u) denotes the minimum transitive
class ¢ € V such that u C . frans(u) is called the fransitive closure of u. For a relation r on
V, we define fld(r) = trans{carri(r)).

Example 3.8
ﬁd{{[r,a],{y, {b,ﬂ}]}] = {I!ﬂnyu {bu C},Eh '[:]'

where 2. v, a, b, c € A, o

Vx(s) % X N trans({s}), where s € ¥V, X C A. Sets in J{pow’y) are called hereditarily finite.
It can be proved that if A is a set then V), forms a set. For any set x € I{pow}}, it follows
that frans(z) is finite. So we call terms in J(pow',) finitary. In fact, finitary set terms are
hereditarily finite and well founded.

Example 3.9 Let N be the set of natural numbers. Then the set {N} is finite and well-
founded, but not finitary since trans({N}) is infinite. ]

Definition 3.49 Let X © A be a class A family (by).ex is called a system of equations (for
Xiifb, € VY X foreach r € X. O

Theorem 3.23 (Solution Lemma [1]) Every system of equations for a class X has a unique
solution in J(pow g, x )

Theorem 3.24 (Final Coalgebra Theorem [1, 5]) Fvery set-based functor has a final coal-
gebra.

Note that as a system of equations i1s a coalgebra for pow,, the solution lemma can be seen as
a special case of the final coalgebra theorem.

3.6.2 Bisimulation Constraints

Definition 3.50 A constraint is an ordered pair {r, X}, where r is a binarv relation and X € A.
A constraint (r, X} is called a constraint for T il, for all £ € X M carri(p), either r(xz,y) or
riy.x) for some y € [{Tx). m|

A constraint (r..X) is called a constraint on a elass (7 if r is a relation on . By a constraint
we mean one on V unless otherwise mentioned explicitly. We often call constraints of the form
{r, X} X -constraints. A constraint {r, X') is an exfension of a constraint (s,¥Y)if s Cr, ¥ C X.
An assignment is a partial function f from A into V osuch that dom(f) N Vipmyp(ran(f)) = 0.
et f be an assignment. Then it follows from the solution lemma that there is a unique function

f from V to J{pow s gomisy) such that

(1) fiz)= f(z)if = € dom(f).
(2) fla)=aifa€ A\ dom([).
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(3} fls)={fiu)|ues}if sisasct

A function f is called an assignment for a constraint {r, X} il dom{f} = X and ran{ f1 C
Jipow sy ), 1€ Vy(ran(f)) = @. Note that if X = @ then @ is the assignment for X hy
defimition.

Definition 3.51 Let ¢ = (p. X} be a constraint and let D C V. An assignment f: X — D is
called a solution of ¢ in D if f{n) = f(v) for all p(u,v). The constraint ¢ is called solvable i
17 if there is a solution of ¢ in D. 0o

Note that if T is a set-based with J(T') = @, then it follows from the definition of a solution
that a constraint (p, X} on J(Ty ) is solvable in J(T) iff p=X =10.

Definition 3.52 Let X C A. A bisimulation is a constraint (r, X}, where r is an equivalence
relation such that if r{u.v) then the following hold.

s fuc AY X and v € X then u = v.
e [f v and v are sets then

Yreudy € vrlr,y) & Vy&vdreuriruy).

A bisimulation is called a bisimulation on a class (' 1f it 1s constraint on .

Definition 3.53 Let X C A. r € A is bound in a constraint (p. X) if # € X and either p(x,b)
or plb,x) for some b ¢ X. A constraint (p, X) is bound if cach 7 € X' is bound in (p, X}. O

(learly it follows from the solution lemma that a bound constramnt {r, X) has al most one
solution. We say a constraint {s,Y) is a bisimulation of a constraint (r, X) if {s.Y) 18 a
bisimulation and an extension of (r, X}. Also we say a constraint {r, X'} has a bisimulation (s, ¥}
when {5.Y) is a bisimulation of {r, X}. We say that a constraint (s, ¥) is a local bisimulation
of a constraint (r. X} if ¥ =Y and (s, Y} is a bisimulation of {r. X} and s © Ad(r) = fid(r),
i.e.. only terms appearing in r appear in s. We make similar uses of wards for a bisimulation
for 1. Constraints are called finitary if they are finilary as terms.

Proposition 3.25 For ceery finitary constramt ¢ = {p, X}. the following hold.

(1} The set of local bisimulations of c is finite.

(2) If there exists a bisimulation of ¢, then there exists also a local bisimulation of c.
Proof Suppose {q. X} is a local bisimulation of (p, X'). Then g € fid(p) » fld{p). As fld(p) 1=
finite, g must be finite. Hence the set of such local bisimulations (g, X) is finite. So we get (1).

We prove (2). Let (g, X} be a bisimulation of {p, X}. By definition, we get p C g. As fld(p) is fi-
nite, g fid(p) = fld(p) is finite. It is a routine to check that the constraint (g fAd(p) = fd(p), X}
satisfies all defining clanses of a bisimulation. As p © g0l fdip) = fid(p). it follows that
g M fid(p) x fid(p) is a local bisimulation of {p. X). o
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Proposition 3.26 For cvery finitary constraint ¢, the existence of a hisimulation of ¢ is de-
cidable.

Proof In general, for a given iinite set B, the existence of a hisimulation p such that fid(p) C B
is decidable by an exhaustive search method.

It is clear that, for all constraints (p, X}, (g, X} is a local bisimulation of (p, X) iff (g, X) is a
bisimulation and ¢ C fld{p) x fld(p). Since p is finitary, fld(p) is finite. So, it follows from the
above general remark that the existence of a local bisimulation of (p, X} is decidable. Hence,
by Proposition 3.25, the existence of a hisimulation of (p, X) is decidable. (i

3.6.3 Conservative and Form-based Functors

We introduce conservative functor and find a condition for a function to be conservative.

Definition 3.54 A class functor T is conservative if the following are equivalent forany X € A
and constraint (p, X'} on I{Tx).

(1) {p, X} extends to some bisimulation.

(2) (p, X} extends to some bisimulation for T

]

Example 3.10 pow. pow'. H", and ¥4 are conservative functors. See Proposition 3.27 be-
low. e

Example 3.11 Let 4 = f,g is a signature and f and g are distinet unary function symbols.
Let F = fot{A, =), i,e., F(M})={f(g(r)|r € M}U{f(z)|r € M}. Consider the constraint
en = ({{flglx)). flun ). {z,v}). Clearly, ¢y extends to a bisimulation. Let ¢ be a bisimulation
of cy. Evidently ¢ must relate y to g(z). As g(z) € J(T;, ). ¢ is not a constraint for 7. Hence
F' 1z not conservative, o

Given a class-valued function « on V', ~* is the class-valued function on V defined so that for
w eV %« {u)is the least class M such that v(u) € M and v{v) € M for all v € M. Clearly,
=" 15 well-defined and uniquely exists.

Definition 3.55 Let T be a set-based fﬁnctvr and X € A. A set-valued function on I{Ty) is
called a component function for T if the following hold.

o If ue [{Ty) then ~(u) € I{Tx) N trans({u}).
o If ue I{Tyx) then Vy{u) C +"*(u).
o For any bisimulation {p, X), if p(u,v) with w,v € I{Tx )\ A then

Wr € y(u) 3y € y(v) plz,y) & Yy € (v} 32 € 9(u) pl=,y).
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Then the following proposition is obvious from the definition of a conservative functor.

Proposition 3.27 If there is a component function for T, then T 15 conservative.

Lemma 3.13 Let {p, X} be a bisimulation. Then if p{(u, v}, (u',0")) then plu,u’) and p(v,v').
Proof Use the definition (z,y) = {{z}.{z,y}}. It is an exercise in set theory. o
Proposition 3.28 pow, pow', H*, and T4 are conservative.

Proof By Proposition 3.27, it suffices to show a component function 7 on Ty} to each of
the four functors T and each X € A. Define vp(x) = § for cach = € X. For each r € I{Tx},
define vy () as [ullows.

(1} vpewiz) = 2.

(2} vpour(x) = .

(3) yyalx) = {pla)|a € dom(p}}, where r = (o, p).
(1) yzalle,p)} = {pla) | a &€ domip)}, where x = (o, p).

It is a routine to show that all 47 above are component functions for T. In particular,
Lemma 3.13 is used to prove (3) and (4]. '

Corollary 3.29 A constraint ¢ = {p.q. X} on I{H{) s solvable in J{H*) if ¢ is solvable in
some non-empty domain. In particular, ¢ is solvable in J(H?*) iff so is in J{pow'y).

This corollary means that the domain of Herhrand trees over A is embedded into the domain
of hereditarily luile sets over A,

We introduce the notion of form-hased functor so that the final coalgebra for the functor are
constraint-delinable.

Definition 3.56 A class functor T is called form-based if for any M C V and u € T{M),
w=Av)forsome XN CA v e T(Y), 2 X — M. o

Although our aim is to generalize the infinite tree unification to the one over final coalgebras, the
conservative and form-based functors could be related to theory of structured ohjects developed
in Aczel [4], Aczel [4], Fernando [31]. and Lunnon [48]. However, couparisons of these theories
are out of place here.

Proposition 3.30 (Constraint Definability) Let 7' be a sel-based and form-based functor
such that there is an injective map v: J(T) — A\ Va(J(T)). Then there is a coalgebra (X, «)
for T such that the mediating map (X, o) — (J(T),idyqy) s surjective.
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Proof Let X = {wit) |t e J(T)} ¢ = ¢~ X — J(T). ¢ is a bijection. We coustruct a
coalgebra (X, a) for 1" such that Gla(r)) = @lz) forall r £ X.

As T is form-based, far each t € J(T), there is X, C A, v, € T{X,), and ¢, X, — J(T) such
that Z;(v,) = t. We can assume without ioss of generality that X; € X and g, is the restriction
of g to X, forall ¢t € J(T). As T is set-based, T' is monotone. So T(X;) C T(X). Hence (X,a)
forms a coalgebra for T. Tt is clear that ¢ is the mediating map from the coalgebra (X, a) for
T to the final coalgebra (J(T'),idy1)) for T. Hence we have the theorem. a

We turn to finite state automata. An A-sufomaton is a coalgebra for the unary functor
aut{ A, —). In the definition of aut, A € A is a distinguished urelement for indicating “accept’
states of the automata, and also the empty string of regular language. A set is called rational
if it has a finite transitive closure. pow(X”) is complete w.r.t. €. Given an A-automaton
F:X — aut{A X). let Tp be a transformation on map(X, pow{E"}) such that for given
L € map(X. pow(¥L)), Te(L)(z) = A. UU{aL{p.(a)) | a € dom(p. )}, where p(z) = (A, p.).

Proposition 3.31 For a given automaton P, Tp has a least firpoint.
Proof Clearly Tp is monctone. Define a family (Lylaso of Lot X — pow(E") such that

Lolz) =0 forall x € X and L.,y = T(L,). Let L: X — pow(Z*) so that L{x) = U{L.(z) |
n>0}

Tp(L)(x) = AU\ Halip:la))!ac domip,)}
- Mul{Halaipzla)}) | n = 0} | a & dom(p,)}
= U{A Ul {aLyip-(a)) | a € dom(p.)} | n 20}
= |\ Hlaidz) | n =0}
C L{z)
Therefare I 15 a fixpoint of Tp. ]

Let ( X, 8) be a finite coalgebra for aut{ A, —) and 7 is a mediating arrow to the final coalgebra
of aul{A,—). Then =(x) is a rativnal trees for all @ € X. These results are direct consequences
of the final coalgebra theorem.

3.6.4 Unification Theorem

Lemma 3.14 Fuvery X-bisonulution is solvable tn J(powy, y ).

Proof Suppose {p, X'} be a bisimulation. Let {g, X') be the minimum bisimulation extension of
(p. X) such that if r € X is unbound in {p, X'} then gz, 8). Evidently, the bound bisimulation
(g, X) exists. Let (b,);ex be a family of terms such that ¢(z.b.) and b, & X for each r € X.
By the solution lemma, there exists a unique assignment f for X such that f(z) = f(b;) for
all # ¢ X. Let B = {{f(u],.f[;—:}} | glu.z)}. As {g,X) 15 a bound bisimulation, it follows
that (B, #) is a bisimulation. As it follows from Aczel [1] that any (@-)bisimulation on V' is
an identical relation on V, we get B C=. Hence we get f(u) = flv) for all g(u,v). S0 fis
a solution of {g, X). As (g, X) is an extension of (p, X}, f is also a solution of {p, X). Hence
{p. X} 13 solvable in |I{P‘.'wﬁl|"_¥ B .
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Then, for any given finite constraint ¢ on J{H3), it is decidable whether ¢ is solvable in B4 or
not. In other words, the set of solvable constraint ¢ on [{/§) in /4 forms a recursive set.

Definition 3.57 A triple {p, ¢. X) is called a constraint on V' C Vil both {p, X') and {g, X"}
are constraints on V' in the sense defined above. An assignment f for X is a solution of (p,q, X'}
in I} if the following hold.

o [ is a solution of the constraint {p, X} in D in the sense defined above.

o fiu) £ fle)if glu,v).
O

Definition 3.58 Given a constramnt {p, X}, X{{p, X)) 15 the set of ordered pairs (x,y) €
p A = X such that neither & nor y is bound in (p, X'} ]

Example 3.12 X({{{x.y).(y.2). (e fe P} {x.9.21)) = {{y. 2)} =

1'he unification theorem is a generalization of a restricted version of Barwise's unification the-
e []4' to the bisimulation constraints.

Theorem 3.32 (Unification Theorem) Let T' be a conservative and set-based functor and
X C A such that X M trans(J(T)) = 8. Then for every constraint (p. X') on I{Tx) with
X{p) # p the following are cgquivalent.

f1) {p. XY has a solution in J(T).

{20 {p. X) ertends fo some bisimulation.

Proof  (l)==(2): Suppose (1) is true. Let f be a solution of {(p. X} in J(T). Define
= {{u.v) | u.v € fldp), fu) = f(v]}. It is a routine to check that (r, X'} is a bisimulation.
Se. as 1'1s conservative, (p,.X') has a bisimulation for T.

{2)==+(1}: Suppose (2)1s true. As (p, X) extends to some bisimulation and T is conservative,
{p. X} extends Lo some bisimulation {g,Y) for T. Choose any ag € earri(A'(p)) |\ X and ¢ be
the reflexive and symumetrie closure of {{r ap) | ¢ € carrt A(p)}. Clearlv. e = {(qU¢. Y} iz a
bound bisimulation for 7. By Lemina 3.14, the bound bisimulation ¢ has a unique solution in
V. As c1s bound, we can choose a coalgebra (Y, ) for T such that (y,e(y)) € gUg and b, ¢ YV
for all y € Y. By the final coalgebra, the system of equations (Y, ) has a unique solution f' in
J{T). By the uniqueness, it follows that f = f°. Hence f restricted to X is a solution of (p, X}
i J(TH. m]

Remark When J(T) = 0. a constraint (p, X} on I{Tx) = X has a solntion in J(T) iff
X =p=10 S0, without the condition X'{p) # p. Theorem 3.32 does not hold in general for a

functor T such that J(T") = @. |

Given a functor T, a T' unification problem is to decide whether given X -constraints on f{Ts)
are solvable in J(T4,x ).
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Theorem 3.33 If T is a sel-bused and conservative functor, then the finitary 1'-unification
problem is decidable.

Proof Suppose a finitary constraint (p, X} on [{Tx) is given with {T)n X = 0. If (g, X)
is a bisimulation of {p, X) on I{Tx), then (¢ fld(p) x fid(p), X) is a bisim ulatiofi p on
Ad(p). So, if X and fld(p) are finite, we can enumerate all X-bisimulation extensions of p on
fid{p). Moreover, as 1" is conservative, it follows that- (p, X'} is solvable in J(T') iff p extends
to a X-bisimulation on fld{p). Hence, as fld(p) is finite, the T-unification problem (p, X} is
decidable. o

By this theorem (Theorem 3.33), in particular, as H* is conservative and set-based, the H*-
unification problem is decidable. In fact this is the case of infinite tree unification in Colmer-
auer [23] withont unequations. The full version of the infinite tree unification with unequations
will be treated in a section below.

3.6.5 Negative Constraints

We prove Independence Theorem for the sel-based, form-based, and conservative functors.
Recall that we have identified J{# ") with the domain of infinite trees in Colmerauer [23] over
A. A constraint over infinite trees is a binary relation on [{#H3}) that has an at most countable
CArrier.

Let /4 be the set of rational sets in V.

Proposition 3.34 Lei T be a conservative and sef-based funcfor, X C A be finite with J{T)N
X =0, and (p. X} be a bisimulation for T. If ({p;, Xi))ica i% a family of non-empty constraints
on H{Tx) such thal X; © X for all t € A, Then the following are equivalent,

(1} Fvery solution of {p, X} in J(T') satisfies {p,, X) in J(T) for some i € A.
(2) There is some 1 € A such that every selution of (p, X} in J(T') satwsfies (p,. X}.

{3} There erists a bisimulation (¢. X) for T of {pUp,, X with X(g) = X{(p) for some i € A.

Proof (2)== (l): Obvious.

{3)= (2): Suppose (3) is true. By the hypothesis, there exist some 1 € A and a bisimulation
(g, Xyon T[Ty )of (puUp. X} such that X({g, X'}) = X({p. X}). Let f be any solution of {p, X}.
As Xi{g. X)) = &{(p, X)), it follows that f is also a solution of (g, X'). Hence as p, T q, fisa
solution of (p,, X So we get (2),

{1} = (3): Suppose (1) is true. Note that 1t is clear that, in general, if ¢ = {5, 7) 15 a
bisimulation on f{Tz) then A'(c) is an equivalence relation on Z: carri(X{c)) € Z. We prove
this case by induction on the number of equivalence classes of A'((p, X)). Firstly suppose that
X({p, X)) = 0. Suppose that f is any solution of {(p, X} in J{T'}. Then, from the hypothesis
(1), there must be some ¢ € A such that f is a solution of (p;, X} in J(T'). Then (pU p;, X}
has a solution in J(T). Let ¢ = {{u,v) | w,v € fldip) U fAd{p;), flu}) = f(v)}. Then clearly.

34



As X({p. X)) =0, also X({g. X}) = 0. Hence A{{g, X)) =A({p. X))

Secondly let k # 0 be the number of equivalence classes of X{(p, X)) and suppose that (1)
implies {3) whenever the nmumnber of equivalence classes of X{{p, X)) is less than k. Let r €
carri(X(p)) and let ¢ € A\ (X UVa(p)) be a new atom in A, For all y such that {z,y) € X'{p),
replace y appearing in p and p; (j € A) by a to obtain p’ and p) (7 € A), respectively. Then
the number of equivalence classes of X {({p/, X)) is k — 1, and {p', X'} and ({p}, X} )jen satisly
{1). Then, by induction hypothesis, there is a hisimulation (¢, X'} of {p' U p[, X} for T for some
i € A such that X({¢’, X)) = X((p". X)). Let q = {le Vx V| €. (yx) € X({p, X))},
where I means the term obtained from I by replacing all occurrences y in I with the atom
a. It is an easy verification to show that (g, X) 15 a bisimulation for T of {(pUp;, X and
X{g. X)) = X((p, X)) So we get (3. o

{q. X} is a bisimulation of (pUp,, X). As pUp C g, q is a bisimulation of {p U p;, X} for T'.

