TR-660

A Scheme for State Change in a Distributed Environment
Using Weighted Throw Counting

Kazuali Hokusawa
rokusawa@okilab.cki.cojp
Systems Laboratory, Oki Electric Industry Co., Lid.
4-11-22, Smbaura, Minato-ku, Tokyo 108, JAPAN

Nobuyuki Ichiyoshi
ichiyoshi@icot.or jp

Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokye 108, JAPAN

Abstract

This paper propeses a scheme for changing
the ¢zecution siate of ¢ pool of processes in a
distribuied environment where there may be pro-
cesses i transil The scheme can detect the
completion of slale change using weighled throw
counting and delect the ferminefion os welll [
works whether the communication channels are syn-
chronous or asynchronous, FIFQ or nen-FIFO.
The message complerily of the scheme 15 fypically
Ci{number of processing elements).

1 Introduction

This paper proposes a scheme for changing the
execution state of a pool of processes in a distributed
environment. It worke under the weighted throw
counting (WTC) scheme [1] * for termination de-
tection. The completion of state change can be de-
tected while not losing the ability to detect termi-
nation,

We assnme a distributed environment where mul-
tiple computational tasks are executing simultane-
ously. Each task is distributed over many process-
ing elements, and each processing element can be
assigned more than one task.

In such an environment, one sometimes needs to
stop a task (to examine the computational state,
ar to collect statistics), restart it, change the pri-
ority of & task (to execute efficiently), or abort a
task (when it goes inte an infinite loop, etc.). We
call such actions staie change actions. They are dif-
ferent from general stability detection [5] which is
superimposed on the basic computation and is not
intended to bring changes in the basic computation.

UThia scheme has been employed in & paralle] implementa-
tien [7] of IKL1 [E]. & concurrent logic programming language,
on the Multi- P51 [8].

Our scheme can detect the completion of state
change and works whether the communication chan-
nels are synchronous or asvnehronous, FIFO or non-
FIFO, The state change scheme is implemented on
top of the WT'C mechanism. The capability of de-
tecting termination (including termination during
state change) is not lost.

This paper is organized as follows, Section 2 de-
fines the computation model and the state change
problem. The WTC scheme is described briefly in
section 3. Section 4 presents a straightforward se-
lution using distributed snapshots [6]. Our scheme
using weighted throw counting is described in see-
tion 5. Finally, the comparisoen of our scheme with
the straightforward one is given in section 6.

2 Computation Model

Our process control scheme is intended to work in
a distributed computation environment where there
may be multiple computational tasks running si-
multanecusly. We model such an environment as
follows:

= There are a finite number of process pools in
the system (process pools represent indepen-
dent computational tasks);

* A process pool consists of one controlling pro-
cess and a finite number of child processes;

¢ Bach process pool is assigned a unique process
pocl identifier (PIT);

+ Fach child process has one of Lthe n execution
states: S, 59,000, S

¢ A child process can terminate at any time;

o A child process can generate another child pro-
cess having the same PID and the same state,

A B FProcess Pool ldentifier (P1D)

Child Process A

®
Controlling Process B

r Process Pool
Figure 1: Computation Mode]

and a new process poel having a new PID as
well. On the creation of a process pool, all child
processes have the same state,

In this paper, "process” means “child process” un-
less otherwise indicated. A process pool ferminates
if all the children terminate.

A process pool described above is distributed over
the following machine:

« A finite number of processing elements (PEs)
interconnected by a communication network;

+ No global storage; PEs may communicate by
passing messages;

¢ Asynchronous communication, in which mes-
sages are delivered with arbitrary finite delay.

It is assumed that a PE can detect the termi-
nation of ail processes in it having the same PID,
and can change their states. The controlling pro-
cess and PEs can communicate in both directions.
A PE may send a message to the controlling process
informing it of the termination of all processes, and
the controlling process may send a message which
forces processes to change their states,

Processes may migrate among PEs for load bal-
ancing; a PE may throw a process in the PE to an-
other PE. As the thrown process is delivered with
arbitrary finite delay, processes may be in transit at
a given time (see figure 1).

