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Abstract

A new class of algebras called record algebras is introduced as a mathematical wodel
for feature structures, A record algebra is commutative and idempotent partial monoid
R provided with an operator domain (. ( is a monoid whose elements called features
act on R from hoth left and right sides of . R is called a € record algebra and (7 a
feature monoid. The record algebra is an extension of the feature algebra in computational
linguistics. A constraint theory (R, ) is given for complete and standard record algebras
K with a record compatibility relation #. The standard unification theory (H,=) on
Herbrand universe I with the identity relation = is embedded into {R,2). Also based
on the theory {R, ™) a logic programming over (R, M) is defined with both declarative
and operational semantics, where the maximum semantics is used for the declarative
semantics. [1 is shown that both semantics of the program are sound and complete
including negation-as—failnre rnle. As an application of this logic programming language
class the definite clause grammar over H is generalized to that over (7-record algebras.

1 Introduction

In this paper!, we propose a class of algebras called record algebras as a mathematical
maodel of feature structures. In fact this structure was first introduced into the standard
logic programming language Prolog as an extension of the first order term and it turned
out to be very useful for natural language processing[20, 16]. We develop a unification
theory using parametric records taking them as a partial description of pure records,
i.e. parameter—free ones. We write (R, ) informally for the proposed record unification
theory, where R is the domain of pure records and M a binary relation on R, We develop
the theory (R,M) so thal il is a straightforward extension of the standard unification
theory { H,=) vver Herbrand universe #, i.e. the domain of pure first order terms. In fact
the former will he proved to be a conservative cxtension of the latter. Note that we treat
only one relation b as the first order unification theory does only the identity relation =.

Intuitively records are simple recursive structures of the form {{ay.ry}, - A, )}
where a; are distincl atomic features and 1, are atoms or possibly another records. r; are

T appear in J. Wedekind and . Rohrer (eds.), Unification in Grammar, MIT Press, 1991
IThis work 15 a substantial revision of [18].



also called features. A formal definition will be given in section 2 to the record. We treat
three familiar kinds of builtin operations on records: “merge’{+), “left’(-}, and ‘right’ (f).

Example 1 a, b, ¢, d are features, r, 5, 1 are atoms.

+ (merge) : {(a,7), (b, &)} + {(b.s),(c.)} = {(a,r).(b,s),(e,t)}.

- (left) coa-{(b,r) (e, 8)} = {(a,{(b,7),(c,5)})}. (See figure 1.)

J(right)  : {(a,{(b,7).{c,2)}),(d. 1)} fa {(b,v), (e, 8)}. {See figure 2.)
]

Note that operations are partial in general. For instance {(a,p)} + {(a,q)} is undefined
when p and q are distinet ‘atoms’. Using this algebra each record {(a;,m1),---, (@n.7n )}
(n > 1)is expressed as ayry + - -+ + 0y 7y, Where az stands for a - z.

With these simple examples in mind a (7-record algebra will be formally defined to be
6-tuple (B, G, +,+ §.€), where R is a commutative and idempotent partial monoid under
+ with an operator domain (7 which acts on K from both left(-) and right () sides as a
monoid. We call & a feature mmonoid and B a G-record algebra. An element of F is a
record. An element of (7 is a feature. ¢ is the unit of B with respect to +. As a convention
for the case n = 0 above we identify the empty record § with .

We have no type other than the record. Data such as numbers and strings which come
at terminals of record structures are atomic records. A standard example of records are
trees which have tags at only leaf nodes. Iet A be the set of such trees. A feature is a
path in the tree starting from the root node. The set of features forms a monoid under
the concatenation. zfo denotes the subtree of the tree # which can be accessed along
the feature @ in z. az denotes the tree which is obtained by putting the tree r at the
end of the feature oo, + is a tree merge. € is a singleton tree which is not assigned a tag.
Unlike the standard unification theory (H,=) record algebras R involve partiality. In fact
R is a partial semi-lattice structure w.r.t. (with regard to) <, where a < b is defined by
a+h=~5

Atomic constraints on records are of the form p M g, where p and g are record terms.
The symbol % means a binary relation on K representing compatibility of records, ie.
u b v iff w4 v is defined in R, where u,v € R. A solution of p M g is an assignment f such
that there is s a common ‘instance’ ¢ in K of p and g. In other words p ™ g is solvable iff
there is a record ¢ € B which is of parametric types both p and g. Also another informal
reading of p M gis that there is a record t € H such that p and ¢ are a partial description of
t. The concept of solutions in { K, ™) is a natural extension of that in the standard theory
{H,=). The notion of solutions in (K,#) is fundamental and will be defined formally.
The relation ¥ is not an equivalence relation. In fact there is no full transitive rule in the
theory (R,™) but only a restricted one, which only when r is a parameter the transitive
rule

tNprzrMg=pHg

is applied in the unification process.

A unification theory of the record algebra can be seen as a closure operation on con-
straints. In fact a constraint is defined to be unifiable iff it has a consistent closure. The
closure roughly is a generalization of the unifier. For example in (R, ) the closure of the
constraint {(a, y),(b,y)} M {{b,1),(c,y)} contains y t 1, which means y = 1 with 1 being
atomic. We will show that for every constraint C' on the record algebra R the constraint
iz unifiable iff 7 is solvable in . In fact our unification theory over records is satisfaction
complete in the sense of the logic programming (CLP) scheme[12]. Thus the unification
theory (R,8) characterizes the set of solvable constraints in a decidable way. Also we
show that the unification theory will be compact in the sense that a constraint is solvable
iff 50 15 its every finite subconstraint.