Corollary 3.35 Let X T A be finite and ((po, X} )iea be a family of non-empty constraints on
I{Tx). Then the following are equivalent:

"

(1) For every assignment f for X in T, there is some 1 € A such that [ salisfies (p,. X}
(2) For some 1 € A, vovry assignment for X in 1" satisfies (p;, X}.

(3] There is some ¢ € A such that p C {[.L.i:} | x e {1, JI.'}}

Proof Let p={(zr.2) | r € X} Then p and the family of constraints satisfies the premise
condition of Proposition 3.34. So condition (1), (2), (3) in the proposition are equivalent. Also
it follows that Condition {3} of this corollary is equivalent to the condition (3] in Proposi-
tion prop:free-parameter. Hence. as p is satisfied with all assignments for {p, X'} in J(T), it
follows that the condition (1) and (2] of this corollary are equivalent. o

Theorem 3.36 (Independence Theorem) Let T be set-based and conservative, X © A be
finate, and let (p. X} be a bisimulation on I(Tx). Let (¢, X) a constraint on [(Tx ). Then the
following ave equivalent.

(1) The constraint {p.q. X} is solvable in J{T}.
(2 (pl {1}, X} is solvable 1" for each 1 € g.

Proof (1)== (2): Obvious.

(2)== ({1): Suppose (2] is true but (1) is not true. Equivalently, suppose that, for any solution
fof (p. X} in J(T)). flu) = f(v) for some (u,v) € q. Then by Proposition 3.34 there exist
some {u,v) € ¢ and a bisimulation (p', X} on J(T) of {p U {{u,v)}, X} such that X{{p’, X)) =
X{(p. X)) It follows that this contradicts (2). Therefore we get (1), o

Remark An analogy from a simple set theory might be helpful for understanding the inde-
pendence theorem: Given scts p, py, -+, py € 5, the following are equivalent, where T &f g \ T,
i.e., the complement of r.

e pABIN--- NPy = 0.
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In addition to this general property, the independence theorem rests on a special property that
the ‘total space” 5 can not be covered by any finite family of "subspaces” with properly lower
‘dimensions’ than that of 5. Of course, this is not the case in general. For example, take the
negative constraint, ’

(@, {(z,a), (z.b)} {z})
in the domain & = {a,b}. Both of {0, {(z,a)},{2}) and (@, {(x.b}}. {x]) are satishable, but

the total constraint is unsolvable in 5. O

We prove that every set-based and conservative functor is solution compact.

Solution Compactness

Theorem 3.37 (Compactness Theorem) Let T be a sef-based and conservaiive functor.
Then for any countable constraint (p. X) for T', the following are equivalent.

(1) {p. X} has a bisimulation for T,

(2) {q. X} has a bisimulation for T for every finite subset g of p.

Proof (1) ¢ (2): Obvious.

(2) == {1): Suppose (2) is true. As pis countable, we can choose a countable chain dy  d, C
- of finite subsets of p so that p = {d, | i € N}. Let D = {d, |i e N}. Let (' be the set
of ordered pairs (d.b) of € ) and a minimal local bisimulation b of d for T. Clearly (" is an
nfinite set. Let < be a hinary relation on (' defined by (d. b) < (d'. ) <= dC d' and bC b
Clearly € 15 partially ordered by <. As every finite subset of p has a bisimulation for T', for
any d € D, {d,b) € (" for some bisimulation b for T

It id.bye O, d' € D and d' € d, then by Proposition 3.25 there iz a bisimulation 8" for T such
that ¥ C b and (d'. &) € . Hence (' is connected. For each element & of ' there exists at
most a finite number of direct successors of ». We define a family (&, ),en of elements of O
such that 7., is a direct successor of r, for all n € N. Define zg = (B,0). Note that xy has
a mfnite number of successors in . We assume that r, has been defined and has a infinite
number of suceessors in . Choose r,.,, among the direct successors of », so that =, has
infinitely manv suecessors in T. With =, = (d,.,b,) thus defined for n € N, as the union of
i monolone sequence of bisimulations for T forms also a bisimulation for T, it follows that
p=Nd, |nc N} and U{b, | n € N} is a bisimulation of p for T. 0

3.6.6 Record Merge in a Final Coalgebra for Il

Let F.A C A be disjeint two sets. Elements F' are called features. A special atom 1 €
AN (F L A) means an undefined values of algebras. Deline a class funclor

1= map(F. ).
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Clearly I1g is pure, sct-based and subterm-closed for any £ C A. Elements of J{I14) are called
records over (F.A).

We define a merge operation on records as a coalgebra (pow(J(I14)), p) for I yu4 by

e piu) = L if there are x,y € u such that £ # y and either £ € Aory € A
o pluy=aiflae ANu

o plu) = f, if uis a set, where dom(f.) = U{dom(g) g u}, fulv)={flv)| feEurve
dom( f)}.

i is well-defined. By the final coalgebra theorem, there is a function = pew{J{I14)) —
J{IMauiiy) such that w{u) = i oalwHpl(u)), for v € pow{J(I{jua)). The operation y is
a record merge operations. Define u* = Iy yualm)p(u)).

Example 3.13

1 where a £ be A

v a)b {le b} ) .
g, a), (w2,6)},  where v £ 15 € F.

{{tm,a)} {(r2. b1} }°

n

We use [ 4 for the maximum $subsumption relation on J{I14). The notion of a solution of
X-subsumption constraint on J(ll 4 x) in J{114) is defined in a similar way to the bisimulation
constraint.,

Proposition 3.38 The following are equivalent.

{1} Forallwe v, wil u.

i3 wm oo,
The [vllowing definition s a slight modification of Barwise [14].

Definition 3.58 Let It = J{Il4,x} for disjeint A, X € A\ F. A constramnt {p, X} 1s called
a (X-)subsumption on R if p is reflexive and symmetric binary relation on R satisfying the
following.

(1 Hee A,y & X, plr,y) then r = y.
12) Txre A,y & X, ply.z) then r = y.

(3) fa.yé A, plr.y) then domiz) € dom{y) and pla(v), yle)) lor all v € dom(r).
[

We define an binary operation on records for merging parametric records. Let b = (by).ex be
a system of equations such that b, € H{T4ux) \ X. Then:
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Definition 3.60 us(u) % p(v'), where w' = {f cu| feu\ X U{b |z eun X} O

Definition 3.61 Given a X-bisimulation p and X-subsumption on I{Il4ux). A record com-
patibility relation v is a binary relation on [{I14,x) defined w.r.t. p,g satisfying the following.

(1) pC 7.
(2) If for some z, g(x,z) and g(y, z), then r{z, y).

(3) If r{z,y), then for all v € dom{z) N dom(y), riz(v), y(v)).
O

Given p,q.r as the above, for each unbound r € X in p, define R, = {y | rls,y)y € X}
By the final coalgebra theorem, x(x) € J(II; jua). Moreover, as cach equivalence class of r
has no conflict, by the final algebra theorem, L ¢ trans{x(z)). This method contains decision
procedure for subsumption problem, which recently Dorre [28] first solved by using a well known
method for transforming non-deterministic finite automata into deterministic ones. Our work
gives an account to the solution from the final coalgebra theorem [1, 5].

We can have another tyvpe of merge operations. This merge will be used for a specification of
a multiple-inheritance of class-hierarchy system in Section 5.6.5. Let A and F' be the same as
above. Let [I' = pow(A) « map'(F,—} and p'(u) = (Ua | (a.r) € u, for some r {r(i} ! (8.7} €
u, for some 3}). Then (pow{J{II"}}, u"} is a coalgebra for II'. Define u* similarly to the above

u.

Example 3.14

{0 (e, a) D D {e BB = (D {{v.{a.b})}). where a, b e A,
{{a b 00, ({6} {(r.a )}t = ({a,b}.{i{r.c)}). wherea,bice A, v e F.

3.7 Compactness of the Complex Number Field

A few examples from domains of numbers may be useful for the reader to get intuitions on
infinile sels of constraints. Let 7 be the complex number held. O s compaet with respect to
countable families of algebraic equations. As this fact has been turned out to be a fundamental
new fact, we give a proof for this in the subsection below. Now let H he the real number field.
It is not compact with respect to algehraic constraints. To be more precise, let § be the set of
pquations

Iy = & i+1 +2

for non negative integers n. The constraint S has no solution in K, for otherwise we can infer
oy = 2™ for any m > 0, which is impossible. Also ff is not compact with respect to the theory
with inequality (<). To see this, take the set of inequalities n < x for positive integers n, which
has no solution in H. However il 1s easy to see from the elementary calculus that & is solution
compact with respect to algebraic constraints with inequality (<).
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Finally let A be any field. For instance, let A be ¢ and let S be a countably infinite set of
linear finitary equations over K. As the well known Gaussian sweeping-out method can be
applied also for such infinite systems of linear equations with countable many variables, it is
proved that 5 is solvable if and only if every subset of 5 is solvable. Now we have explained
the properties of (" and R, which are summarized as follows:

(1) €' s compact with respect to countable algebraic equational constraints.
(2] R is not compact with respect to algebraic equation constraints.
(4) Both " and K are compact with respect to linear equation constraints.

{4) R 1= not compact with respect to mequahty constraints,

Compactness of the complex number field might be a folklore theorem in algebraic geometry.
However, the result seems interesting in that the theorem involves a countable number of
variables due to the situation of perpetual process, which i1s an usual in and a quite opposite
direction of interests of standard algebraic geometry.

We prove that every countable family of algebraic equations is solvable in the field of complex
numbers it and only if so is every its finite subfamily. This result assures the solvability for
incremental algebraic constraints in perpetual process, c.g., Grobner-base constraint solver such
as the one built-in in the system CAL [80, 81]. We use the adjective countable for the adjective
phrase “al most conntably infinite”. For instance, by o countable set, we mean a set which is
at most countably infinite.

Theorem 3.39 Lvery countable fomuly S of alyebraic equations over the field C of complex
numbers 18 sofvable in O if and only if every finite subfamily of 5 is solvable in C.

Proof Suppose 5 is a countable family of algebraic equations such that every finite subfamily
of 5 is solvable in (", Let X be the set of variables appearing in 5. As it follows from Hilbert’s
zero point theorem that if every ideal generated by finite subfamily of S has not the unit 1,
also the tdeal Is of C'[X] generated by S has not 1. Hence by Zorn's Lemma there exists a
maximal ideal M of C'[X] such that Js C M and M has not 1. Let K = C[X]/M. Then by
theorem 3.40. A is an algebraic extension of 7. As (7 is algebraically closed we get K = (. So
M must be an ideal which is generated by a family {r — a,},cx. where a. is an element of (.
Then we have a solution f:x + a, of 5. a

Remark We show that the complex number field (" is not compact with respect to the class
of uncountable families of algebraic equations. Let X and Y be disjoint sets of variable which
have the same cardinality of the power set of €', Let i : X x X — } be an injection. Let Z be
the set {{z —ylh(r,y) = 1| £y, re X, ye X}, Every finite subset of Z is solvable in
but Z 15 never solvahle in (7. for otherwise we have an injection ¥ X — ', which means that
the cardinality of (7 12 larger than or equal to that of X. This is a contradiction.

o
Remark There is a proof by Oscar Zariski of a fundamental theorem in the field theory that
every finitely generated ring over a field F is an algebraic extension of F' whenever the ring

forms a field. We show that a modified Zariski's proof can be applied to the case for the complex
field " and rings which has a countably infinite number of generators. b
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Theorem 3.40 Let F be @ field which has an uncountable cardinality and let B (B D F) be a
commutative ring genevated by a countable number of elements over F. If B is a field, then H
w5 an algebraie crtension of F.

Proof Let y be a countable set of generators of B as a ring over F. ie., B = Flx|. Let ¥’
and \" be subsets of y such that y is a transcendental basis of B and B = (F[x}[x"]. I x" is
emply, as B = Fiy'}is a field, y’ must be empty. So the theorem holds, Suppose that neither y'
nor y" are empty. Let A = F[\'] and let K be the quotient field of A. Write y" = {r1, 70, )
There exists a family {f}.»0 of polynomials with one variable over K such that x, is a root
of f, for cach i > 0. Let S be the multiplicatively closed subset of A generated by the set of
denominators of coefficients of f, for i > 0. As F is uncountable and " is countable, S can
not have all irreducible polynomials in A.

Let A, = S7'A(C K C B). Every cocfficient of f; belongs to the quotient ring A,. Hence, as
r € "< B) is integral with respect to the sub-integral domain 4;, B(= A,;[x"]) is integral
with respect to A,. So in particular, K is integral with respect to A,. We can prove as a
routine that A = F[y'] is integrally closed. Hence so is A; = §7'4. On the other hand, as the
quotient filed of A, is K and A is integral with respect to A;, we get A, = K. So A, must be
a field. But from the remark about S above it 1s impossible for 4, to be a ficld. Therefore x’
must be empty. O

Remark The following is a standard theorem: Let F be a field and let B {B 2 F) be a
commutative ring generated by a finife number of elements over £. If B is a field, then B is
an algebraic extension of F with a finile degree O

3.8 Concluding Remarks

Using hypersets and compact constraints, declarative and operational scmantics have become
essentially the same. In this respect, the present semantics seems to be closely related to
constructive type theory [30] in that the meaning of a given goal is a proof tree that is decorated
by satisfiable constraints at each node. The goal can be viewed as a noncanonical constraint.
Also, the solution compactness requirement of the CLP scheme is close to the intuitive notion
of constructive approximation. A clearer relationship between these theories remains to be
discovered.

The otiginal purpose of the present work was to describe semantics of meta-predicates of logic
programming languages using basic ideas in situation theory and situation semantics (STASS).
Meta-predicates such as var or cut of Prolog are essentially defined operationally. So the clear
structure of the proposed semantics in hypersets is expected to provide a good new setting
for defining the semantics of these meta-predicates. For example, using the idea from 5TASS
that the meaning of a sentence is a relation between situations, meaning of commands will be
farmalized as relations between computation trees. Moreover, constraint logic programming
certainly has aspects of infon logic programming, seeing constraints as infon or soa in the sense
of the STASS literature. For instance, it can be seen that the infon r = y is supported by a
physical computation state s, e,
sEE=1,y % .

The situation or state « has parameter cells for = and y with pointers from r to y. However,
details are outside the scope of this thesis.
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Finally, we have seen that the set-based, form-based, and conservative functors on the cate-
gory of classes characterize constraint theories on the coalgebras for the functors as built-in
constraints of the constraint logic programming scheme. In particular, we have seen that these
functors are a generalization of the Colmerauer’s infinite tree unification with unequations.
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Chapter 4

Constraint Logic Programming over

Record Algebras

A new class of algebras called record algebras is introduced as a mathematical model for feature
structures. A record algebra is commntative and idempotent partial monoid B provided with
an operator domain (7. (7 is a monoid whose elements act on i from both left and right sides,
R is called a G-record algebra and (7 a feature monoid. The record algebra is an extension
of the feature algebra in computational linguistics. A constraint theory (/%) is given for
complete and standard record algebras R with a record compatibility relation . The standard
unification theory (H, =) on Herbrand universe H with the identity relation — is embedded into
(R,™]. Also based on the theory (R, ™) a logic prograimmming over (R, #) is defined with both
declarative and operational semantics, where the maximum semantics is used for the declarative
sernantics. It 1s shown that hoth semantics of the program are sound and complete including
the negation-as-failure rule. As an application of this logic programming language class, the
definite clause grammar over H 1s generalized to that over (G-record algebras.

4.1 Introduction

In this chapter, we propose a class of algebras called record algehras as a mathematical madel
of feature structures. In fact, this structure was first introduced into the standard logic pro-
gramming language Prolog as an extension of the first-order term and it turned out to be very
useful for natural language processing [64, 53], We develop a unification theory using para-
meiric records, taking them as a partial description of pure records, i.e., parameter-free ones.
We write ( B, M), informally, for the proposed record unification theory, where R is the domain
of pure records and M a hinary relation on K. We develop the theory (K,M) so that it is a
straightforward extension of the standard unification theory (H, =) over Herbrand universe H
i.e., the domain of pure first-order terms. In fact, the former will be praved to be a conservative
exlension of the latter. Note that we treat only one relation M as the first-order unification
theory does only the identity relation

Records are simple recursive stroctures of the form {(a,, ), - (@, 7. )}, where a; are distinet
atonmic featwres and v are atomns or possibly another records. v are also called fealures. A
formal definition will be given in section 4.2 to the record. We treat three familiar kinds of
huiltin operations on records: ‘merge’{+), ‘left’(-), and ‘right’ ().
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Example 4.1 a, b, ¢, d are features, r, 5, t are atoms.

+ (merge) - {(ﬂ:i‘"],_l:h,ﬁ}}+{|:h,.‘l}1tf:1!}} {la,r) (b os), (e, b)),
- (left) coa-f{bhr)ie s} Wa, {{b,7).(c,51})}. {See Figure 4.1.)
£ (right) = {{a.{(h,r).(e,8]}},(d,t]} [a {(br). (e.5)} (See Figure 4.2.)

)

Note that operations are partial in general. For instance {{a,p}} + {(a,q)} is undefined when
p and q are distinet ‘atoms’. Using this algebra, cach record {{ay,ry).-+-.{an, o)} (n = 1) is
expressed as a;ry + -+ + 4,7, where ar stands for a - r.

With these simple examples in mind, a G-record algebra will be formally defined to be f-tuple
(R,G.+.-, f.€), where R is a commutative and idempotent partial monoid under + with an
operator domain GG which acts on R from both left(-} and right ([} sides as a monoid. We call
(& a feature monoid and R a G-record algebra. An element of K is a record. An element of &
is a feature. ¢ is the unit of H with respect to +. Az a convention for the case n = 0 above, we
identify the empty record @ with «.

We have no type other than the record. Data such as numbers and strings which come at
terminals of record structures are afomic records. A standard example of records are trees
which have tags at only leaf nodes. Let B be the set of such trees. A feature is a path in the
tree starting from the root node. The set of features forms a monoid under the concatenation,
rjo denotes the subtree of the tree & which can be accessed along the feature o in z. ax
denotes the tree which is obtained by putting the tree r at the end of the feature o, + is a tree
merge. ¢ is a singleton tree which is not assigned a tag. Unlike the standard unification theory,
(H,=), record algebras, R, involve partiahty. In fact, K iz a partial semi-lattice struclure w.r.t.
{with regard to) <, where a < b is defined by a + b= b

Atomic constraints on records are of the form p M ¢, where p and g are record terms. The
symbal M means a binary relation on K representing compatibility of records, ie., u M v iff
u+ v is defined in R, where u,v € R. A solution of p M g is an assignment f such that there
is a common ‘instance’ ¢ in R of p and ¢. In other words, p ¥ g is solvable iff there 15 a record
t € R which is of both parametric types p and g. Also another informal reading of p ¥ g is that
there is a record ¢ € R such that p and ¢ are a partial deseription of £. The concept of solutions
in (A,1) is a natural extension of that in the standard theory (H,=]. The notion of solutions
in (R,4) is fundamental and will be defined formally. The relation ™ is not an equivalence
relation. In fact, there is no full transitive rule in the theory (K, ™) but only a restricted one:
the transitive rule
M pArtg=sphg

is applied in the unification process only when r is a parameter.