Definition of the Problem

Initially, all processes in the same process pool
are in the same state. .S'Iu!e cjmnyc is Lo cha;nge
all processes in one process pool from one state to
B new state, and is completed when the states of
all the processes have changed into the new states.
We require that two state changes not overlap, that
is, & state change action not be initiated until the
previous state change has completed.

To satisfy the above, a state change scheme must
be able to:

+ change states of all processes belonging to a
particular process pool into & specified state,
and

» detect the completion of a state change.

MNote that the possible of existence of processes in
trensit (processes migrating from one PE to an-
nther} makes the mmpletiou detection nontrivigl,

3 The WTC Scheme

This section gives a brief explanation of the
weighted throw counting (WTC) scheme [1) 2, which
is a distributed termination detection scheme. The
scheme is an application of the weighted reference
counting [3, 4], which is a garbage collection scheme
for parallel processing systems, and can efficiently
detect termination without probing or acknowledge-
ment.

A non-empty set of processes in one PE having
the same PID forms a subpool of processes, which
is cailed & “process subpool®, or & “subpeool” in
short, On receiving a thrown process, the PE de-
cides whether there is already 2 subpool having the
same PID as the thrown process, If there is, the PE
adds the received process to the subpoo]; otherwise,
it creates a new subpoal,

We associate weight! with the controlling pro-
cess, each subpool and each process in transit. The
weight of a subpoo] and that of 2 process in transit
are positive integers, while the weight of the control-
ling process is a negative integer. The WTC scheme
maintains the invariant that:

The sum of the weights is zero.

This ensures that the weight of the controlling pre-
cess reaches zero if and only if all processes termi-
nate, i.e., there is no processes neither in a PE nor
in transit.

When all processes in it are terminated, the sub-
pool terminates and sends a ferminafed message to

Y Essentially the same scheme named Credid Recevery al-
gorithm is presented in [2). Credif in [2] corresponds to weight
i the WT'T scheme

1] controlling process
mj

v = -800
PEi PEk

O ¥ = BO
00|

subpocly

w = 450 O
O

w = 270

2) cmltrﬂlﬁnf process

¥ = =BQ0 PEk

subpools termimated

PEi \ subpoolk

O (w = 270) O

O PEj

. W = BO
v = 400 \Q '_su_bguu_'qu created
| |
w = B0 | |
| 1
b = — = &
terminated

Figure 2: The WTC Scheme

the corresponding controlling process. This fermi-
nefed message carries the weight of the terminated
subpool. On receiving a {erminated message, the
controlling process adds the weight to its (nega-
tive) weight. If the weight of the controlling pro-
cess reaches zero, the termination of all processes is
detected (see figure 2).

4 Straightforward Solution

This section describes a straightforward scheme
using distributed snapshots [fi].

State change can be divided into the following
two phases:

« Changing the state of all processes belonging to
the poal;

» Detecting the completion of state change,

The former phase is performed by broadcasting
and memorizing. The controlling process broadeasts
& chuange message which carries the PID of the pool
and a new state. When a PE receives a chonge mes-
sage, it changes the state of processes belonging to
the specified pool and keeps the new state with the
FPID. If there is no corresponding process, the PE
only memorizes the PID) and the new state, When
all processes in a poel terminate, the PE still keeps
the new state with the PID. Cn recoiving a pro-
cess with different state, the PE also changes the
state of the received process inte new one meme-
rized. Therefore, a process with old state in a PE
changes when a change message arrives, and a pro-
cess with old stake in trapsit changes when it reaches
a PE with new state.

The latter phase is performed by the technique of
repeated observeifons using distributed snapshots,

After broadcasting a chenge message, the control-
ling process starts distributed snapshots, and re-
peats it until the completion is detected.

5 Solution Using the WTC scheme

Asg described in previous section, if the contralling
process broadeasts a message and each PE memo-
rizes a new state, it is ensured that state change
completes in finite period. Therefore, only the de-
tection of the completion of state change is required.

As mentioned in section 2, the operation of
changing into the new state begins on the assump-
tion that all processes have the old state,

5.1 Detection of the Completion

We show here how Lo detect the completion of
state change using the WTC scheme.