A unification theory of the record algebra can be seen as a closure operation on constraints.
In fact, a constraint is defined to be unifiable iff 1t has a consistent closure. The closure is,
roughly, a generalization of the unifier. For example, in {R,%) the closure of the constraint
{{asy), (b.y)} 2 {(b, 1), (c.y)} contains y % 1, which means y = 1 with 1 being atomic. We will
show that for every constraint C' on the record algebra R, the constraint " is unifiable iff € is
solvable in K. In fact, our unification theory over records is satisfaction complete in the sense
of the logic programming (CLP) scheme [39]. Thus, the unification theory (K, ) characterizes
the set of solvable constraints in a decidable way. Also we show that the unification theory will
be compact in the sense that a constraint is solvable iff so is its every finite subconstraint.
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Now we turn to how to build the record algebra into logic programming, We view the logic
programming over records as a form of inductive or coinductive definition for domains of
records [1. 36). So the semantics of the program is defined to be the maximum or minimum
fixpoint of the program viewed as a monotone transformation on the power sel of the domain
R ol records. In particular, we are interested in non-well-founded structures [1] such as streams
for a variety of possible applications, e.g.. type inference involving recursive type definitions
among others. So unlike traditional semantics of logic programming, we treat in this paper
only the maximum semantics of programs [46].

Example 4.2 The program helow consists of three Horn clauses for a recursive data type
definition of list structures, where 1 and [ are parameters, a, b, nil, atorn, list are atoms, type,
car, cdr, and form are features.

(1} {{type, atom).{ form,a)}.
(2) {(type,atom). { form, b)}.

(3) {{type, fist), ( form, {{car,r), (cdr,[)}) }:-
{{type.atom]), (form, z)}, {{type, list),{ form, 1)}

The minimum semantics of the program is the set

{{{type. atom), | form.a)}, {(type, atom), ( form, b)}}.

On the other hand, the maximum semantics of the program is the largest set M of records such
that:

o M = NU{{(type.atom).{ form,a)}, [{type. atom), ( form, b)}}.

¢ Vs the largest set such that for any r € N, there are some v € M and u € {a,b} such
that r = {{type.lst),{ form, {{car u), (cdr,v)})}.

This kind of straightforward maximum semantics is given in [58] based on the hyperset the-
ory [1]. This program example will be treated formally in example 4.11 and 4.12. o

We will show the svunduess and completeness results and the display-theorem (theorem 4.17),
which asserts that every solution is displayed by a computation for the given goal. Also we will
show the soundness and completeness of the negation-as-failure rule. However our constraint
language does not exactly fit to the CLP scheme. In fact, as the atomic constraint e 04
holds for any record x, the unit ¢ is not constraint definable, which means ( R,™) is not solution
compact [39]. This aspect of { /,4) may be easily modified by separating the role of the symbol
M into two, ie., identity (=] and subsumption (C) so that the modified language is solution
compact [58]. This modification is, however, out of place.

There is a straightforward translation from Herbrand universe H into the record algebra R
which maps, for instance, f{a. b} to {{fi.a),(fs, b)}, where f; and f; are argument places of f.
The first-order term f(a,g(x)), for instance, is translated to the record {( f;,a).{ f2.{(g:.7)}}}.
Partial descriptions {{fi,a)} and {(f,b}} together mean the first-order term f(a,b), whereas
there is no such term for {(f,,a}} and {(f,.b)} with a,b being distinct atoms. This kind
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of partiality is an essential aspect of records structure constraints which are not seen in the
standard unification theory.

As applications of the unification theories (R, ), we will show first that the standard domain
of (H,=) 1s embedded into a record algebra of (R, ). Then we extend the DCG (definite
clanse grammar) over H to that over the record algebra R. Also we will see that DAGs used
in unification grammar formalism are viewed constraints on records. -

We will give the details of the unification theory (R, ) over record algebras R which is
a conservative extension of the standard unification theory (H,=) over Herbrand universe
H. The standard term unification f(z,z) = fla,y), for iustance, in (H,=) is translated to
{{fisz), (fz2)} 2 {( fi, @), ( fa,y)} in (R, ™) preserving the solvability. The closure of the lat-
Ler contains three atomic constraints: z M oa, r My, and y & a, which means & = ¥ = a. More
formally speaking. there is a translation m: H — R between the first-order term unification
(including infinite trees) (H.=) and the proposed record unification theory (H,™) such that
s = f is unifiable in (H.=) iff 7{s) M 7(t} is unifiable in (&, %) and also that s = t is solvable
in (H,=) iff v(s) M (1) is solvable in {R,). A non trivial thing is that the binary relation
symbol ® between records is not interpreted as the record identity but as a kind of compatibil-
ity of two records’. In fact, an extended notion of solutions for record constraints is needed to
make the record unification complete as desired. Moreover, there is a converse mapping from
the record domain # to the standard term domain H in the sense that the record unification
can be reduced to the standard term unification. For example, take a compatibility constraint
(4.1).

{{a,g).(boy)} 2 {(h 1) (e} (4.1)
{(a,y)(boy). (coubt = {la,v), (b 1), (e, y)}. (4.2)
fly.you) = fiv Lyl {4.3)

The compatibility constraint is reduced to the equational constraint (4.2) introducing new
parameters w and ¢ for ‘hidden’ features ¢ and a. Clearly, the two constraints (4.1} and (4.2)
are equivalent in the sense that the equation is solvable iff so is the given constraint. Now
the cquation (2] is equivalent to the term equation (4.3), where fis a function symbol. The
present work, however, concerns M-constraints themselves as a study of partiality of information,
without reducing them to standard constraints.

T'here are many related works on feature structures, which are still on going, so that we take
only some of representative works among them related to this work and give brief notes on them
from the view point of this work. First of all Pereira and Shieber [T1] applies Scott’s domain
theory to give a denotational semantics to unification grammars viewing them as a computer
program. Although it is not clear that the record algebra is an instance of the scheme, both
works share the basic idea in that grammars are computer programs. In fact, the present work
treats DCG as a form of coinductive definitions for a desired domain of records as legal feature
structures.

As explained abave by introducing new parameters for ‘hidden’ features, the proposed record
constraints can be translated into first-order term equations or more generally those in the
order sorted algebra (OSA) [34). However it is the behavior of the relation W, i.e., a logic
of ‘compatibility’ that the present work is interested in. In fact, we give a record constraint

LAlthough the proposed theory of B on records is not exactly an equational theory, we still use the word
‘unification’ for such a theory based on a strong similarity to each other.
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for only 4 relation, and thereby we need no new parameters in unification procedures. Also
the proposed record algebra has non-well-founded structures in general and the semantics of
programs is the maximum semantics. It is interesting but not clear how the initial algebra
semantics of OSA, for instance, can be applied to the record algebras.

PATR-IT [83] is a standard computational framework for DAG-based unification grammars. Qur
unification over the record algebra is equivalent to that of PATR-11 over feature structures, i.e.,
graph merging, though we includes infinite record structures. The proposed embedding of the
standard domain (H,=) into the record unification (K,M) gives a mathematical model to a
conumnon sense view that Herbrand terms are a degenerated form of records and a DCG is a
compiled form of unification grammar (Shieber)., Also we will show a natural translation of
DAGs into constraints in (R, ™) so that the unification theory over DAGs can be interpreted
as a constraint theory over the record algebra in a natural way. In other words records are
considered to be denotations of direcied graphs (DGs), which is an analogy to that hypersets
are denotations of directed graphs [1].

Seeing records as partial functions. the record algebra is related to situation semantics I18] and
situation theory [12, 14]. That is, records can be used for representation of state of affairs which
contains a partially specified list of arguments [55]. Pollard [77] proposed the notion of anadic
relations for situation scmantics. The record algebra serves as a model for anadic relations.

In his thesis. Ait-Kaci [7] criticizes first-order terms from type-theoretical point of view and
propases to see them as vecords. He uses semi-lattice for the framework. Aft-Kaci [7], however,
gives no declarative semantics of the program over the semi-lattice while we give a declarative
semantics for constraint logic programming over record algebras.

Kasper and Rounds [43] proposes automata models of unification theory over feature structures.
Also more recently Smolka [86] formalizes unification theories in feature logic with subsorts in-
cluding negation and disjunction. le showed a linear time translation from constraint language
over feature structures into a quantifier-free sublanguage of first-order predicate language.

(Courcelle [23] treats infinite trees, and Maher [4'?] gives an axiomatization of infinite trees, How-
ever. they treat only trees which have fixed arities. Also the same with case ﬂf Colineraver [21],
whereas the record has not a fixed arity.

This chapter is organized as follows. In Section 4.1, we introduce a class of record algebras and
give a unification theorv over them. The main goal is the equivalence thearem between the
solvability and unifiability. In Section 4.2 we give a class of unification grammars over record
algebras being guided by the idea that grammars are computer programs [71]. Soundness
and completeness results are obtained. DAGs and the notion of arity will be given a new
interpretation respectively from the point of the record algebra. Section 4 conclude the chapter.

4.2 The Record Algebra and Unification

We introduce record algebras and describe a unification theory over them. As things in record
algebras are partial, we make a general convention for equations and evaluation in partial
algebras used in the rest of the paper. By €], we mean that the expression e is defined, i.c., has
a value, where e is an expression in the constraint language. Details of ‘logic of partial terms’
will be given at appropriate places in the below. An equation | ~ r means that if either { or r
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is defined then both of them have the same value:
ler = Ilvrl = I Ar[Al=T],

where [ and r are expressions. The use of terminologies follows standard algebra text books
such as [38, 04, 19].

4.2.1 The Record Algebra

Definition 4.1 A feature monoid G is a monoid such that the following hold:

(1) Each a € (7 has only a finite number of prefixes, where 8 € G is a prefir of o € G if
a = [~ for some 4 € (7.

(2) {G,<)is a partial order structure, where < is a binary relation over (7 defined by a < 3
iff o is a prefix of 3.

(3) (G, <) forms a tree, i.e., the set of {3 € 7 |a < 3 < v} is totally ordered by < for any
e, FE G,

]

Elements of (7 are called a feature. Every free monoid is a feature monoid. We write a £ 4
iff o and 3 are incomparable features, ie., a £ 3 &= e £ INI £ ain G aand 7 are
incompaltible iff there is no upper bound of & and 3 in . As the unit £ € ¢ is the minimum
element of (7, <), it follows from assumption (3) that & and 4 are incomparable in 7 iff they
are incompatible in (.

The feature monoid is a generalization of monoids of strings over given letters with the string
concatenation. Let L be a set of atomie features. A sequence of atomic features ay, ... a4, 1s
wrilten (a,,. ... a, ), where n is a non negative integer and is called the length of the sequence.
As usual convention, the sequence (aq, - -, a,) denotes the cmpty string () when n = 0. Also ¢
denotes the empty string. The length of the empty string is 0. We write a3 for the concatenation
of two sequences o and 4. The concatenation is defined by the following equations:

fa = a.
s = .
(@y..... a )by by = lan,. o an by by

The syimbol X* denotes the free monoid generated over a set .X. For example, with L being
a sel of letters, L* is the set of words of finite length over letters in L. For the convenience of
notation the string (a) of the length one is written simply a. Clearly from the definition, L* is
a feature monaoid.

Remark Condition {3) above is narrow. It is desirable to find more general conditions for (3}
in which a computational unification theory such as one developed in the present work is still
effective. However this is an open problem. a

Definition 4.2 Let (¢ and M be sets and let # C {-, 4+, f}. Then £(G, M, F) is the least set
F of expressions which satisfies the following.
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1y M CE,
(2) If - € F,a€ G,z € E then -(a,x) € E.
(3) e F,ae G and r € E then [J{r,0) € E.

(4) W+ & F, r,y € E then +{z.y) € E.

We use usual notations:

ar & e, ).

rfo 4 Nz, a).
=4y def +{x, yh

Given a record term p the set V(p) denotes the set of parameters appearing in p.

Definition 4.3 A merge system is a partial semi-group (M, 4], where M is an associative,
commutative and idempotent under a partial binarv operation 4+: M =« M — M. The axioms
follows, where a b e € E(0, M, {+}}.

Partiality et M = al.

n+b, = al nbl.
Associative atibte)l =~ (atblte
Commutative a+b =~ bhta
Idempotent a-+a ™~ .

MNote that a merge system may have not a umt,

Example 4.3 (pow{F),\J) iz a merge system, where P i3 a set and pow( P} denotes the sct of
subsets of P. =

(M. +) 15 a drivial merge system if M 1s a set and | is a binary operation en M such that
x+x=uxbut r+yis undefined whenever r # y, where z,y & M.

Definition 4.4 A (C-record algebra 1s a 6-tuple R = (R.G,+, -, [, ¢}, where

(1) [H.4+) is a merge system with the unit e

(2) €715 a feature monoid which acts on K as an operator domain from both left and right:

(_}'xﬁ’.—»ﬁ‘_.
J : RxG s R
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{3) Partiality axioms for R follows, where a € G, and a. b € E(G R A+

= .
= €].

a+ bl = al ABL
ova) = al.
affer] =+ al.

(4) The following equations hold, where o € G, a, b, ¢ € E(G. R, {-. +, FR3E

Associative a+(b+c) = (atb)+e
Commutative a+b ~ b+a
Idempotent a+a =~ a

Unit a+e ™ ¢+4a =~ .
Left Distributive afa+b) ~ ca+ab

Right Distributive (a+b)fo ~ afo+bhja.
Cancellation (aa)fa =~ a.

Elements of R are called records. Note that actions by a feature are partial in general. We
abuse R for R. In the record algebra, r = y follows from ar = ay by the cancellation axiom.
For any & € R, cx = r and in particular z¢ = ¢ hold.

Definition 4.5 Records r € R are atomic if rfa is undefined for anv a € G\ {z}. a

The unit ¢ is not always atomic. Such an example will be found in example 4.4 and 4.5. We
recall the definition of the feature algebra and show that the record algebra is an extension
of the feature algebra. Roughly speaking, a record algebra is a feature algebra which has an
internal merge operation in addition to external ones. Moreover, the operators operate on
records from both sides not only as ‘field selectors’ but also ‘record constructors’ respectively,
whereas operators in feature algebras work only as selectors.

Definition 4.6 Given a set F of features and € of constants, a feature algebra is an ordered
pair (D, ()"} which satisfies the following, where ) is a set:

(1) fA: D = D is a partial function if f € F.
(2) ereDifce (.

(3) a* #¥ ifabeC, a#b

(4) at @ dom({f)e Dif f € Fandac (.

As distinct constants are interpreted to be distinct, we can assume O © [ Assuming the
hyperset theory [1]. it is straightforward to show that every feature algebra 1= a record algebra.
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Proposition 4.1 Given a set F of features, C of constants, and a feature algebra A =
(D, (YY), Then there is a F=-record algebra R4 = (R, F*. 4., [.€) and en injection »: [} — R
such that the followmmyg hold.

(1) &{C) S R
(20 (A = wld)f f (de ).

Proof Toreach d € D, let S; = {(f. fAd)) | f € F.d € dom{f*)} and D' = {d € D |
Si # 0}. Solve the system {d = S; | d € D'} of equations. By the solution lemma [1], there
is a unique solution v to the system. Let Ry = {(d) | d € D'} U DY D) and € be some new
atom not in K. Let B = Ry U {¢}. Define a merge system (K. +) so that (fp, +) 1s a tnivial
merge system and ¢ + 7 = r+¢ = r for all ¥ € B. Then define ¢(x)f f 4 P fA(x)) and
foala) def (x4}, where 1 is some element in f~'(z) C D, Le., & = f(xy). It is clear that
(ar)fa =z and rfal=—=alz[a)]. Also define so that ¥"(c}/f is undefined for any ¢ € €' and
ferF. w}

Definition 4.7 Let (M. +) and {M', +) be two merge systems. A total function g: W — M
is a merge homomeorphism if for all o, be M,

wla +b) ~ pla) + o(b).

(]

Definition 4.8 Let K and B’ be (G-record algebras over M and M, respectively. A homomor-
phism from K into R'is a (total) function h: B — R satislving the following:

he) = &
hlud & M (e M.
hauw) = ahiu)
hlufa) ~ hlu)fo.
hlu+v) = hlu)+hiv).

0

If the function h is a bijection and the inverse £~ of & is a homomorphism from B into R then
H and H' are called isomorphic to each other.

We define a binary relation <X on i by
a<h & a+hb=>h

Then it is proved that the binary relation < is a partial order relation on R as follows: the
reflective law @ < a follows the idempotent law a + @ = a. The transitive law that a < bnA b <
r==a < ¢ is proved as follows: add ¢ to both sides of the cquation b = « + b and then apply the
equation ¢ = b+ ¢. then we obtain the equation ¢ = a + ¢, which concludes the transitive law.
The anti-svmmetric law, i.e., a < bA b < a=>a = b. follows directly from the commutative law
of the record algebra. 5o we have the proposition:
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Proposition 4.2 Let R be a G-record algebra and < the binary relation on R defined by a <
h = g+ b==~4 Then (R.<) is a pariial order structure.

Let S be a subset of a (G-record algehra B. We write | |8 for the supremum of § with respect
to <. Also we call it the sum of 5. A non empty subset S of R is consistent if there exists the
sum for any two elements of 5.

Definition 4.9 A standard (7-record algebra R over M is a (i-record algebra over M such that
the following hold.

{1) au+ [Gvis defined for any u,» € R whenever a £ 4.

(2) For each u € R, there exist a set H € G and a family {z. € [} UMUX).ch such
that u = | [{az, o€ H}.

|

Remark The above H is not always an anti-chain, where an anti-chain is a subset H of
(7 such that every distinct two elements in H are incomparable in (. For example, define a
(G M)PTT ¢ by

t 2 {a" | n = 0)
where a € (7, @ # 2. The PTT t satisfies the constraint = # ax with + = { and has an
exactly one branch at every node. {a" | n = 0} is not an anti-chain. However il is clear that if

t=|Har, |« ¢ H} for some H C (& and family {z,},en then H C {a" | n = 0} and, hence,
H can nol be an anti-chain. [

A subset B of R is a (7-basis if each x € [I{ is the sum of some subset S, of G[B], Le., r = 5.,

where ([B] def lgu |y e Buld.g © G}, Also we say f is generafed over B when B is a
(-basis of K.

Definition 4.10 Let M he a merge system. K is a (7-record algebra over (M, ) if the following
hold.

(1) o: M — R is a merge homomorphism,
(2) (M) is a G-hasis of A.

(3} FEvery element of o( M) is atomic.

It is clear that condition (3) is equivalent both to that if @ # ¢ then ar & (M) for any r € R
and to that z /o is not defined for any £ € M and & € G, The injection ¢ may be inplicit
when the context is clear.



Definition 4.11 R is complete if every consistent subset of B has a sum and the sum operation
is commutative with both the left and right action of &, i.e.:

US| <= S is consistent.
ar| <<= x|
el JS) = | Has|se S}
US)ifa = |Hsfalse S sfall.

O

We define a U b & L{a,b}. lo the rest of the chapter, we assume every G-record algebra is
complete.

Proposition 4.3 If B s a (G-record algebra then the following hold in R, where a, b€ K.

(1) a+b~allb

(2) aubl=al A b].

Proof (1) Suppose first o+ bj. We show a Ub, and a + b=aUb. As a+ b| it follows that
o <“a+band b <a+b Suppose r € Rand a < 2 and b = r. Then by definition of <, it
follows that + = a + r and = = b+ &, whence

r=r+r=lat+z)+i{btrl=a+bt+ua

i.e., a+b <z Therefore by definition of a Ub, it follows a + b= a Ll b

Iu the second case suppose a LI b, By definition of U, it follows that e < aUband b < a1 b.
So by definition of <, it follows that a + a2’ = aUband b+ b = a U b for some o', ¥ € K. As
alibl and allh=allb+alb, it follows that (a + a') 4 (b+ ¥')|. By the commutativity law,
it follows that {a + B) + (a' + )], Hence, by the partiality axiom for +, it follows that a + b].
Thetefore, from the first case above, we gel ¢ + b=a U b.

{2) Suppose a||b. Then it follows from (1) that a 4+ b). By the partiality axiom of + we get a/
and b, n

Proposition 4.4 afa L b) ~ aa Ll ah.

Proof Applving the left action ¢ on both sides of aU b~ a + b, ala U b) ~ aa U ab follows
the distributive law between o and —+. m

Proposition 4.5 Let R be a complete (G-record algebra. Then if 5,58 C R then the following
holds: | |S+ ]S = Su s

Proof Clearly | |5+ )5 <= [|5US'] from the partiality hypothesis on || above. So we
can assume that both of them have values. As S C SU S weget [ |S < 1SU 5" Similarly, we
get | ]S < 1S U S Hence, we get [|S+[J5" € |5 U S For the converse, as u < [ |5 + ]S
for any element u in SU S, weget JSU S < S +LS (e
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Figure 4.1: The left action by e on 1 T

Proposition 4.6 Let S be a consistent subset of a (complete) G-record algebra R. If S =
U{Sy 1A€A} then US = LISy | A € A).

Proof As S, C 5, weget U5, = S, Hence LJ{LJSy | A € A} < US. For the converse, as
every r € 5 is an element of S, for some Ag, we get 7 < || 5,,. Hence, we get z < [J{|I5) |
X € A}. Therefore S < U{L S, 1 A€ AL m}

4.2.2 Partially Tagged Trees

In this section, we introduce a domain of partially tagged trees (PTT) as a canonical record
algebra. A PTT is a kind of unordered possibly non-well-founded trees which is tagged only at
some of leaf nodes. The set of PTTs will be characterized to be a complete free record algebra
with some additional conditions.

Let M be a set of tags. Substructure of tags are left unanalysed. Let (7 be a feature monoid
with the unit £.

Definition 4.12 A tree T over (7 is a non empty subset of G which is closed under prefixes,
e ifad €1 thene e T O

The singleton {¢} is the unif tree. By definition, the unit tree is the minimum tree over 7. As
we have assumed that every feature monoid is a tree, the set {y € 1" | y < r} is totally ordered
with < for any € T. Clearly, if T, and T} are trees then T, U 15 is a tree. Also Ty N T3 05 a
tree. Moreover, the class of trees over (7 is closed under both of the set-theoretical union and
intersection of an arbitrary family of trees.

Let o and T be a feature and tree, respectivelv. By a7, we mean the smallest tree which
has all features aa' for any o' € T. (See Figure 4.1.) For instance, let G = L* and 1" =
(e, (). (c). (e d)} with L = {a,b,c,d}. Then aT = {¢, (a), {a,b), (a¢), (a, e, d)}.

Let S he a set of features. By Sfa. we mean the maximum tree, §' such that S’ € §. By
definition of an tree S is a tree whenever it exists. For a tree § Sfa is a subtree of 5. (See
Figure 4.2).

3 is called a direct suceessor of @ in T'if o € 3, @ # 3 and there s no 4 € T such that
o < v < 3. A feature as a node of a tree may have infinite number of direct successors. A
feature a of a tree T'is a leaf if @ has no successor in T. We write leaf (1') for the set of leaves.
A tag function is a partial function from leaf(T) into M. In particular, the empty function @
is a tag lunction.
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Sfa

Figure 4.2: 5fa.

White circles a %fif‘ll‘ﬁ with-
out tags, while black ones

with tags.

Figure 4.3: A parually tagsed tree.

Definition 4.13 Apartially tagged tree (PTT) is an ordered pair (1, f) of a tree T" and a tag
function of T. (See Figure 4.3.) ]

The unit PTT, denoted by ¢, is the ordered pair of the unit tree and the empty function @
e=({<}.0)

Given a PTT ¢t = (T, fi. v & M is the tag at o in t if f(a) =v. We call PTTs a (G, M)-PTT
when the feature monoid & and the set M of tags should be explicit. Now. for a feature o,
we define left actions at (= o ) d.l:]d. right actions ¢ e also on PTTs. Let t = (7., f) be a
PTT. For a feature a, we define at = {uT F*), where f* is a tag function of aT such that
dom(f*) = {ay | ¥ € dom(f)} and f°(av) = f{v) for v € dom(f). For features o in T, the
right (partial) action is defined by the following equations:

tha = (Tha. fa)
where f, is a tag function of Tf«a defined by f.(3) = f(ad).

Let t, = (T}, fi) and t; = (15, f2) be two PTTs. Then t = (T UTa, fi U fi) is the merge of 4
and fy, written ¢; + ¢, iff fi U fi is a tag function of the tree T} UT;. By this definition, ¢, + {3
is undefined if there is some e € T} N T} such that fi(e) and f3{a) are defined but are not the
same. Also t, + t; is undefined if there is some 3 such that fi(3) is defined but 4 is not a leaf
of T

A set of PTTs is consistent if any two PTTs in the set have the merge. Let t, = (1. fi)
and E? = I:Thf]j bﬂ PTT‘{ E.:‘" Ly 5 Eg., wWe Means that T| c: T-;r atid f] ':: fg. Let K bf-' t-he
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set of (GG, M)-PT1s. As the set union is complete, it is easily checked that the partial order
structure ( [, <) is complete. Also it is proved without difficulty that the left and right actions
are commutative with the operation of taking the supremum. M can be embedded into A by
identifying each element a of M with the singleton PTT whose unique tag is a. We denote this
embedding by : M — H. We show that the set of (G, M)-PTTs is characterized as the most
universal complete (7-record algebra over M.

Proposition 4.7 Let M and ( be a merge system and a feature monoid respectively. Then
there exists a unique (K, p) such that the follownng hold.

(1) R is a complete and standard G-record algebra over (M, ).

(2) For any record algebra R’ and @ homomorphism @' : M — R', there exists a complete (5-
homomorphism f from R into R’ such that fop = ', where o is the function composition
aperator.

Proof Let M be a merge system. Let R be the set of (G, M }-PTTs, and ¢ an injection from
M into R such that o{x) is the singleton P11l whose tag is r, 12, plz) = {{{}.{(=.0)}) }.
It is clear that H is a complete and standard (7-record a.]gehra, over ( M,). As R s standard,
the function f' from G[p( M )] into Ge'( M)] which assigns a¢'(r) to ap(z) maps consistent
subsets of B to those of B, Hence, f' determines a complete (y-record homomorphism f from
Rinto H'. Tt is easy to see that fo = o

The uniqueness is a routine. 0O {R,#) in the above proposition 15 called a free complete
(i-record record algebra over M.

Corollary 4.8 Let R be the set of ((G. M }-PTTs and let p be the embedding injection o M —
R. Then the 6-tuple (R. G+, -, [.¢) 15 a complete and standard -record algebra over M with
the injection o: M — R.

Example 4.4 We show a non trivial record algebra on which features operate totally from
both sides. Let (0 be a feature monoid and A a non-empty set which has sufficient number of
elements. A% is the set of functions from G into A. For each f € A" fJa is the function f'
in A% defined by f(3) W flad) for each 3 € (7. We define t o ' {ffa| f € t} for each
t © A% Also for each t © A%, we define o - t (= at) to be the largest set ' € A” such that
e C L.

Let B = (pow(A“),G. N, . J.A%). Then it is clear that R is a complete G-record algebra.
Note that e, of. and £ Ut are defined for all £,#' € AY, o € . ie., R is a totally defined
algebra. O

Example 4.5 Let 7, A, R be the same as in example 4.4. For some indexing set II, we con-
struct a family {Ryy }aen of complete G-record subalgebras Rps of R over M. In fact, I1is the
set of sete M C pow(A%) such that

(2) Hre| UM, a e (7, and a # ¢ then zfa ¢ UM.
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(3) e, e M and t £ # then £ 0" = {.

We show that T1 # @. Let § be the set of f € A” such that the image of f is {a,b} T A for
some distinet a,b6 € 4 and f~"a) = {z}. Let Ms = {{f} | f € 5}. As A has at least two
elements, it follows that § # @ and hence, M; € [I. Therefore I1 # §. For each M & [I, let
Roar = (Har, .7, -, f,epnr) be the least complete (G-record subalgebra of R such that M C Ry,
It is clear that Tas exists and is a totallv defined record algebra. As €5y is the unit of Ry, it
follows that epe Mt = ¢ for all t € Ry and hence ey = |J Ry, [t 15 clear from the construction
of Ry that in Ry the following hold.

(L) e, '€ M andt # 1 then t "¢ = .

(2) Hat=20thent =4§.

(3) Hifoo =0 then t = §.

(4) ft e M, u € Ry, and o € G\ {=} then tMou = .

(3) If {a;};e, is an anti-chain in G, and {1, | j € J} is a family of elements of Ry then

Mast, 7€ J}#0.

For M € 1I, it follows from these properties that by removing @ from Ry, we get a desired
partial G-record algebra Ry, over M, where Ry = (Rar \ {0}, G0 )L enr).

|

4.2,.3 The Unification Theory

In this subsection, we fix M, (:, B, X as follows unless mentioned otherwise exphcitly: A is
a complete and standard (-record algebra over a merge system (M. +} and X 15 a sel of
parameters, Elements of £, M U X, {-.+, ['}) are called a record term. Tt is also called a
parametrie record®,. Elements of (G, MU X, {-}) are called a basic record term. It is convenient
to have the left action built into the record terms. So we identify elements of £(G, M, F') up
to the following equations:

{(nd)r = ofdr).

£r = I

In fact, we abuse the symbol £{G, M, F) for the quotient set of £((7, M, F') modulo the least
congruence relation generated by the above three equations. This convention will be used
without mentioning.

Note that we have no syntactical counter part for . Hence ¢ does not appear in any record
term. In particular, ¢ is not a record term. An afomic constrainf i= an ordered pair of record
terms, written

pHyq

where p, g are record terms.

*Record terms are called a partially specified ferm (PST} in [35].
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Remark As ufa ¥ v is semantically reduced to v ™ ow plus w M v with w being a new
parameter, we assume p, g € £(G, M U X {-,+}) without loss of generality. |

A constraint is a possibly infinite set of atomic constraints. We give a set of constraint rules
in table 4.1. Each rule there means a condition on constraints.

Definition 4.14 A constraint ' is closed if (7 satisfies all clanses in the constraint rule ta-
ble 4.1. |

Definition 4.15 Recalling that R is a complete and standard G-record algebra over M, a pair
of wand v in E(G.M U X, {-,+.[}) is a conflict if one of the following hold.

(1) ue Mand v ¢ M but v + v is undefined in (M, +).

(2) ue M and v = e for some recard term w and a € &Y {£].

a

Clearly, if u and v are a conflict pair then there is no assignment such that f{u + v} is defined.
The set of constraint rules is designed so that every constraint ' is solvable iff it is unifiable,
e, there is a closed and consistent extension O of .

In Table 4.1, (' is a constraint, + € X, and a, 3 £ & are incomparable features appearing in O,
and w, v, w are record terms appearing in €. Nole that x appearing in the restricted transitive

rule is a parameter in X,

Table 4.1: Constraiml Rules

Merge (0) ubMo e CAuveM = u+uvl.

Base aubM v Clad d = uHMue L vMee .
Reflexive v XUM = uMuel.
Symmetric uHre ! = vHue
Hestricted Transitive zMuc oMo = ukpe

Merge (1) u+v)Mw el —= uMwel,

Merge (2) (u+v)Mwe — ukee .
Cancellation ouav € == ubpe

Definition 4.16 A closed constraint over K is a set of atomic constraints satisfying the rules
on table 4.1. |

From the reflexive, symmetric, and restricted transitive rules on the table, every closed con-
straint contains an equivalence relation between parameters. However, as there is not a [ull
transitive law, the closed constraint gives no equivalence relation on E(G, M U X {-. +,/}) in
general. The minimum closed extension is called the closure of S. Clearly the closure of a finite
constraint § is computed effectively. A unification problem is to find the closure. The input of
‘the unification algorithm is a linite set 7 of atomic constraints:

C=A{m bgrye..oqn Mgnl
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The ontput is the consistent closure C' or ‘conflict” when 7 has a conflict.

In the following example, & = {a.h}" (a # b) and M = {1.2} is a trivial ierge system. That
is. 142 is undefined and 1 41 = 1, 242 = 2. Let R be a G-record algebra over M. Let
X = {r.y} be a set of parameters. For saving the space, we omit obvious atomic constraints
obtained by, for instance, the reflexive rule or the base rule. Also we use the symmetric rule
irnplicitly.

Example 4.6 Let () def lax + br ¥ by + al}. By merge rule (1), we get ar * al and br M by,

Applving the cancellation rule to the two, we get x b4 1 and x 1 y. Applying the restricted
transitive rule, we get y 04 1. Thus the closure of 7y is

{ar 4+ br ™ by 4+ al.ax M al br M by, x P 1, x My, y W 1}

There iz no conflict in the closure. 0O

Example 4.7 The example gives a cyclic graph.
s e {r M ay + by, y W ar + ba,x <y}

Applying the restricted transitive law to parameter 1, we get y M ay + by, It follows from this
and he restricted transitive law applied to y M ax + bz wort. y, we get ar + br M ay + by. By
repeating merge law (1), we get ar ™ ay and bx ™ by. Applying the cancellation law to each of
them, we get r 4y, Now no rule is applicable. The closure of (% is:

{200 ay + by, y P axr + hr, o My, ar ¥ ay. br M by, v Wax + br,y May + by}

The autput of this unification means a singleton graph which las two self-loops with features
i and b, m]

4.2.4 Satisfiability of Record Constraints
M, X, . It are the same in the previous subsection. Hecall the definition of £ {definition 4.2).

Definition 4.17 We define a function = £(G. X UM {- 4]} —+ pow(E(G. X UM, {-}]) induc-
tively by the following equations:

mlr) = {x} ilre MUX.
mlr+y) = wlx)Umiy)
mlar) = {ay |y € rir)}
0
Example 4.8 Il a.b.c € (7 and 2, y, 2 € X then w(e(bz +cly + 2))) = {abx, acy, acz}. (]

We abuse the = as 7(§) % |U{xixr) | x € S} An assignmend is a partial function from X into

.
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Proposition 4.9 [f [ is an assignment then there is the largest partial function h: E(G, M U
X {.+.[}) = R which satisfies the following.

re X, hir)] = r & domif).
r e dom(f) — hiz) = fiz).
reEM = h(z) = =
= hlz+y) = hiz)+ kiy)
— hlar) = ah{z).
= hlzfo) =~ hir)feo.

Proof A proof is done by structural induction on record terms. O We use the assignment f
also for the extension h.

Definition 4.18 Let p be a record term in £(G, M U X, {-,+,/}), f an assignment and ¢ a
record in B, Then s an instance of p with f. written

tiyp

if for any ar € =(p) the following hold, where r £ X UM, a € G:
(1) tfa].
2) r=<tfailzrc M.
(3) flz)=tfaifz € X.

Clearly ¢ 1y p imphes fip)].

Example 4.9 ac+ad + be 4+ bd ;5 ax + bhr is a valid assertion. where a, b e . e, d € M e+ d|,
and flry=c+d. (]

Definition 4.19 f is a solution of p ™ g {in R) iff t :;; pand t :; ¢ for some record t € A.
Given a constraint (7, f is a selutten of " (in R)if f is a solution of each atomic constraint in
i ]

[ solves a constraint if [ is solution of the constraint. Recall that R s standard.

Lemma 4.1 Lelz € X, o, d € G u,vow € E(GMUX,{-.+}), and f an assignment. Then
the following hold.

(1) Ifu,v € M and [ solves u M v then u + v].
(2) Ifue X and [ solves v M au then fu) = flz)fo.
() Ifue M and f solves r Mau thenu < fir)fa.

{4) If f solves u M v then [ solves v B u.
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(5} If [ solves x W u and x M v then [ solves u ™ v.

(6) If a s 3 and [ solves au ™ Fv then [ solves both u M u and v M v,
(7) If f solves (u+v) X w then [ solves u P,

(8) If f solves {u+ v) P w then f solves u ™ v.

(9) If f solves au ™ av then f solves u M v.

110) If u,v @ MUX and f solves u M v then there is an extension [* of f such that [’
solves both z W u and x M v for some x & dom({f') " dom(f}.

Proof

(1} As f solves u M v, there is some t € R such that w: f and vy {. Hence, as u,v € M. we
get w < tand v <4, Hence u + 2]

(2) Suppose that u € X and f solves r ™ e, Then there is some t & R such that flx) =
{fc=1tand u = tfea. Hence flu)= flz)fa.

(3) Suppose that u € M and f solves r ¥4 au. Then there is some f € R such that f(x) =
tfe = tand u < tJa. Henee u € flz)f e

(1) Tt is obvious by definition that [ solves u ¥ v iff f solves v M u. The case follows from
this equivalence,

(5} Suppose that f solves 1w and = ™ w. Then t :y =, ¢ 17 u, 'y ox t' v for some
t.# € R. Hence we get | = fir) = ', whence ¢ :; u and { :y v. Hence, by definition, f
solves u M v,

(6) Suppose a 2 3 and f solves au ™ 3v. Then !y ou and t ;¢ Jv for some £ € H. 5o
tfev ipuand e iy v. Hence f solves w M u and v o

(7) Suppose f solves (u+ r) M uw. Thent:yu+vand !y wforsomet e . Ast:pntv
implies t :; u f solves u M w.

(8) Suppose f solves (w4 v) M w. Then £y u + v for some (. As {:f u+ v implies # :y u and
PP ) i P i
tipv fsolves ublo.

9} Suppose [ solves au b4 av. Then f iy o and £ :¢ av for some { € R, whence t for iy u and
! f !
tfe :p v. Hence f solves u M v

(10} Suppose w,v @ MU X and f solves u M v. Let z be a new parameter not in dom(f)U
Viu) U V(v)l. Let f' be the extension of f such that dem(f") = {z} U dom(f) and
flzy = flu) + flv). 1t is clear that f"is well-defined, f' solves both r M u and r 0 v,
Hence f' satisties condition (10} in the proposition.

]
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Definition 4.20 = 15 the largest ternary relation which satisfies the following clanses, where
reX, wvwefGMUX.{ +}).adeG:

(1) wreEMAR fFRuKy = u+uvl.