Before state change, the controlling process allo-
cates a variable called chonged weight? and sets its
initial value at the [negative) weight of the contral-
ling process. This changed weight plays an impaor-
tant role; it indicates the weight of processes with
old states,

The controlling process broadcasts a change mes-
sage. On receiving & change message, the FE
changes the states of all processes in the correspond-
ing subposl having the specified PID and sends hack
a chunged message in acknowledgement. It carries
the copy of the weight of the subpool, which indi-
celes the sum of the copies of the weights of pro-
vesses whose states have already been changed. If
there is no corresponding subpood, the PE memo-
rizes the PID and the state carried; which is equiva-
lent Lo the creation of an empty subpoal, a subpoal
with no weight.

I} S_'_'Sﬂ

chauye{.y
PEi

subpools

So

Se .
FE)
OO \Q subpoolj

change(S,)

cﬁangefsy
FEi
subpooli
S,
o rE;

En
O \"“@__ \i subs Q;LI
- 5,
| O
| S

Figure 3: Which state is new 7

When a PE receives a thrown process having dif-

ferent state from the one of the corresponding sub-

* pool (including an empty subpoal), it also changes
the state of the received process and sends a changed
message to the controlling process which carries the
copy of the weight of the received process.

On receiving & changed message, the controlling
process adds the received weight to the (negative)
weight of the chanped weight. Since the weight of
the changed weight indicates the sum of the copies
of the weights of processes whose states remain old,
when the changed weight rearches zero, the comple-
tton of state change is puarantesd.

5.2 Situations to be Considered

Although the scheme mentioned above can de-
tect completion of state change correctly, it is still
incomplete because the following situations are not
considered,

Which state is new 7

Since messages are delivered with arbitrary finite
delay, a PE can receive a thrown process with not
only old state but also either mew state or same
state. In figure 3, PEj (subpoolf) receives a thrown
process with old state (S,), while PEi (subpoolr)
receives 8 thrown process with new state (5, if the
thrown process reaches PEi earlier than the change
message does,

When the state of & received process iz old, the
state of the process is changed into the (new) state of
the subpoel and the copy of the weight of the process
should be sent back. On the other hand, when the
state of a subpool is old, the state of the subpool
should be changed and the copy of the weight of the
subpool should be sent back,

Therefore, when a PE receives a thrown pro-
cess with different state from the one of the cor-
responding subpool, it must decide which state is
new. To perform this, we associate penerafion with
each state. The controlling process holds a genera-
tion which is incremented on each state change and
carried by & chenge message o PEs with a state,
Each subpool holds a generation and assigns it to
a thrown process. Since there are only two genera-
tions of state in & process pool during state change,
thres generation numbers are enough for generation
control; for example, 0 — 1 — 2 — 0 -

Termination during state change

Since a subpool can terminate at any time, the
controlling process can receive two kinds of {fermi-
uafed messages; a ferminated message sent before
receiving a change message and sent after receiv-
ing a chenge message. ln figure 4, the former and
the latter are terminaled messages sent by PEi and
PEj respectively.

As the former carries the weight of 2 terminated
subpoo] having old state, it is necessary to add the
weight to the changed weighi. This operation is gim-
ilar to the action when receiving a changed message.
Ou the other hand, as the latter carries the weight
of a subpool with new state, the weight should not
be added 1o the c}iﬂﬂgeﬂ uan:llg.ilg,f_

Thus, operations of the contrelling process must
differ in different terminated messages. Assigning
generation o each ferminaled message makes it pos-
sible to the contralling process Lo discriminate be-
tween two kinds of ferminaied messages descrilied
above,

change message in transit
In case a change message reaches a PE having

no corresponding subpool, no weight is sent back.
Therefore, cven if the changed weight reaches zero,

1} 5.,-** Sn

¥ = =700
cﬁuﬂprfﬂy
change(Sn)
PEi _ .
subpooli terminale
rTg T (@ = BOO .
1 Pe ") PE;j
! ' subpoolj
] I S.c.
terminated OO {
v = 200
! m
w = =700
changed
terminaled (w = 200)
(v = BOO)
ferminaied
(w = 200) PEj
subpooly
|Sn—" Sn|
1 1
| I

terminated after
state change

Figure 4: Two kinds of ferminaied messages

it is not sure that all change messages are received.
Sinee messages are delivered with arbitrary finite
delay, termination leaving change messages in tran-
sit is quite dangerous. If the PID is reused and new
process pool with the DID is created, wrong state
change may occur. To avoid the wrong termination
detection, each PE sends back a ackChange nessage
when it receives a change message,

5.3 The Whole Scheme

In consideration of situations mentioned above,
the scheme is revised. The whole scheme i3 as {ol-
lows (see figure §).