(2) ueEXAR [Er¥ou = flu)= flz)fo

(3 veMAR fEray = u < flr)fo

(4) fi. /[ Eurte = R fEvHMu

(5) R fEzWuAR fEFrNv = R fEFuNv

(6) addrRfEauMr = RfEuMurR f=evMe

(T} BfEut+viHw = R fEuMuw

(8) RfifEu+viMw = HfEuMy

(9) RiFouMar = R fEukyp

I:I[Il]]l RfEuMy = R fExsMunr R fEste (3r e domlf)).

Proposition 4.10 The relafion |= erists.

Proof Clearly 0 satisfies all clauses in definition 4.20. Take the union of all such relations.
Then it 15 clear that the union also satisfies the clauses. m]

Remark As the class of complete and standard G-record algebras B can be a proper class
even if (4 is fixed the relation f= is a proper class relation in general. ]}

Proposition 4.11 Lel p.g € E(G MUX {-.+}) and [ an assignment such that V(p)UV(gq) C
dom( f). Then the following are equivalent.

(1) f is a solution of p g in K.

(2} R, "k p™q for some extension f' of f.

Proof

(Lj==(2): Suppose [ iz a solution of p 0 ¢ in K. Then there is the consistent closure € of
phg Let O ={umv & |u,v g X UM} and 2. be a new and unique parameter for each
c € (", Let f' be the extension of f such that f(rua) = flu) + fiv) for u v € . Let
" be the consistent closure of C U J{{r. W u,r. W v} | ¢ = (u W v),c € '} and finally let
D={iR floe)y|ee ™} From lemma 4.1, [} as a ternary relation satisfies all defining clauses

for = in definition 4.20. As | is the largest such relation, we get D Cl=.

[2)==(1): Suppose R, g =pt g If p.g € M1 X then it is clear by definition of a solution
and = that f solves p Mg, Otherwise, by condition (10} in definition 4.20, there is a parameter
r & dom(g) such that H g = = ™ pand H.g = r M g. Then it follows from conditions in
definition 4.20 that for any u € ={p) U r{q), we have H.g | r M u. As r is a parameter and u
is a basic record term, it follows from the definition of = that g{z) :;, u. Hence g solves pt ¢
in R, r

Example 4.10 Let » € X be a parameter. We show that the constraint

adl + bd2 W ar + br
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has no solution. where 1 and 2 are used as distinct atoms. Lo see this. suppose that a solution
[ exists. Then by definition of a solution, there exists { € K such that { 1y {ar + hr} and
t:; {adl + ad2}. Then by definition of an instance we have tfa = f(x] and {Jb= fly). Also
adl < t follows from t 1y {ad]l +ad2}. Hencedl < tfa = flx). Soweget | < flo)fd. Similarly
we get 2 < f{z)fd. This is a contradiction, because the sum 1+ 2 of distinct tags 1 and 2 was
assumed to be undefined.

However note that the constraint adl + bd2 4 ae3 + be3. which is obtained by appiying sub-
stitution = — 3. is true in the record algebra R, So this example explains why a restricted
notion of a solution is necessary for an equivalence between the satisfiability and unifiability in
our eonstraint language. O

Definition 4.21 A record r € R is an initial segment of a basic record term w if one of the
following hold.

o r=acand u = av, where v € E(G.M U X {-]]. e € (5.

o 7 =1 = ac where o £ (7, 0 & M,

O

Theorem 4.12 (Record Solution Theorem) Every consistent closed construnt has a solu-
fion.

Proof Given a consistent closed constraint 5. let S be a mimmal constraint such that the
tollowing hold. )

R

e 5" s closed under the constraint rules on table 4.1,

o [frtdayc & and y W dz € 5" then xr Mad: € S, where o, € GLay,ce MU X,

Choose a unique new parameter, say T, for each p Mg € 5" such that p.g @ MU X, Let
be the reflexive closure of 5" U U{{zu M poape, Mg} | pMg € Sp.g @ MU X It is clear
that 7 has the same set of solutions as S. (' may be infinite even when S s finite, Anyway it
suffices to show that (' is satisfiable. Let B={uM v |pMge Couov € miu)Unic)}. Clearly
B C (7. We first construct a solution of B. For o ¢ MU X, let 1), be the set of initial segments
of some basic record term u such that = M u € €. As (7 15 consistent and closed. 17, has no
conllict. We make a convention that D, = {¢} if D, is empty.

We consider atomic constraints in {7 of the form ar ¥y, where z,y € MUX. Il 7,y € M then
o must be £ and & + y| becanse (7 is consistent. If r € X and y € M then also o must be ¢
However this i= a special case of the following by changing the role of o and y.

So finally we suppose y M ar with y € X, x € M U X, Suppose first r € X. Now we show
that D, = [, fa, where I} o denotes the set {wfa | w € Dowjfol}. Suppose u € D, By
definition of D, there is some u' such that r M w' € (7 and u is an initial segment of u'. As
y Mare O, rMu ¢ and C is closed under ‘unfolding’, ¥ ™ on’ must be in (7. Hence,
again by definition of the 0,. we get u € I}, fa. For the converse, suppose u © Dy J'o. Then
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y #au' € C for some u' such that ou is an initial segment of au'. So u is an initial segment
of u'. As y M ar & (' after a sequence of several steps of applving constraint rules, we have
iy € C. Thus u € I);. Hence, we get [, = D, fa. Let f be the assignment defined by
putting f(z) = || D, for any parameters = of 5. As H is a complete ( record algebra over M

we get f(z) = fly)/ e

In the second case, suppose * € M. As ar € [),, we get ar < D, = fly) and hence,
= fly)fa. Therefore f is a solution of A.

We show that f is a solution of . Using the fact that f is a solution of B, it is a routine to
check that the set {(R, f,¢) | c € C} satisfies all defining clauses of |= in definition 4.20. As =
is the largest such ternary relation, we get {{ K, f.¢) | c € C'} C |= . Hence, by proposition 4.11,
fis a solution of " in R. O

As an obvious corollary of this theorem, we get the equivalence between the unifiability and
the satisfiability.

Theorem 4.13 (Unification Theorem) lef p.ge E(G. M UX, {-,+}). Then the following
are equivalent.

(1) p™ g 15 unifiable, i.e., has a consislent closure.

(2} ptdq s satishable in K.

Let 5 be a constraint. It is easy to see that the closure of S is the union of the closures of all
finite sets of 5. The compactness theorem follows directly from this:

Theorem 4.14 (Compactness Theorem) Let ' be a set of constraints. Then € has a
solution iff every finite subset of (7 has a solutton.

4.3 Unification Grammar over Records

Tu this section, we use B, X, (M, +) for a cornplete and standard G-record algebra over M, a
set of parameters, and a merge system, respectively.

4.3.1 Semantics of the Program

A program clawse over E(G, M U X, {-, +}) is an ordered pair (p, B) of a record term p and
a finite set B of record terms. A program P is a finite set of program clauses. A goal is a
nen-empty finite set of record terms. A program clause (p, {p1.....pu}) (n = 0) is written

P Pryeess Pa-

In the case n = (), we write
p.

for the program clause (p,#) as usual. A program P is fixed throughout this section.
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Example 4.11 The program [ below consists of three Horn clauses for a recursive data type
definition for list structures. L is a set of atomic features, Let R = (R, G, +.-. [, €} be a record
algebra over M, where (7 = L* and M is a trivial merge system. In the program, we assume
that r.l € X, a,b.nil alomn, list € M, and type, car, edr, form € L.

(1) type atom + form a.

(2) type atom + form b

(3) type hist + form (car 4 cdr 1) «
type atom + form r, type list + form L

|

Definition 4.22 [Model] A subset M of R is a medel of the given program F if for each t € M
there exists some program clause p + py,....p, and assignment f such that the following hold:
(1) t: p
(2} For each 1 < ¢ < n there exists #; € M such that 4, ;¢ p,.
0

Clearly, @ is a model of any program. Alse M and M’ are models then M U M’ is a model.
Hence, there exists the maximum model of P,

Definition 4.23 The semantics Mp of the program F is the maximum model of the program
F. m

Definition 4.24 We define a transformation ®p: pow( R) — pow{ R). Given a (¢ € i, ¢p(Q})
is the set of records { € R such that ¢ ;; p for some program clause {p, B) € F and assignment
[ such that for any ¢ € B there is ' €  such that ¢y q. a

Example 4.12 Let 5 C . Then @5,(5) = {type atom + form a. type alom + form b} U S,
where 5° is the set of records { € K such that the following hold for some 5 € 5 and an

assignment f.

{1} ¢ type list + form car v+ form edr L
{2) s:; type atom + form x.
(3) s type List + form L

Mp, is the largest fixpoint of $g . a

As (pow(R).C) is a complete partial ordered structure and ®p 1s a monotone function w.r.t.
the order. it follows from the standard theorem that there is a maximum fixpoint of ®p. Also
it is a routine to show that the maximum fixpoint is the maximum semantics Mp. For more
details, the reader is referred to Aczel [1]. in which an existence theorem of the minimum and
maximum fixpoints of set-based class functors i1s given in more general setting.
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Definition 4.25 An assignment f is an answer solution of a goal & in Mp if for each g € G
there exists t, € Mp such that , ' q. O

We make a convention. Let (D). <) be a partial order structure and let f and f' be partial
functions from some set into 7). f' is an extension of f if dom(f) C dom(f') and f{z) < f'{z]
for any = € domi{f).

Definition 4.26 A suppert is a consistent and closed constraint. 0

Definition 4.27 A computation stale (state for short) is a pair (@, E) of a goal @ and support
E. o

Definition 4.28 A resolution step iz an ordered pair (s, 8"} written as

¥

faa
l
i

of two states s = (), ) and &" = {Q', E'), where @ = {py, ..., p. |, satisfying the following;

{1) There exist copies g, « qj..... q{cl {1 <i=n)of program clauses such that

Q' = {q:, ...._qii._..u G oo "-Ikh}-

(2) E’ 15 the cousistent closure of {p; B gy, .op, Mg, } U E. ]

The constraint {py M gy, ... o, ™ ¢, } above is called the constraini associated with the resolution
step. A computation is a finite or countable sequence of states such that if s is the successor of &'
then s — s'. A sucress computation is a computation I' such that [ is a countably infinite one
or the goal cotuponent of the last state of I' 1s empty. A failure computation is a computation
which is not a success one.

4.3.2 Soundness and Completeness

Civen a computation T, the supports appearing in T’ form a monotone increasing sequence. So
the union of these supports is a support, which we call the support of I'. U'he support of a finite
computation I is the support at the last state of the computation I'. A computation for a goal
() is a computation which starls from the state (@, ).

Theorem 4.15 (Soundness Theorem) Let T be @ success computation for Q@ and E the
supporl of T. Then £ is solvable and every solution of E' is an answer solution of (.

Proof Suppose ' is a success computation for ¢} and let E be the support of I'. As E is
consistent and closed by the unification theorem 4.13, there exists a solution f of E. For every
element p of @, it follows from the defimitions of Mp and the computation that fi(p) € Mp.
Hence, as p € () is arbitrary, f is an answer solution of . o
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Lemma 4.2 (Resolution Step Lemima) If an assignment f is a solution of £ and an an-
swer selution of (} (£ 0) in Mp, then there exist an extension f' of f and a resolufion siep
(), £y — (', E'} such that f' 15 a solution of E' and an answer solution of (',

Proof Let pc (). As [ is an answer solution of p in Mg, by definition of Mp, there exists
an extension f, of f and a fresh copy (hy, Dy} of a program clause such that fj is an solution
of p ¥ A, and an answer solution of Dy Let @ = {Dy | p € @} and let E' be the closure
of C'UE, where " = {p ™ A, | p € @} As (h,. ;) is a fresh copy, the family {/;},eq
is compatible as functions. Hence, there is an extension of f which satisfies both " and E.
Therefore, by the unification theorem 413, E' is consistent and closed. By delinition 4.38 of
the resolution step, we get finally (Q, £') — (@', £") O

The following completeness theorem is obtained by repeating the resolution step lemma 4.2,

Theorem 4.16 (Completeness Theorem) If [ is an answer solution of a goal () then f
exlends to a solution of the supporl of some success computation for Q.

In the rest of this section. we assume that dom( f) of assignments f is large enough to include
all necessary parameters for evaluating expressions in the context. By sol{ [7), we mean the set
of answer solutions of .

Lemma 4.3 (Lifting Lemma) Let (Q, E) — (@', E') be a resolution step. Let F be a support
such that soll k) © sol(F). Then there enst a support F' and a resolution step (Q,F) —

(@', &) such that sol( L") C sol( 17}

Froof Let 7 be the constraint associated with the resolution step (Q, E) — (@', F'). By
definition of an resolution step, E' is the consistent closure of C' U E. Let F' be the closure of
CUF, Clearly, sol( E') C sol( F') follows from sol{ E) C sol{ F). Hence, as sol( ') s not emply,
sof| F') is not empty, Therefore. F' is a support. As (Q, F) and (Q'. F') satisly all defining
clauses in definition 4.38 of a resolution step, we get (. F') — (¢, F'). u]

Let T he a snccess computation from the state (¢, F'). By repeating application of the lifting
lemma, we have a success computation I starting from the state (@, 0). Let (I, D) and (I, 1))
he corresponding states on the two computations T and T'. By induction on the number of
resolution steps from the initial state, it is proved that 17 is the closure of F U DY We call T'

the lifting of T'.
Definition 4.29 A parameter r is free in a support £ if r ™ w € E implies u = x. o

For example, in the constraint {z ™,z W ay, u M v} o,y are free but 2, u, v are not free. The
following theorem is a counter part of the theorem in Lloyd [46] having the same title.

Theorem 4.17 (Display Theorem) [Lef L be a support such that every solution of £ s an
answer solution of a goal (). Let F{E) be the set of free parameters appearing in E. Then there
erists a success computation Uy from (), Q) such that the restriction of each solution of E to
F(E) can exfends lo a solution of the support of the computation,
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FProof We assume for the sake of simplicity that there are sufficiently many constants, For
each = € Fi(F), let ¢, be a new constant such that ¢, # ¢,(x # y). Let ' be the reflexive
closure of {z M ¢, | £ € M}. From the assumption E' = C' U £ is a support. Hence, by
the completeness theorem, there exists a success compntation Tge from (2, E'). By the lifting
lemma, there exists a success computation I'g from (€, E). Applying the lifting lemma again
to T'ge, we obtain a success computation Iy from (G ). We use ¥, for the support of a
computation A, By the remark above, we can construct I'g and I'y so that X, is the closure
of E U Er“ and Erf, is the closure of U Ep,.

Fp: (Q.0) —
I'e: [(Q.E) =
Feg: (Q.E') —

As E U Zp, has the closure Y, for the proof of the theorem, it suffices to show that each
parameter in F(E) is free in L . Hence, it is sufficient to show that the closure of CUZp, isa
support. In fact, the closure of €' U S, must be a support because the closure of C U E U Yr,
is the support Ey . -

Theorem 4.18 (Soundness of NAF) [f there is no success computation from (. 0) then
has no answer solution.

Proof This is the contraposition of the soundness theorem 4.15 a

Theorem 4.19 (Completeness of NAF) [f () has no answer solution then there is no suc-
cess computation from (Q,1).

Proof This is the contraposition of the completeness theorem 4.16. O

Due to the maximum semantics the proof of soundness and completeness of negation-as-failure
rule has become almost obvious. Infinite computations is always meaningful in Mp, while in
the least Herbrand madel infinite computations are meaningless.

4.3.3 DAGs as Constraints on Records

In this subsection. we show a relationship between DAGs (directed acyclic graphs) used in
unification grammars {84] and record structures. This is done by giving a simple translation
from DAGs into constraints on records. In stead of DAGs, we treat directed graphs (DGs) as
a more general class than the DAG class,

Let X, L, M be a set of nodes, atomic features, tags, respectively. Let R be a free complete
and standard G-record algebra over M., where (7 4l 1*. We assume withont loss of generality
that R and X arc disjoint to each other.

Definition 4.30 A directed graph (DG} D is a 5-tuple D = (N, A, f,g,5), where N C X,
ACT N = N, fis a partial function from N into M, g 1s a function from A to L, and s 13 the
root node, D
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Given a DG, D= (N, A, f.g.5). let ("n he the least set ( such that the following hold:

(1) l{r,y) € Aand g(iz.y)) = a then x May € C,
(2) If fir)=cthenzMece (.

Viewing ('p as a binary relation on (G, M U X {-,+}), we take C'p as a constraint on (7-
record algebra R over M. Thus, the DG D is a constraint over the record algebra R. Let
D, = (N, A, fi,g..8) (1 = 1,2) be two DGs. The graph merge of I}, and D, is the union of
the constraint {5, ¥ s3} U Cp, U Cp,. Thus, through this translation, it is straightforward to
give the proposed record algebra semantics to the unification grammar. Qur semantics covers
some basic part of DAG-based unification grammar theory in Shieber [83].

I
4 .
Ir ﬂy
y\ﬁ\\.‘: # J’Mﬂd
- HNM
i

Figure 4.4: A DAG as a constramt on records

The notion of structure sharing in DAG-hased theory corresponds to that of sharing parameters
in constraint language (f, M), From the view point of this translation, the notion of structure
sharing belongs only to the constraint langnage. The structure sharing 1s not a property of
objects but just occurrences of the same parameters.

As records can be infinite or non-well-founded, they can represent more complex structures than
{finite) DAGs can do. In particular, the record domain seems to be suitable for representing
and processing circular situations proposed by Barwise and Etchemendy [16] in addition to the
ordinary linguistic information processing,

4.3.4 Arity in Record Algebra

[n this subsection we show an embedding of a (complete) Herbrand domain inte a record
algebra. This embedding allows us to use nested structures consisting of record terms and
standard terms in a uniform way. Let G be a feature monoid. A sort (of (7) is a prefix-closed
subset S of (5, ie.. if a3 € S then @ € 5. The arity of the sort 5 is defined to be the set of
minimal elements of S {z}. 0 is sorfed if there is a family {S;},e, of sorts of & such that

G=ULS 7€ J) and §;08; = {c} for j # "

Let F' be a set of function symbols. We assume each f £ F is assigned a set arg{ f} of argument
pluces. Moreover, we assume arg(f) M arg( f') = @ for f # f. (/g is a free monoid over
W arg(f) | fEF} For fe F.let S ={s}U{an|ac arg(f).a € Gr}. Clearly, G is sorted
with {S¢}ser. Let Fy be the set of symbols in F which has no argument place.

Definition 4.31 Given a set F of function symbol, Ry denotes the free complete (G p-record
algebra over Fy, where (I, +) is a trivial merge system. O
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Note that it follows from proposition 4.7 and corollary 4.8 that g is standard.
Definition 4.32 Given a record r € R, [r] denotes the set of records y € R such that y < 2. 0

Definition 4.33 A (G-record algebra R is sorted if there is a family { K, }.e; of G-record algebras
such that

{1] R :U{R,‘ i i [ I}
{2) I € Ri R; and x # ¢ then x is atomic, where ¢ # .
(3) For o,y € R if £ + y] then there is some 1 € [ such that z.y € ;.

(4) Vr € RVa € GFi € I [z]ffal==[z]fa C R..
(W]

In harmony with the introduction of sorts, we add the following clause to the definition 4.15 of
the conflict for the record unification theory.

Definition 4.34 {In addition to definition 4.15.) Any basic constraint of the form au ¥ v s
a conflict, where a and 4 helong to distinet sorts of the feature monoid G, o # =, 3 # ¢ and u,
v are record terms. : O

For example, fir M goy is a conflict, whereas fiz M foy is not a conflict, where f, and f; are
distinet argument places of f and g, is an argument place of g, provided that f # g.

Let F be a set of function symbols and Fy — F'\ Fy as above. Let Z be the set of ordered
pairs ({S¢}ser, . Sr) such that §¢ C Ry and Sp C Rp. We define an order relation < on Z by
({Sr}rers. Se) < (1S5} rer, . Sp) il 55 © S for each f e Fy and Sp © Sk

Definition 4.35 {F;};cr, and Ry are a family of sets and a set such that the ordered pair
({R;}er.. Bp) is the largest element in (2, <) which satisfies the following:

(1) 1z € R then = {¢} U Fy or 1 = ay1y 4 - + andy. where {ay, - a,} € arg(f) and
{21022} C Rr.

(2) Rp =WU{R,| [ € Fi}
O

Proposition 4.20 (Given a sel of function symbols there is a complete, standard and sorted
(i p-record algebra (Rp, Gro+,- [ €) over Fy word. {R; | f € Fi} satisfying definition {.535.

Proof 1t is clear by definition. =

TLet L be a set of atomic features, F' a set of function symbols, Fo = {f € F' | arg(f) = B},
Lg = Ularg(f) | f &€ F}, and X a set of parameters. To introduce DCG over the record
algebras in the below, we define terms over X, L, F expressing records and an embedding
translation 7 between standard terms and record terms.
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Definition 4.36 Let [ and F' be as the above and let P be a set. Then T (L. F, F) is the least
set T such that the following hold:

(1 PCT.
(2) If ay.....a, arc fcatures and py,....py € T then the set {{ay.p1),. . (@n, pal} isin T,

(3) If f € Fisa function symbol of arity n < and py,. .., p, € T then the form f(m..... )
ks in T,

An element of T{L, F, X is called a ferm. Let G = (LU Lp).

Definition 4.37 A translation 7 is a partial function from T{L, F, X} into £(G. FyU X, {-,+}}
such that the following hold:

(1) ue FyU X then tiu) = u.
[-2] T[{(ﬂ'"-pl]‘- < [a'ﬂfpﬂ:l}] = ﬂl"’[l‘l} + -+ HHT{P‘,;}! where o £ L.
(3) T(flpr. . pa)) = birim) + - 4 buripa), where arg( f) = {b,-- b},

]

Hj denotes the Herbrand universe over F. By {Hp,=)., we mean the standard unification
theory over Hp. We take the theory (Hp, =) as a lamibar congruence closure operafion on sets
of standard term equations. By ( Rp, ™), we mean the theory of sorted record constraints taken
as the closure operation given by table 4.1, Now we are at the place to state and prove that
{Hp, ™) s a ‘conservalive extension’ of (Hr.=).

Theorem 4.21 Let 5 and | be first-order terms then the following arve equivalent.
{1} & =t is solvable in (Hp, =).

(2) (&) v r(t) is solvable in (Rp. M),

Proof Let O be a constraint in {{p,=). As the unifiability and satisfiabilily is equivalent
in (H,=) ( [46]) and (K, ) (theorem 4.13), respectively, it is straightforward to show that tor
any standard terms s, the following are equivalent.

(1) € is the consistent closure of s =1 in (H,=)

(2) () is the consistent closure of 7(s) X (1) in (R, ™).
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4.3.5 Definite Clause Grammar over Records

As an application of record algebras, we extend the definite clanse grammar (DCG) over the
Herbrand universe to that over a record algebra. Let A be a G-record algebra over a merge
system M. where (7 15 a feature monoid. A DG is a finite set of rules of the following form:

Po = @My g M P s
where p;, q;, v, € E(GLM U X, {-,+},n 20, m 20, and X is a set of parameters. In the
same way as for programs over the record algebra R, the semanties of a DCG, say D, over R
is defined to be the largest subset Mp of H such that the following hold: Any ¢t € Mp there
exiats some DCG rule p «+— ' @ in ) and assignment f such that the following hold:
{1} t1s an instance of p with f.

(2) f satisfies the constraint

(3} f has some extension f' such that every element of (J has an instance in Mp with f.

Also an operational semantics of a DG is defined in the same way for the program semantics
except a slight modification of definition 1.38 of the constraint associated with resolution steps
as follows:

Definition 4.38 An ordered pair {s,5") of two states s = (). L) and 8" = (). £} is a resolu-
tion step, written s — &', il the following hold, where @ = {py,.... pu }:

(1) @ = {¢i- - Gh, s g1 qf } for some fresh copies g, — €, | gf. .y g}, (1 <1 << m) of

rules in D,
(2) E' s the consistent closure of {p, Mg, o Mg b U EUC U 00,
O
The set {p, M gy.oopn Mg LU - - 15 ralled the constraint asseciated with the resolution

step. The same resulls about soundness and completeness are abtained in almost the same way
as in the casc of program semantics,

For illustration, we show a simplified interpreter for DCG and a sample DCG. Let I be a set
of atomic features, ' a sct of function symbols, Fy = {f € F | arg(f) = 0}, and X a set of
parameters. Define £ = F U {4} for some new function symbal # ¢ F so that arg(#) = L.
S0 by proposition 1.20, we have the sorted complete and standard ¢ record algebra R over
£ defined for F".

Thus we can precisely say that the example below 15 a DCG over the record algebra Rps
and is written in E(Gp, Fj U X, {-.+}). Infix notations are used freelv as in the standard
Prolog. Uit clanses (2) and (3) below are for lexical items. The equality = in the body of
(1) means the builtin constraint M. o/ is nsed Tor the vrdered pair {a. b). Each clause r there
means a gramumar rule &(r] defined by the ollowing equations, where 7 is the transiation in
definition 4.3.4.

O(pC.B) = (r(p)7(C),T"(B)).

r'(C) = {r(q)mr(r) |g=rEC}.

w"(B) = {r(g)|qe B).
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(1) {cat/s, head/H}<- H={subject/H1} |
{eat/np, head/H1},
{cat/vp, head/H}.
(2) lex(jack, {cat/mp, head/jack}).
(3) lex(runs, {cat/vp, head/{subject/X,
pred/run(X)}}).

The clanses from (4} to () describe a simplified interpreter for the DCG grammars.

(4) parse([XIY]-Y, F)<- lex(X, F).
(5) parse(X-Y, (A, B))<-
parse(X-Z, A),
parse(Z-Y, B}.
() parse(X-Y, Fl<-
(F‘("E}:
parse(X-Y, B).

The execution of the grammar looks like this:

’r‘-parsa{[]ﬂ.ck. runs]-01, FJ.

F={cat/s,{head/{subject/jack, pred/run(jack)}}}.

4.4 Concluding Remarks

Several relevant issues on feature structure such as complement and disjunction feature con-
structors are out of place. Also set values as feature values [79] and unification under inheritance
hierarchics [$7) are not considered. However, in the programming lauguage CIL [55] (also de-
scribed in Chapter 4). from which the record algebra came out, full first order terms possibly
with parameters are allowed 1o be features like brother(n] and brother(m) in

{{brother(n), John), {brother(m}, Jack)},

whete n and m are parameters. Also, this aspect is not treated in the record algebra.

We have pul a condition onto the structure of [eature monoids so that they are essentially the
same as free monoids. It is an open problem to extend the notion of feature monoids as wide
as possible so that the intuitive notion ol feature structures is still preserved.
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Chapter 5

CIL: A Constraint Logic
Programming System

5.1 The Outline of CIL

CIL is an extension of Prolog for natural language processing. CIL can be scen as an extension
of DCG (Definite clause grammar) formalism [73, 72]. It was one of the carliest working systems
in the middle of 80s which treated feature structures. Main aspects of CIL are as follows. First
of all. a recursive data structure called partially specified terms (PST) are built-in. A PST is a
set of attribute-value pairs, The general form of a PST is:

{ay /by, - aq by}

where a, is ‘attributes’, b, is the "value” of a;. b, may be an ‘atom’ or a PS'L. Unlike the standard
terms and svutax trees, a PST has no order relation among its daughters, i.e. it is an unerdered
tree. Computational linguistics has heen shifted its concerns from ordered trees to unordered
Ones.

Components of a PST can be accessed by names. The expression wls denote the component of
PST # whose ‘slot name’ is 5. For example:

la/b.efdln = b

C'IL has ferm constramnts, arithmetic constraints and Boolean constraints to support coroutine
programming for linguistic analysis. Also ene-way unification is introduced as device for the user
to define his own constraints. By the one-way unification one can prevent from instantiating
parameters al the caller side on the parameter passing. Constraints of CIL are passive in
general, and thev do not produce values. So, the standard two-way unification must not be
used for the parameter passing.

A term constraint is a set of term equations and unequations. They are passive constraints.
For example. the term constraint f{x.a) = f(b, y) declares that the values which may be bound
to the variables = and y must be the constants b and a, respectively.

The Boolean constraints are reduced to the following three predicates:

and{x,y,z)
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not(r. i)
or(z.y.z)h

The declarative reading of and(r.y.z), for example, is that the logical product of x and y is
z. Operationally, when some of r, y, and = are known, and the others are determined nniquely
by the truth table, then they are bound automatically according to the table. In other words,
boolean constraints are partially active. For example, suppose that the call and{z,y,z) and
the unification z = truc are performed, then the following two unifications are performed
automatically: & = true and y = true. This idea of relational Boolean predicates 1s similar to
the relational arithmetic predicate add(r, y, z). which is used for subtraction as well as addition.
Relational approaches to control problems make programming less dependent on the flow of
information. The idea here is, to make a correspondence between event states and the truth

values as follows:
the event has ocourred ==  true

the event is impossible <= false
the event is possihle <= < unbound >

So the control problem is reduced to some calculus of such as Boolean algebras. In fact, the
truth tahle is the well-known Kleene's 3-valued logie. This idea of Boolean constraints are
easy to rmplement, and term constraints and arithmetic constraints are built on these Boolean
comstraints. For example, consider the term constraint {3.1). Provided that w, v, w are the
truth value of the three constraints (3.1), {5.2), and (5.3), it follows from (5.4) that 5.1 is
reduced to (3.5].

Jlx.a)= [fb,y) (5.1)

r=b {5.2)

v—a (5.3)
flr,a) = [thy) &= r=bry=a (5.4)
and{v.,w, u) (2.9)

The Boolean constraint solver is implemented based on the freeze predicate[21]. It is a lazy
execution primntive so that the call freeze{r, g} suspends the goal g until the variable r has a

value.

CIL build-ins compler indeterminales of situation semantics. Its form is:
e

and reads that “r such that 77 See Section 5.6.4 for historical remarks. The complex inde-
terminates. 1 : (7. are interpreted by the following rule.

unify(r : Coy) = wnafylz, y). solfve{C').

This rule is close to that given in DLOG [33] for an mdefinite description.

The domain of CIL consists of nested structures of possibly non-well-founded first-order terms
and records, which were described in Chapter 3 and 4.

For example. one can write a CIL term like this:
f{afz. big({c/z})]).
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‘The CIL project started around 1983, Several versions of CIL has been implemented. The most
earliest experimental version was iinplemented in Edinburgh-Prolog on DEC-2060 machine.
Then it was transplanted on PSE-II machine as a programming environment mainly for natural
language processing [8, 63].

5.2 CIL System

5.2.1 Syntax of Terms

We define a class of ferms and progrum clauses of CIL by extending the standard first-order
term. We first assume that two disjoint sets PARAMETER and CONSTANT. For the sake
of simplicity, we assume (CONSTANT includes atomic symbols. integer constants and function
symbols. (IL syntax is an extension of Edinburgh Prolog Syntax [72]. The following delimiter
symbols are used in the language as usual:

{ ¥ . C 2 PR
Definition 5.1 A term is defined inductively as [ullows:

(1] A parameter 1s a term.

{(2) I [ is a constant and ry...., Iy are terms with n = 0 then the form f(r....,24) is a
tertn,
(3 IMay..... a, are first-order terms and .y, ... v, are terms then the set {a/r, . ... @y Ty |

of ordered pairs a;/x; is a teru

A constant is a term by (2) with n = 0. A term of the form flr,.... cenbin {2) is called a
totally specified term {TST). while the term {ay /2y ... ./ r, }is called a partially specified term
(PST). The empty set {} = @ is called the emply PST. Several function symbols are reserved
as follows:

z,y : conjunction r Ay,
x;y : disjunction = V y.
notix] : negation -r.
x :y : an ohject r with a constraint y.
20y @ an object ¢ with a lazy constraint y.
z#y : a tagged term. This is equivalent to r: [z = yl.

a'y : a labeled term. This is equivalent to = : (x = {y/z}), which means the
y-component of z.

27 : a frozen term. The execution of the subgoal which contains z7 is suspended

while = is unbound.
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In the above, binary functions are used 1n infix forms, and the unary function 7 i postfix form.
' ] h P

Example 5.1 The fnﬂnwing are terms in CIL.

Parameters X Man X101 Salary _325.
Constants 378 ‘'Man’ x1013 abe.
TSTs [1, 2, 3, 6] 3+5 f£(1, abc, X).
soa(give, {agent/A, object/B, recipient/’'Jack’}, 1).
PSTs {}  {agent/father(X), object/0, recipient/ X}.

(£ /Y, £V /X .
Conditioned Terms  Z@(2>0) X:(man(X), wife.of (X,Y), pretty(Y)).

Tagged Terms X#4 Sit#soa(R, {agent/A, soa/Sit}, P).
Labeled Term Man!'name!first.

Frozen lTerms 1?7 (Man'name)}?.

Conjunction (X»0, X<10).

Dhisjunction (X>0; ¥%<0).

Negation (not X<Y).

Query 7- print(X7), X=ck.

5.2.2 Program Clause

A CIL program is a finite set of program clauses. A {program) clause is a pair (h, b) of a term
h and a set b of terms. The clanse [k, {b, ..., by }1is written

The term k is called the head of the clause while the set b is called the bedy of the clause. A
unit clause is a program clause whose body is empty. The unit clause (£, @) 15 written sinply

h.

A guery s of the form
*

Hal / M

where g 15 a set of terms. The sot g s called the goal of the query, A subgoal 15 an clement of
the goal.

These reserved forms are macros; thev are translated into normal forms on being read by the
svstermmn. The rules of maocro erpansions are as follows:

L. rdic = 1 : freezel{x,c).
2 gy = r:lr=y).
3 sly=z:(x={y/=})

4. 10— x. As a side effect, ¢ is moved so that ¢ becomes a subgoal of the clause.
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5. 17 == 7. and ¢ = freeze(.g5" ), where g is the subgoal in the clause which contains
the occurrence 7. The svmbol g¢ means the new term obtained by substituting a for all
pecurrences of & in the term g,

These rules are applied in outer-imost-first way.

Example 5.2 The clause (2} is the translation of {1).

(1) plegt{a/u}): =bl(ylc)?).
(2) pir): —z={a/y}.v = {c/v}. freeze(v, b{v)).

O

Note that all of 7. @, :. # and ! are eliminated on the way of the translation. So, in the
following sections, we assume that none of these signs appears in CIL terms.

5.3 Operational Semantics of CIL

The operational semantics of C1L follows that of standard Prolog [46]; the computation selects
clauses from-top-to-down. and goals from-lefi-to-right.

A computation state (state, for short] is a triple (g, E. F), where g is a goal, E a set of equations
in the solved form. and F a sct of pairs (v, ¢’} of a parameter v and a goal g'. I’ is also called an
environment or parameter bindings. A parameter z is bound in the state if £ has an equation
of the form 1 = { or t = r for some non parameter term £, F mweans a set of frozen goals. A
parameter is called frozen in the state if there is a pair (x, g] in I for some goal g. For the
given goal g, the initial stafe is the state {g. 8. 0). A computation tree 15 an ordered tree such
that each node is labeled with states.

N': The generator node of V.
|

et
et
~,
s

RS

Alternative nodes.

® V. The current node.

Figure 5.1: Cutting the alternatives.

The computation for a given goal is a construction process of a computation tree. The initial
tree is a singleton tree; the single node is labeled with the initial state for the gnal. The
computation constructs the tree in top-down, depth-first and Ieft-to-right basis. Basic operations
are crpansion and cuf. To define them, lei first 1’ be the current computation tree and N the
current node.
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Expansion (reate a danghter node N' of N with a label s', provided that s — &'
Cut Do cut{ T, N, N) , provided that N’ is the generating node in V'

Now we must define s — &', generating node, and cut(T, N', N'}. First, in general, each subgoal
g has a unique ancestor node N, such that g was introduced at N, first in the computation
tree. The node N, is called the generating ancestor of the subgoal g. For the second, to define
the cut operation, let T' be a computation tree and let N and V' he a node of 7' such that N’
is ancestor node of N in T. Then we define cut{T, N', N) to be the computation tree obtained
by ‘pruning off " all the descendant nodes of N which is neither an ancestor nor descendant
of N {see Iigure 5.1). Finally. we define the transition relation — in the [ollowing, where U
means the disjoint union of sets; u U v presupposes u v = @,

Definition 5.2 For states s, ', we define s — 5" ifl one of the following holds:
Resolution s = ({gi.9:.....0.}. E. F) and ' = ({b,.... by 02.....0:}, E". F) where
there is a fresh copy a:—by.. ... b, ol some program clause and E’ is the
solved form of E U {g, = a}.
Unification == ({r =r'} Ug. E.F)and s’ = (g. £, F'). where £’ is the solved form of

i {r = r’}
Freeze s=({freeze(u, ¢V} Ug. E.Fyand s’ = (g. £ {{u.¢')} U F).
Melt s=(g. E {{u.g'}}UF)and &' = (g'Ug. E.F). where u is bound in E.
Cut s=({eutjUg. E.F)and s’ = (¢g. E, F). As a side effect of this step, all the

alternative brunches in the computation are pruned off, as explained above.
Disjunction s = ({{g;¢")}Ug", E, F) and either s' = (gUg". E. F)or &' = (g'Ug". E, F).
Negation s = ({nof g} Ug" . E F} and cither 8" = (g U {eut. fail ). E.F) or & =
ig' E.F).
Fail For s = {{_faﬂ'} Ug.F. F), 5" 1= undefined.

The basic step (g, E.F) — [g". E'. F") logically reads that ¢’ A F' 2 F' implies g A E A F; any
solution of g A £ A F' extends to some solution of g A £ A F.

5.4 Basic Constraints

CIL built-in constraints are classified inta the three groups: unification, boolean, arithinetic and
{first-order) term constraint. These constraints have a common property that the direction of
data flow. 1.e.. input and ontput, depends on the context. In addition to them, a meta constraiut
frecze(x. g) 15 explained.

The term constraint is written w = v, where w and v are first-order terms. Unlike the unifica-
tion, it never instantiates any parameters of the equation. For example, the execution r = a
constrains r so that only a is the possible value of x. Rewriting rules are useful to describe
behaviors of constramts. The rule o« = 3 reads that if the constraint o is in the system then
replace it with /3,
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5.4.1 Freeze

The call freeze(r, g) suspends the execution of g while z is unbound. If there are iwo constraints
freeze(r,g) and freeze(x, k) in the current state, where  is unbound. Then replace them with
freeze(z, g U k). I x is bound then replace freeze(r, g) by solve(g). In summary, we have the
following rewriting rules:

frecze(x,g), freeze(x, h) == freeze(z.gUh), ifris unhound.
freezelx. q) = solve(y), otherwise.