Operations of the Contirolling Process

On start of state change, the contrelling pro-
cess performs the following operations:

l. Allocates two variables called changed
weight and ack counter, and sets initial
values at the weight of controlling process
and the number of Lthe PEs respectively:

‘The value of the ack counter indicates the
number of nciﬂhang: mEssARES which are
net received;

2. Increments the generation;

3. Broadeasts a change message which car-
ries the FID and new state with the incre-
mented generation.

On receiving a ackChange message, the control-
ling process decrements the ack counter,

On receiving a changed messape, the controlling
process adds the received weight to the (nega-
tive) weight of the changed weight,

On receiving a ferminated message with the
old generation, the controlling process adds
the received weight to both its weight and the
changed weight.

On rveceiving a ferminafed message with the
same gpeneration, the controlling process adds
the received weight to only its weight.

Dietection of State Change: When both values
of the changed weight and ack counier reach
zero, the state change is completed; there is no
processes with old state neither in a PE nor
in trapsit, and no messages concerned (change,
changed and ackChange) in transit.

Termination Detection: When the completion
of state change is detected and the weight of the
controlling process reaches zero, the controlling
process broadcasts a forget message. On re-
ceiving a forgel message, the PE forgets the
PID and the state memorized, and sends back
an ackFergel message to the controlling pro-
cess, When receiving all ackForge! messages,
the termination of the process pool completes.

Operations of Each PE

On receiving a change message, the PE sends
back an ackChange message and performs one
of the following operstions:

= If the state carried by the change message
is different from the one of the sulipool
with the specified PID, the PE changes the
states of all processes in the subpoel inte
the specified new state, and sends back a
changed message which carries the copy of
the weight of the subpeool.

« If the state is the same as the one of the
subpool, nothing is done. This is the casze
of having reecived a thrown process with
new state before receiving the change mes-
sage.

]} 59_' Sn -
(]
w = =800 __ thange(S,)
change (5, } €= R0 T

PEi o PEk
subpoald change(S,)

5’ PEj s,

O subpoolf O
5. w = 10

= 300 O

2) Sa

ackChange Dl ackChange
cfmngca' :-M 0 T FEk

PEi changed to S

subposols 590 I [
i [

gn——bsn PE_] Sﬂ . e

OO subpooli O created
S 8, w = 10
w

= 300 __OJ

¥ = 580
) Er
3 ri-l chenged
(w = 10)
F o= =000 T Te— PEk
€= -0 subpoolk
FEi 5,

subpools O

O FE)
subpooli ¥ o= 10
i

= 300 " S"O
fe}d

w = Bod

Figure 5 State Change Operations

I there is no corresponding subpoal, the
PE memorizes the PID and the new state:
which iz equivalent to the creation of an
empty subpool,

On receiving a thrown process with the same
state, the PE only adds the weight of the pre-
cese to the weight of the corresponding subpoal,
No message is sent.

(w 332.3// \ackﬂhﬂﬂgs EmEt"r sul:ﬂ:mo].k

On receiving a thrown process with the d4if
ferent state, after performing either of the fol
lowing operations, the PE adds the weight.

« If the generation of the state of the sub-
pool is newer than that of the process, the
PE changes the state of the process and
sends a changed message which carries the
copy of the weight of the process.

« If the generation of the state of the sub-
pool is older, the PE changes the state of
the subpool and sends & changed message
which carries the copy of the weight of the
subpool,

When a subpool terminates, after sending a
lermineled message with the generation of the
terminated subpool; the PE still keeps the PI1D
and the state; which is equivalent to remain an
empty subpool.

5.4 An Efficient Variant

Assigning a weight with a change message makes
an ackChange message needless. An assigned weight
is regarded as a weight of a thrown process with
old state. An ackChange message can be merged
into & changed message or replaced by a ferminated
message.