5.4.2 Constraint Solver

The form consir(c,y) calls the constraint solver. There are three types of calls: constr(c, true),
constr{c, false), and consir(c,x), where ¢ is a constraint and r is a unbound parameter. They
are called aclive, passive and intermediate mode, respectively. In the passive mode, the con-
straint solver never instantiates parameters appearing in the constraint ¢. The constraints are
checked without unification when some parameters are bound by other processes. In the active
mode. the constraint solver exccutes equality constraints as the ordinal unification. In the
intermediate mode. the parameler may be bound to the value by the solver only when it is the
unigue possible value for the parameter.

5.4.3 Boolean Constraint

Boolean constrainis have the following three forms: and(z,y.z), er(z.y,z), and not{z yl
They mean : =2 Ay, : = ¢ vV yand y = =z, respectively. These constraint hind values to the
parameters when only one pussible solution remains in the state. For instance, suppuose that
the subgoal and{r.y. ) was called al some time with all the three parameters unbound and
that now = is hound to the Boolean value true. Then r and y are bound to lrue because it
is the only possible solution by the truth table for z = r A y. These constrainl predicates are
implemented based on freeze. In general, it is a policy of the CIL design that constraint solving
is driven by the binding events. Here are the rules for Boolean constraints:

constr(=(c).m) == constric.m'), not{m, m').
constria f bom) == cosntr(a,r), constr{b, s), and(r, s, m}.
constria v h.m) == cosntr(a,v), constr{b, s), or{r, s, m}.

The design of CIL Boolean constraints provides the user with tools for program controls in
relational boolean caleulations. In general, Boolean constraints arc important: many non-trivial
classes of constraints can be reduced to Boolean constraints, For instance, Johnson's attribute-
value logic [41] and Smolka's feature logic [86] are based on translations from their logics
into some sublanguages of quantifier-free first-order logics. i.e., ones close to the propositional
l:'.-H.ECU.].llH.

The current CI1, hoolean constraint solver is not complete. However, in Lheory, it is not difficult
to implement a complete solver for Boolean constraints. In fact, the following mathernatical
fundamentals are enough for a complete Boolean constraints.

A Boolean algebra B = (DA, v.—. 1,0} and a Boolean erpression are defined as usual. Also a
Boolean ring £ = (#,-.+,1.0) is defined as usual. Let I = (D, A, V,~.1,0) a given Boolean
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algebra. Then, we define the Boolean ring R = (12,-,+,1.0) by the following equations.

Ty = T-y=7xMyY.

r+y = (rA-y)VI(or) Ay
Clearly, the following hold:
TVy = (z+y)+ay
-r = 14z
rhy = Iy.

So, there 15 an evident translation 7 from Boolean expressions e into Boolean ring expressions
7{¢) such that € is satisfiable in B iff r(e) is satisfiable in R. In Boolean ring, we have the

following:
ar=h = ab=h
ar=b = (l+a)z+h+b=nx
r=(l4+aly+b = ar=h

Therehy, the following conditions are equivalent.
. gl = 'EP ]".:i- Hﬂt-iﬁnﬂhl't‘.
e ab = bis satisfiable.

o r={1+aly+bfar some y.

In fact, these properties of Boolean ring are mathematical background for the solvers based on
paramcter climination. See Dincbas et al [27]. Prolog- IIT [47] build-ins a complete hoolean
constraint solver hased on a different algorithm from the one explained above. Also see a recent
work on (rrobner-base based Hoolean constraint solver [81].

5.4.4 Arithmetic Constraint

Lhe form add(c,y, 2] is an built-in arithmetic constraint thal @ +y = z. For example, the
constraint solver will bind r to 2 when, Tor example, v is 1 and = 15 3.

5.4.5 Term Constraint
The form constr{u = v.m) is a built-in term constraint, where w and v are first-order terms and

m is a parameter, true, or false. The constraint is solved by repeating the following rewriting
rules, where m and r be an unbound parameter.

o consfriu = v, brue) = solve(n = ).
s constria = a,m) —> solve(m = true).
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[ and{m,, g, ms)

and|Mg_y. 1, 1)

ansirl Fl b = flug, ..., . —_—
s constr| flty, ... 40 = fluy ), m) 4 constr(ly =y, m:)

constr(t, = un,m,)
where m, is a new parameter, for | <1 < n.

o constr{f{...) =gl...},m) = solve{m = fualse), where f # g.

o constr(x = u,m) = constr(v = u.m), where r is bound to the term .

5.4.6 One-way Unification and Sequential Control

The predicate assign is a built-in predicate for one way unification, i.e.. patfern matching. The
following example shows the difference between the standard unification and assign. the pattern
matching. The result of the unification flr.1) = fi2.y)isz = 2 and y = 1. On the other
hand. the result of the pattern matching assign{ f(z.1), f(2,5)) is y = 1 but leaves r unbound.

Let r and v be a parameter and non-parameter term, respectively, and let u be any term. Then
the rewriting rules for asswgn(u.v) are as follows,

(1) assign(r.u) == assign{v.u), il 15 bound to v

(2) assigniu.x) = assign{u.v), if r is bound to v.

i3) assign(u,r) == solve{u = r}, il  is unbound.

(1) assign{a,a) == solve(lrue), where a is a constant.

(5} assign( flty. - dad flug, o u,}) == assign(ty. uy), - assignlt, u, b

(6} assign{a.b) == solve(fail). if a and b are different constants.

(7} assign(f(---).gl---)) = solve(fail} , where f and g are different function symbols,

Note that there is no applicable rule in the list for assign(x, u) if r is unbound and # is bound
to a non-parameter term. In this case we say that the constraint is suspended. This suspending
mechanism is frequently used in the actual implementation of CIL. We say that a constraint g
is partially solved when g has been rewritten nto g' by the normalization rules and there is no
applicable rules for g'.

We need one more primitive. sequand, which means ‘sequential execution’. seqand(g,¢') con
strains that ¢’ is executed ouly after g is partially solved. Here is an example for using the one
way unification and sequential *and’. The standard membership predicate is written in Prolog:

member(r, x| ).
member(z, [ ly|)-member{z, y).
Let mem be a constraint version of member. In the current CIL, the definition of mem can be
given as the following unit clause:
defeon|mem(x,y), seqand assigniy, [R]t]), (z = h; mem{z,1}]}) (5.6)
where defeon is a reserved predicate symbol for the declaration of the user constraint rules.

The example mem explains how the user defined constraint is solved. The point is that the
constraint reduction of mem goes without backtracking. It 1s this point that is d iffterent from
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the standard execution of member. The call of the constraint mem{z.y) goes as foliows. First,
parameters i and ¢ are assigned values from y by the one-way unification, i.e.. the pattern
matching with the input parameter y, The disjunctive constraint = = hV mem{x.t) is partially
solved. If the term constraint = = h 15 not partially solved vet, the constraint mem(z, ) is
called recursively. If y is unbound, due to the use of seqand in the body of the definition the call
mem(x,y) suspends not only assign{y.[h[t]) but also (r = h; mem{z,t)} while y is unbound.

Example 5.3 Let us trace the following call (5.7).
constr(mem(z, [a]), {rue). (5.7}
By definition {5.6) of mem, this is equivalent to the goal [5.8).
constr(seqand| assign([a], [R|t]), (z = a; mem(z.,[]}}). true). (5.8)

By the rewriting rule of assign, the constraint assign([a), [k|t]) is reduced to h = @ and t = [].
Hence, by the segand rule and the conjunction rule, the constraint (5.8) is reduced to the three
constraints (5.9}, (5.10), (5.11) for some new parameters v and ' '

constr{z = a.v). (5.9)
constr(mem(z,[]), v'). 5.100
or(v, v, true). (5119

The constraint (5.10) is reduced to v* = false. By the or-Boolean constraint rule with this
binding, the constramt (5.11) is reduced o v = true. Henee [rom (5.9), now the problem has
been reduced to the goal (3.12).

constr(r = a, true). (3.12)

Finally, we obtain & = a from the last active constraint (5.12). This result is what we expect,
because the constraint mem{c, [a]) declares that there is no other possibility for r thanr = 2. O

5.5 Built-in Predicates

C'IL built-in functions are listed below with example uses. Only relevant predicates to either
PSTs or constraint are listed because other ones follow those of the standard Prolog. By [x].
we means the term ¢ such that » =t is in the environment. For example, if # = 1, then [z] = 1.
For convenience. if # is unbound then we define [x] = r. Suppose that u is a parameter and
the equation u = p is in the environment for some PST p. Then, by u({r) we means plz) for
convenience. For example, if u = {a/1,b/2} then ula) = 1 and u(b) ~ 2.

5.5.1 Extended Unification

unify(t,u) This call unifies # with 2. This call is also written t = w. This predicate is an
implementation of the unification described in Section3.5.4 and 4.2.3.

The c'.a,ll T = {ﬂfl]'-. Y= {b'l'lz},, r=1y yi{'ldﬁ r=y= {ﬂ_ﬂ,ﬁfﬁ}. Also {ufb:f{df.’r}}lt"'d = h

vields @ = h, The execution of & = {a/ok}, v = {a/@print}, r = y displays ok, where print
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is a built-in output predicate. The call {a/z, b/e} = {a/1.b/y} yields 7 = Loy =c. The call
rét{afl. bjrla} = y vields 1 = y.r = {a/1,b/1}. The call x = {a/be/y}. ¥ = lafb,ejx},
r = y vields. ¢ = y = {a/b.c/r}. The execution of z = lafb,c/u}. v = {a/bcfx} yields
r={a/b.c/y}. y= {a/bc/r}.

assign{u,v,z) This call watches u with v by the one-way unification. Il returns z = frue
if the matching is successful. else = = false if matching fails, otherwise nuthing. The last
case means that the process has been snspended to wait till u is more instantiated. The
parameters in u are treated as read-only parameters. The call assign{ f(x). f(y).z) vields
2 = true, r = y. The call assign{ f(z), f{a). 2} yields no bindings, i.e., ¥ and y remain unbound.
The call assign(f(a), f(r), z) vields 2 = @, 2 = true.

5.5.2 Utilities

same(u,v) This call checks whether u and w are intentionally the same. For example, the
first of the following two calls fails, but the second succeeds.

same({a/{b/oe/ b} {a/{c/1.8/b}}
fa/A# b/ e/ }} = la/B#{c/1. b/h}}. same( A, B).

dif{u,v) This call declares that « and ¢ are different from each other. It is equivalent

to not{dif (u, v)).

fullCopy(u,v) This call makes a fresh copy of u and unifies v with it. Even the frozen
conditions accumulated on the parameters in u are copied. The call & = {a/Gprint bfr},
fullCopy(z., ). z1bla = ok will display ok on the output screen,

typeOf(u,type(v,w)) This call is equivalent to the call fullCopy({v.w), (u, 2)), solve(z).

createType(u, v, type(w,z))  This call is equivalent to the call fullCopy{(w, z} (u,v)). The
call create Typely.(y = iy = 2).10), typeOf (L 1), typeOf (2,1) succeeds.

instance(u,v) This call is equivalent to the call JullCopyl v, w), unify(w. u).

5.5.3 Record Utilities

The following utilities handle records.

getRole(u, k, v)  This call is equivalent to the call
(h=kyeeoik=k)ou={kfv}

where dom([u]) = {k;.....k } in the state. Put differently, this call finds the key & in u to
return the value v of the key. This is equivalent to the unification u = {k/v} in declarative
sense. No argument place of u is created. This predicate may have backtrack points. The key k
does not need to be ground. This predicate is similar to the predicate locate below. In the case
that  is known Lo be ground, the predicate locate is more efficient than this., The execution
x = {a/1,b/2}, getRole(x, k,v) vields k = a. v =1 as the first solution and then & = b, v =2

as the second one.
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locate{u,k,v) If & 15 bound to a ground first-order term and & € dom(u} then solve u =
{k/v} otherwise fails. focate is similar to get Role above. However k must be ground. The call
will fail if v has not the argument place named k. The call locale({a/b}.a, z) yields ¢ = b.
The call locate{{a/y}. b, ¢) {ails, where @ # b. The call locate{{a/y}, a, r) vield the unification
r=y.

setOfKeys(u, s) This call makes the list of keyvs in the record u and return it to s. The call
setOfKeys({a/x, bfy, cfz},3) yields z = [a, b, ¢].

role(k, u, v) This is a constraint version of gefRole, which declares that getRole(u, k v} is
executed when k is bound to a ground first-order term. For example, the call z = {a/1,b/2},
role(k.x. 3), k =cyields k = c, 0 = {a/1.b/2,¢/3}.

delete{k,u,v) This call generates the conjunctive constraint of v+ = u' and ‘u’ is the restric-
tion to the dem(u)', {k}" which is to be solved when the value of k is grounded. Intuitively this
call deletes the k-field from u. For example, the call delefe(a, {a/1, bj2}, z) vields z = {b/2}.

partial{u) This call succeeds if v is a record otherwise [ails.
record(u,v) If [u] = {a;/&.....a,/b,}. then this call generates and solves the following
constraints:
vo= [lay. by by
vy = [(ag, by }|my]
Up=1 = [{@g. by )lvy)

That is. this call makes the list consisting of pairs (poe) such that v = {p/uw} and returo i
to v. This predicate 15 similar to buffer below. v s generated as a stream from the record wu.
This predicate i1s used as a stream generator. For example, the call record{{a/1.5/2},r) yields
r={la, 1} (6 2)]. This predicate must e used only when there is no possibility that the record
1 will grows in the further state.

buffer(u, v)  This call generates the fallowing constraints, where u = {a; /by, .. a, /b, }:
11 = Iy
Ly = [wy|t]
Tl = ["—rr l‘.—]
wy, = faje.by) fO0<y<n—Tlandj<r
w, = end_of _hst ifn<r

These constraints are solved in an incremental way that every time when any parameter v; gets
instantiated. the corresponding unification in the above is performed.

That is, the call buffer(u,v) converts the record u to the buffered list v, This is similar to
the predicate record. Each pair (k. 5) in w. i.e.. u = {k/r}, is put on v as the last element
of v while there is room 1n the list v. The end_of _list marker is put when the pairs in u is
exhausted. If the current tail of ¢ is unhound then the producing the rest is suspended. The
call buffer({a/1,b/3}.7). r = [] succeeds. The call buffer({a/1,b/3}, ). x = [y]z], = = [ulv]
vields # = [(a.1).(b,3)}|v]. The call buffer{{a/1.b/3}, [z.y.z,u]) yields r = (a, 1}, y = (b.3).
z = end_of fist,

106



glue{u,v) This call executes the unification u = {k/z} and v = {k/z} for each common
kev & of u and v. The call x = {afL.bjz}. ¥ = {b/2.¢/3), gluelr,y) yields = {a/l.b/2},
y=1b/2.¢/3}, s =2

merge(u, v) T'his call is equivalent to the wnification © = [u}. That is, this call adds to v
each element of u. The execution of = = {a/1}, v = {b/2,¢/3}, merge(z.y) yields x = {a/1},
and y = {u_.n"l.b,."ﬁ,-:,.'r.'l}.

d_merge(u, v)  This call is the unification v = o’ for a maximal restriction u’ of u as a
function such that the unification v = u’ is successful. That is, this call adds tov each element
of u which is unifiable with the counter part in v if any. For example, the call u = {a/1.b/2}.
r={a/3}, d_merge{u.v) yields v = {a/1,b/2}, v = {a/3,56/2}).

subpat(u,v,d) This call checks dom{u) C dom(v) and unifies d with the list of the triples
(k. u{k),v(k)). where k € dom{u]. That is. this call creates outo d the kst of triples (k.7 s)
such that (k/r) is in u and (k/s)is in v, If uis not a subrecord of v in the sense that each
kev of u is also the one of v, this call fails. The call subpati{a/1,b/x}, {a/y.b/2,c/3}, 2} yields
2= [{a.1,y) {b.x.2]]

extend(u,v,d) This call unifies d with the list of triples (k. u(k), vl k), where k € dom{u)D
dowm{v). Also this call unifies v with the restriction of u to domiu) ', dom(v).

I'hat is. this call adds each element of u to v and return in d the difference list between u and
v The call r = {a/1. b/2}. y = {b/z.¢/3} yields y = {a/L.b/z.c/3}. d = (5,2, 2]].

meet{u,v,d) This call creates the triples (k. u(k), v(k)) onto the D-list d for k & dom{u)
dom({v). For example. the call mee!({a/1.b/2}.{b/3.c/4}.7-{]) yields = = [(6.2.31].

frontier(u,v,d) This call creates the triples (k. u(k}, v(k]) onto a D-list d for k € dom{u) N
demiv). This predicate fails if u(k) and v(k) are a conllicting pair for some k. It is similar for
TSTs. For example, the cali frontier( f(a.g(b)). flz.y), z-]]) vields = = [a = z.g(b) = y!. The
call frontier(a, b.z—||} fails. where a # b are constants.

match{u,v,d) This call creates the triples (k. ulk), v(k]}) onto the D-list d for k € dom{u)
dom{ ) such that u(k) £ v(k). This predicate always succeeds. The execution of

mateh| fla. e flbox 2w [J)

vields u = [a = b.e = z].

t subpat(u,v) This call checks whether u is a hereditary subrecord of v, i.e, u is a pattern
of . provided that both u and v are ground record. More formally, it is checked that dom(u)
dom{v) and for any r m dom(u} it is the case that either u(r) and »{x) are the same first-order
term or f_suhpat(u{r), v(r)). This call will fail if it is not the case. This predicate is & transitive
version of subpat, and checks the record subsumption relation. The call

bosubpat{ {a/{b/1}}. {8/1,af{e/2.b/3}}])

succeeds. The call {_subpat({a/{b/3}.c/4}. {b/1, a/{e/2,b/3}}) fails.

t.merge{u,v) This call merges u into v in the transitive way. This predicate is a transitive
version of merge. That is, this call generates the constraints t.merge{uia),via}) for each
a € dom(u) M dom(v). and execute v = u’ where ' is the restriction of u to dem(u) ', domiv).
For example, the call t_merge({b/1,a/{c/2,b/3}}, {a/{b/y]}) yields y = 3.
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masked_merge(u,m,v) This call creates u minus m and then merge them into v. The
execution of v = {a/2}, masked merge({a/1,b/1, ¢/}, {a/ b/}, v) vields v = {af2 ¢/1}.

5.5.4 Extra Predicates

bound{u} This call succeeds if u is already instantiated.

unbound(u} This call succeeds if u is not bound.

freeze(x, g}  This call suspends the goal g while z is unbound.
freeze(x,y,g) This call suspend the goal g while both r and y are unbound.
if(t, g) This call solves g if t = true, else fails.

if(t,y,z) This call solves y if { = true, else solves z.

ifBound(x, g) This call solves g if r is bound, else succeeds.
ifUnbound(x, g) This call solves g, if z is unbound, else succeeds.

wif{x,v) This call suspends the goal y while £ is unbound. When x is bound, y is called
if & = lruc, otherwise fails.

wif(x,y,2) This call suspends goals y and = while = is unbound, and, when = is bound,
executes y if ©r = frue, otherwise executes 2,

pvif,g) This call performs unify( f, true) if f is unhound, else this call succeeds.
solve(g) This call executes .

when(a, g}  This call suspends the goal g while @ is not ground.

5.6 Linguistic Analysis in CIL

lu this section, we show various kinds of applications of CIL to linguistic analvsis, in particular,
uses of P5Ts,

5.6.1 Using Partially Specified Terms

We show a CIL program for linguistic analvsis, using PSTs and constraints. It also ineludes
uses of constraints. The program is based on the idea of situation semantics [18] in that the
meaning of a sentence is a relation between discourse situations and described situations, PSTs
are used fur linguistics information as feature structures.

Imagine the following piece of discourse belween two persons, say Jack and Betty:

(1) Jack: Tlove you.
(2) Letty: I love you.

The two sentences are the same, but interpretations of (1) and (2) are different as in the
fullowing (3) and (4), respectively:
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(3) Jack loves Hetty.
(4) Betly loves Jack.

This difference is an example of language efficiency [18]. How is this kiud of language efficiency
analyzed in CIL7 We demonstrate the power of PSTs by giving a program which analyzes the
discourse. The complete listing of the program is in the appendix.

The name of the top level predicate is discourse.constraint.
7- discourse constraint([(1}, (23], [X,Y1).

The query for the program will produce answer interpretations X= (3) and Y = (4] for (1) and
(2), respectively. In this illustration, discourse constrainls are simplified as the following (5)
and {6):

(5) The speaker and hearer turn their roles at every sentence ullerunce.
(6) The successive discourse locations are numbered sequentially.

The main <lause of the program is the following:

(7) discourse_situation({sit/S, sp/I, hr/ You, dl/ Here, exp/ Expl):-
member (soa(speaking, (I, Here},yes),8),
member (soa(addressing, (You, Here),yes),S5),
member(scalutter,(Exp, Here),yes), S).

This clause declares a type of called discourse-situation that a discourse situation has paramne-
ters: sitnations (8it), speaker (sp), hearer (hr}, discourse location (dl], and expression (exp).
In other words, an uvbject r is a disconrse situation if the sit component of r has the three
state of affairs as indicated in the body of the clause. The membership definition is as usual.

The following is the discourse constraint clauses:

(8) discourse_constraint([],[]):-".
discourse_constraint ([X],[¥)):-! , meaning(X,Y).
discourse_constraint ([X,Y1Z], [Mx,My|Rl):-

meaning (X, Mx),

turn_relaelX, Y),

time_precedent(X, Y),
discourse_constraint([Y1Z], [MyIR]).

The tirst and second arguments are a list of discourse situations and a list of described sitnations,
respectivelv. The clauses constrain discourse situations and described situations with Kule {3)
and (6) above. The constraint (5) is coded in the clause:

() turn_role({hr/X,sp/Y},{nr/Y¥,sp/X}0discourse_situation).

According to the context of the program, this clause presupposes that the first argument is
a disconrse situation. The secoud argument {hz/Y,sp/X}@discourse_situation means that
the actual argument is a discourse-situation with {hr/Y, ap/Y¥}. Note that X and ¥ turn their
roles in the first argument.

The constraint (6) i coded in the clause (10):
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(10) time_precedent({d1/loc(X)},{d1/loc(Y}}):- constr(X+1=:=Y).

The CIL call constr(X+1=:=Y} constrains X and ¥ so that the latter is greater than the former
by one.

The sentence interpretation is described in DCG formn. The following clause is an interface
between the discourse situation level and sentence level.

(11) meaning(X#{exp/E},Y):-sentence(E-[],{ip/Y,ds/X}).

The sentence model is very sumplified as follows. A sentence consists of a noun, verb, and
another noun in order. There are only four nouns, i.e., jack, betty, i/f}, you. The word love
is the only verb here. The feature system 1s taken after GPSG [32]. The control agreement
principle is ilustrated using subcategorization features. By checking the features agreement
between the subject and verb, (12) is legal, but (*13) is illegal.

(12} Iove you.

(13 dack love you,

The verb love has several scinantic parameters: agent | object, location, and so on. The first
and last nouns are unified with agent and object parameters, respectively. The location comes
from the given discourse situation parameter. The agreement processing and role unification
ate coded in the following two clauses (14), (13) using PSTs, where ip stands for interpretation.

{14) sentence({ip/S0A,ds/DS})-->
noun{{ip/Ag,ds/ DS, syncat/{head/F}}),
verb({1p/S0A, ds/DS, ag/Ag, obj/ Obj, syncat/{subcat/F}}),
noun({ip/0by, ds/ DS}).

{15} verb{{ ip/ soa(love,(X, Y, Loc), yes),

ds/ {d1/Loc},

ag/ X,

obi/yY,

subcat/ {head/{minor/{agr/

({plu/P, per/N}: (P=(+}, N= (Qper);
P=(-),(N=1; N=2)))0agr}}}0category})
-=>» [love]. % love

The pronoun [ and proper name Betty are described as follows. The agreement features of [
are the first person and singular. The agreement [eatures of Betty are the third person and
singular. The interpretation of the pronoun I is the hearer of the given discourse situation.

(16) noun({ip/betty,
syncat/{head/{minor/{agr/{plu/(-) ,per/3}tagr}}}0category})

--»[betty]. % Betty
noun{{ip/X,
ds/{sp/X},
syncat/{head/{mincr/{agr/{plu/(-) ,per/1}tagr}}tcategory})
-=»[i] %1
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The system of syntax categories in this example 1s coded as follows:
(17) category({bar/ @bar, head/ Chead}).

This clause says that an object which contains {bar/B, head/H} is a category, where B and H
are a bar category and head category.

The following is an example of the category specification in PST notation:

(18} {bar/2,
head/ {majer/ {n/ +, v/ -1},
miner/ {agr/ {per/1, plu/ -1},
case/ acc }ir.

Take query (19}, to the above defined constraint, for example.

{19) 7?- discourse_constraint(
[{sit/ [soa(speaking, (jack, _), yes],
soa(addressing, (betty, _),yes)|_l,
exp/ [1,love,youl,
dl/ loc(i)lddiscourse_situaticn,
{exp/ [i,love,youl}@discourse_situation],
Interpretation).

Note that no parameter other than expression parameter is specified in the second discourse
situation in thie query. The other parameters are determined by the discourse constraint. Then,
the exact output of this query is (20}

{20) Interpretation =
[soa(love, (jack,betty,loc(l)), yes),
soa(love, (betty,jack,loc(2)) ,yes)].

5.6.2 Feature Co-occurrence Restrictions

The predicate constr can be used to put constraints on linguistic information, Here is such a
simplified example from linguistic constraint. The constraint says that if REFL feature of r is
(+) then the GR feature of r must be SBI, where & is a feature set. This is called a Feature
("o-ocrurrence Restrietion (FCR) in GPSG and written

(REFL +)=={GR SBJ),
The following call causes the feature set z to have this agreement feature constraint.
constr((z'REFL = (+) — r!GR = SBJ}}.

The feature set « will automatically get SBJ as the value of GR feature immediately when the
value (+) is generated at the REFL field of r. For example, the execution (1) wields (2).

(1) constr{{x'REFL = (+} — x!GR = SBJ}J, #!REFL = (+), a = z!GR.
(2) @ = SBI, = {REFL/(+).GR/SBJ}.
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5.6.3 PSTs as Partial Assignments

A stafe of affairs {sea, for short) is a triple which has the form
% Ra,p>®

where R, a, and p are a relation, partial assignment, and polarity, respectively. Each relation
R is given a set arg( R} of argument places, A partial assignment for R is a partial function
from arg( R) which assigns objects to argument places. Each argument places has a condition
on ohjects assigned by the partial assignment. A partial assignment is appropriate if it respects
these constraints [12].

In situation semantics [18], soas play important roles in semantics of natural languages. So,
the partial assignment is also important. Note that a partial assignment is just a record in our
seuse since it is a function. and hence a PST. Also a merge operation can be defined on the
assignments so that the domain of partial assignments is isomorphic to the set of the records.
Pollard [77] proposed anadic relation that are relations with no fixed arity. Anadic relation
is an alternative to the state of affairs, that is, a relation whose arguments may not be fully
saturated. It is straightforward to apply PSTs to represent both soas and anadic relations.

5.6.4 Remarks on Complex Indeterminates

The general form of a complex indeterminate is a basic indeterminate [parameter), >, with a
constraint (condition), (', on x, written

x:

Complex indeterminates are basic materials in situation semantics (18] to construct various
kinds of semantic objects expressed in language nses. The central idea of sitnation semantics
is that context dependencies are an essential aspect of natural langnage uses. As suggested
in Barwise and Perry [18], complex indeterminates can also play a role of dynamic cognitive
objects such as discourse representation structures in the discourse representation theory of
Kamp [42]. Accordingly, the first target was to introduce the complex indeterminate into logic
programming, aiming at natural language analysis.

However, trying to give an appropriate inner representations of the complex indeterminate
and to define an extended unification over them, we found that the standard term structures
are not suitable into which complex indeterminates are coded. To illustrate the trouble, let
o (x,u,v) and gy Dy, w,t) be two complex indeterminates, where u, v, w, and t are the “free”
indeterminates appearing in the condition " or D or both as indicated. It was our policy that
the extended unification rule for complex indeterminates should be as the simplest extension
of the standard vnification as possible. So, the unification for the two complex indeterminates

above should go like this:
o v =y Ny, w i)l=r=y A Cr.uv)n D{y,w )

There 15, however, no way to identify free indeterminates w, v, w, and ¢ with some of the
others, for the list of free variables in a complex indeterminates is not given explicitly. For the
more worse, even if the list of free variables is given as [z, u,v| and |y, w,t], for instance, it
still remains a problem that there is no natural way to indicate the order of the indeterminates
on the list in such a way that the standard list unification causes an intended unification of
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: determinates on the list. To see this in the example, notice that [z, v, u| is another possible list
of free indeterminates, and unification may cause quite different effects from that for [z, u,v).

Therehy it was noticed that the source of the trouble are the position-based fixed arity of the
standard term structures. Then record structure came 1o us as 4 solution to the trouble. Now
the complex indeterminates r:C'{r,u,v) and y: D(y.w. t) of situation semantics is written

{all."r,‘.l;lll"u,fl,."r‘} S T LY

and
{ajx, bjuw, cft} s Dy, w, 1)

where a, b and ¢ are appropriate “attribute names” given by the user. Thus, the problem was
solved by extending the standard unification to record structures as we have seen in Chapter 3
and Chapter 4.

There is another historical remark. Introducing PSTs after fixing the trouble above. complex
indeterminates were represented as a triple, h{z,y,2), where k is a distinguished function
symbol for paramelric object. r is the object to be parameterized., y is a PST fur the list of the
parameters, and - is a condition on the parameters. An exa mple looked like this:

hiz, {age/y}. (man{z) A ugelr.y) Ay < 30)).

Then. we noticed that. [rom implementation point of view, it 1s only convention to separate
the prime and the other parameters. By introducing the conditioned term. we achieved more
hamogeneous representation of parametric objects, Now the ahove old example is simplified to

{{self fx.age/y}. (manix), agefa, gl y = 31)).

Thus. the records represent complex indeterminates, parametric objects. and feature sets in the
uniform way.

In the current version. a complex indeterminate is written r : ¢ or e, and is given the
fallowing interpretation rule:

a = (r:ei=unifyla,r), solve{c).
a = {#fc)==freeze(r, o), unifyla.x).

This rule covers only a small part of the aspects of complex indeterminates. We must leave it
for the further interesting development of CIL.

5.6.5 Multiple Inheritance with Records

Records and the built-in d_merge in CIL apply to a simplified multiple-inheritance svstem. We
first describe the problem using the language developed in Section 3.6.6. A class system (T, 7)
is an ordered pair of a set T' of clusses and a PST-valued function = defined on 7. T is assumed
to be partially ordered by <. The ordered set T represents an ‘is-a’ hierarchy and = gives
prototype attributes for each class. Fix T and 7. For c € 1, define Hie)={d € T | c < d}".
The merge operation () was defined in Example ex:merge. Define create(c) to be a marimal
PST. p, such that 7{c) C p C H{c). where T is the record subsumption.
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Now, let us take an example inheritance syvstem ({fird, penguin, swallow}, =) as follows:

penguin < bird.
swllow < bird.
m(bird = {ean_fly/yes}.
m(penguin = {ean_fly/no}.
rlswallow) =

This inheritance system can he written in the following CIL clauses.

5.0 penguin, bird ).
is_a{ swallow, bird ).
berd({ can_fly/yes}).
penguin| {can_fly/no}).
swallow(_).

By a simmple calculation, each class has the attributes as follows.

create{bird) = {can_fly/yes}
create(penguin) = {can_fly/no}
create( swallow) = {can_fly/yes}

Thus, we have a penguin instance with {can_fly/ne} and a swallow with {can_fly/yes} as
‘common sense reasoning’ might expect. As domerge collect default values, it is evident that a
simple use of d_merge implements this multiple-inheritance specification.

5.6.6 Attitudes in PSTs

We show a simplhfied idea toward implementation of the attitudes theory in Barwise and
Perryv [18]. According to them. an attitude (mental state) is an ordered pair of a frame and a
setting. A frame is a parametric type, and a setting is an assignment or anchor. Barwise and
Perry (18] solves semantic paradoxes using this representations. The proposed data structure
of mental states is close to that of the closure in LISP or the molecule in Prolog of structure
sharing implementation. The record in CIL can be used for representation of the mental state.
as illustrated below. For example, suppose the following two belief contexts:

(1) Jack: | believe Taro beats Hanaoko.
(2} Hetty: T believe Hanako beats Taro.

We represent the mental states of (1) and (2} in (3) and (4), where beater and beaten arc
indeterminates.

(3) believejack, {frame ‘beat{beater, beaten), beater/taro beaten/hanako }).
(4) belicve(betty, {frame /beat{beater, braten), beater/hanako, beaten/taro } ).

We would like to say that basic unification and utilities on records gives a useful model to search
for information in the mental state representation given thal mental slates are represented in
records. We show this by giving queries to the above two beliefs.

(5) Who believes taro is the beater?
(6) T-beheve(x, {beater [ tare} )=z = jack.
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Who does jack believe is beaten?

?_believe | jack, { beaten 1} )==1 = hanako.

What does jack believe taro does¥

T"om = {frame/z.a/luro}, believe(jack, mj==a = beater, = = beat(beater, bealen ],
m = {frame /beat| beater, beaten ), beater [ turo, beaten fhanako |,

e — .
[=m L = ]
B

Note that, in {10), this answer contains information fare is the beater.

115



5.6.7 A Tiny Discourse Analysis in CIL

The following is the program list in CIL for the example discussed in Section 5.6.1.

/* Abbreviations
51t: situation
sp: beaker
ip: interpretation
hr: hearer
dl: discourse location
exp: eXpression
sea: state of affairs
ag: agent
ob: object
syncat: syntactical category
head: head feature
subcat: subcategorization */

% Discourse Situation

discourse_sitvation({sit/3, sp/I, hr/ You, d1/ Here, exp/ Expl}):-
member(sca(speaking, (I, Here),byes),S),
member(sca({addrassing, (You, Here),yes),5),
member (sca{utter, (Exp, Here),yes), 5).

¥ Membership

member (X, [XIY]).
member (X, [YIZ]) :-member(X,Z).

% Discourse Constraint
discourse_constraint([],[]):-!.
discourse_constraint{[X],[Y]):-! meaning(X,Y).
discourse_constraint([X,¥|Z], [Mx MylR]):-
meaning(X,Mx),
turn_role(X, Y},
time_precedent(X, Y),
discourse_constraint([Y|Z], [MyIR]).

turn_role({hr/X,sp/Y$}¢,{hr/Y, ap/X}0diaconrse_sitnation).
time_precedent ({d1/lec(X}},{d1/1oc(¥)}):- constr(X+1=:=Y).
meaning (X#{exp/E},Y) :-sentence(E-[],{1p/Y,ds/X}).
% DCG (Definite Clause Grammar)
sentence({ip/S0A,ds/D3})~-->
noun{{ip/Ag.ds/ DS, syncat/{head/F}),
verb({ip/SOA, ds/DS, ag/Ag, obj/ Obj,
syncat/{subcat/F}),
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noun({ip/0bj, ds/ DS}).

Y Lexical Items

noun{{ip/jack,
syncatf{headf{minnrf{agrf{piufE-},perfa}ﬂagr}}}@category}]
==>[jack]. % Jack
noun{{ip/betty,
syncatf{headf{minurﬁ{agrf{pluf{'},perfa}ﬁagr}}}MCategory}}
-=>[betty]. % Betty
noun{{ip/X,
ds/{sp/X},

syncatf{haadf{minorf{agr!{pluf(—),perfi}@agr}}}@category}}
-=>[1] %I

noun ({ip/X,
ds/{hr/X},
syncat/{head/{ninor/{agr/{plu/Cplu, per/2}0agr}}@category})
-=»[you] % you

verb({1ip/ soa(love, (X, Y, Loc], yes),

ds/ {d1/Lec},
ag/ X,
abl /Y,
subcat/ {nead/{minor/{agr/{({plu/P, per/N}:
{p={+}, N= (@per);
p=(-), (N=1; N=2)))@agr}}}@categeryl)
-=> [lowve]. % love

% Syntax Categories
category({bar/ @bar, head/ @Qhead}).

head(

{major/ @major, minor/ @miner}).

majar({{n/ On, v/ @v}l,
minor({agr/ Qagr, case/ Qcase}).
agr({per/ @per, plu/ Oplu}}.

caselaccusative) .
case{nominative).
bar(1)}.
bar(2).
bar{3).
n{{+)).
n((-)).
vi(+)).
vi{(=)).

plul{+

plu{('

per(1)
per(2)
per(3)

2.
)).

LL7



118



Chapter 6

Summary and Conclusion

First, CIL, an extension of Prolog. has been deseribed. CIL has built-in record structures and
an extended unification over them. CIL has freeze-based constramts for arithmetic, term, and
Boolean domains. Record structures represent structured objects such as parametric objects
of situation semantics. Various uses of records have been demonstrated for structured objects
in linguistic analysis and knowledge representation. Thus, this work has shown a protolype
system of logic programming for structured objects.

Second, we have proposed a partial algebra model, the record algebra, for fealure structures
and. in particular, partially specified terms, PSTs. in CIL. The record algebra is also a model for
partiality of linguistic information and an extension of an existing model, the feature algebra.
Viewing CIL as a constraint logic programming language over the record algebra, we have
shown that CIL is an integration of the unification grammar and the definite clause grammar.

Finally, we have found a family of constraint languages over hypersets which are solution com-
pact and satisfaction complete. The family includes Colmerater's infinite tree unification with
unequations and some of feature logics such as the record algebra. Declarative and operational
semantics of the constraint logic programming over the domains have hecome essentially the
same one seen as a form of coinductive definitions. Thus, this work puts a hyperset-theoretical
foundation for the record-based languages such as unification grammars and object-oriented
languages.

A decision problem in the hyperset domain remnains open for the full class of constraints with
equations, subsumptions, and their negations.
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