On start of state change, the controlling process
performs the following operations:

1. Tncrements the generation;

2. Broadcasts & chenge message with a weight
and subiracts the sum of the weights from the
weight of the controlling process;

3. Allocates a variable called changed weighi and
sels inilinl value at the weight of the controlling
process after subtraction.

When a PE receives 2 change message, it adds
the weight of the change message to the weight of
the subpoal having the specified PI1D, and performs
either of the lollowing operations:

¢ Ii the state carried by the change message is
different {rom the one of the subpoal, the PE
changes the states of all processes in the sub-
pool into the specified new state, and sends
back a changed message whicl carries the copy
of the weight of the subpool,

e If the state is the same as the one of the sub-
pool, the PE sends back a changed message
which carries the copy of the weight of the
champe message.

If there is no corresponding subpool, the PE creates
an empty sebpool and sends back a terminated mes-
sage with old generation which carries the weight of
the change messape,

6 Comparison

The straightforward scheme presented in sec-
tion 4 has the following disadvantages:

o It only works under FIFO comumunication.

Since all communication ¢hannels must be
traced by & marker message [§], a large oumber
of marker messages are needed. In the mode)
defined in section 2 where all PEs can commu-
nicate each other, n(n=1) marker messages are
sent among n PEs. Thus, the message complex-
ity becomes O(n®).

In contrast, our scheme has the following advan-
tages:

¢ It works under both FIFQ and non-FIFQ com-
munication.

« Both 2 chonge message and a changed mes-
sage In response to & change message are sent n
times. Although a changed message is also sent
when a process with old state arrives, the num-
ber of processes in transit is in proportion to
in general. Therefore, the message complexity
is Ofn),

T Summary

We have devised a scheme for changing the exe-
cution state of a pool of processes in a distributed
environment. Our scheme can detect the comple-
tion of state change using weighted throw counting
and detect the termination as well.

Its major advantages are as follows:

It tan be applied to the both computation mod-
els with FI¥O and non-FIFO communication.

The message complexity is

N number of P Es).

The techniques deseribed in this paper are appli-
cable to many kinds of distributed processing sys-
tems.

typically

References

[1] Rokusawa, K., Ichivoshi, N., Chikayama, T.
and Nakashima, H., “An Efficient Termina-
tion Detection and Abortion Algorithm for
Distributed Processing Svstems,” Froe. of In-

ternational Conference on Parallel Processing,
Vel.l Architecture, pp.15-22, 1985,

(2] Mattern, F., “Global quiescence detection
based on credit distribution and recovery,” fnf
Froe. Letf,, Vol 30, No4, pp.195-200, 1023,

=¥

[3] Watson, P. and Watson, [, “An efficient
garbage collection scheme for parallel com-
puter architectures,” Proc. of Parallel Archifec-
fures and Languages Europe, LNCS 254, YolII,
pp.432-443, 1987,

[4] Bevan, D.1., “Distributed garbage collection us-
ing reference counting,” Parallel Compufing,
Vol 8, No2, pp.17T8-192, 1960,

[5] Chandy, K.M. and Misra, 1., “Stability Detec-
tion,” In Parallel Program Deston, A Foun-
datien, pp.269-2885, Addison Wesley, Mas-
SH.I."J'I.IJEET.I:-S, 1988,

[6] Chandy, K.M. and Lamport, L., “Distributed
Snapshots: Determining Global States of Dis-
tributed Svstems,” ACM Trans. on Compuler
Systems, Vol.4, No 1, pp.G3-T5, 1085,

[7] Nakajima, K., Inamura, Y., Ichivoshi, N.,
Fokusawa, K. and Chikayama, T., “Dis-
tributed Implementation of KL1 on the Multi-
PSI/VYY Proc. of Sizth International Confer-
ence on Logic Propramming, pp.436=451, 1989,

[8] Ueda, K. and Chikayama, T., “Design of the
Kernel Language for the Pazalle]l Inference Ma-
chine," The Computer Journal, Vol.33, No.g,
pp.494-500, 1950

[9] Taki, K., “The Parallel Software Research and
Development Tool: Multi-PSI Svstem,” In Pro-
gramming of Fulure Generalion Compulers,
Pp-411-428, Elsevier Scienee Publishers BV
North Holland, 1988,