Now we turn to how to build the record algebra into logic programming. We view
the logic programming over records as a form of inductive or coinductive definition for
domains of records{1, 17]. So the semantics of the program is defined to be the maximum
or minimum fixpoint of the program viewed as a monotone transformation on the domain
R of records. In particular we are interested in nonwellfounded structures[1] such as
streams for a variety of possible applications, e.g. type inference involving recursive type
definitions among others. So unlike traditional semantics of logic programming we treat
in this paper only the maximum semantics of programs{14].

Example 2 The program below consists of three Horn clauses for a recursive data type
definition of list structures, where r and | are parameters, a, b, nil, atom, list are atoms,
type, car, edr, and form are features,

(1) {(type,atom),(form,a)}.
(2) {(type,atom),( form, b)}.

(3) {(type,list),(form, {{car, z),(edr, )} )}~
{{type,atom),( form,z)}, {(type. list),{ form,1}}.

The minimum semantics of the program is the set

{{{type,atom),{ form, a}}, {(type, atom),{ form, b}}}.

On the other hand the maximum semantics of the program is the largest set M of records
such that:

o M = N U {{{type.atom),( form.a)}, {(type. atom),{ form,bj}}.

e N is the largest set such that for any r € N, there are some v € M and u € {a.b}
such that r = {({type. list).( form, {(car,u).(cdr.v)})}.

This kind of straightforward maximum semantics is given in [19] based on the hyperset
theory [1]. This program example will be treated formally in example 11 and 12. )

We will show the soundness and completeness results and the display-theorem (the-
orem 17), which asserts that every solution is displayed by a computation for the given
goal. Also we will show the sonndness and completeness of the negation as failure rule.
However our constraint language does not exactly fit to the CLP scheme. In fact as the
atomic constraint ¢ M z holds for any record r the unit ¢ is nol construint definable, which
means [ R,) is not solution compact[12]. This aspect of (£,M) may be easily modified
by separating the role of the symbol ™ into two, i.e. identity (=) and subsumption ()
so that the modified language is solution compact[19]. This modification is. however, out
of place.

There is a straightfurward translation from IHerhrand universe H into the record al-
gehra B which maps, for instance, f(a,b) to {{fi,a),(f:.b)}, where f; and f are argn
ment places of f. The first order term f{a,g{z)) for instance is translated to the record
[(fiad( fas {(g1,2)})}. Partial descriptions {(fi.a)} and {{f2,b)} together mean the
first order term f{a,b), whereas there is no such term far {{ fi.a)} and {(f;,b)} with a,b
being distinct atoms. ‘I'his kind of partiality is an essential aspect of records structure
constraints which are not seen in the standard unification theory.

As applications of the unification theories (R, 04) we will show first that the standard
domain of ( H, =) is embedded into a record algebra of (R,®). Then we extend the DCG
(definite clause grammar) over H to that over the record algebra RB. Also we will see that
DAGs used in unification grammar formalism are viewed constraints on records.

We will give the details of the unification theory ( R,™) over record algebras R which is
a conservative extension of the standard unification theory (H, =) over Herbrand universe
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H. The standard term unification f(z,z) = f(a,y) for instance in (H,=) is translated
to {{fi.2), (fa.2)} ¥ {{fi.a),{f2.y)} in (R,™) preserving the solvability. The closure of
the latter contains three atomic constraints: = M a, r W gy, and y ™ a, which in fact
means ¢ = ¥y = a. More formally speaking there is a translation 7: H — R between
the first order term unification {including infinite trees) (H,=) and the proposed record
unification theory { i, ™) such that s = t is unifiable in (H, =) iff 7(s) ® 7(t) is unifiable in
[ R,) and also that s = { is solvable in (H,=) iff 7(s) & r({) is solvable in (H,M). A non
trivial thing is that the binary relation symbol 4 between records is not interpreted as the
record identity but as a kind of compatibility of two records®. In fact an extended notion
of solutions for record constraints is needed to make the record unification complete as
desired. Moreover there is a converse mapping from the record domain R to the standard
term domain H in the sense that the record unification can be reduced to the standard
term unification. For example take a compatibility constraint (1).

{la,w),(by)} ™ {(b,1).(c,y)}. (1)
{la, ghibyh e, u)} = {{a,v),(b 1) (e, 4]} (2)
flyswu) = flv,1,y). (3)

The compatibility constraint is reduced to the equational constraint {2) introducing new
parameters u and v for *hidden’ features ¢ and a. Clearly the two constraints (1} and (2]
are equivalent in the sense that the equation is solvable ifl so is the given constraint. Now
the egquation (2) is equivalent to the term equation (3), where f iz a function symbaol.
The present work, however, concerns M-constraints themselves as a study of partiality of
information without reducing them to standard constraints.

There are many related works on feature structures, which are still on going, so that
we take only some of representative works among them related to this work and give
brief notes on them from the view point of this work. First of all Pereira and Shieber[21]
applies Scott’s domain theory to give a denotational semantics to unification grammars
viewing them as a computer program. Although it is not clear that the record algebra is
an instance of the scheme both works share the basic idea in that grammars are computer
programs. In fact the present work treats DUCG as a form of coinductive definitions for a
desired domain of records as legal feature structures.

As explained above by introducing new parameters for *hidden’ features the proposed
record comstraints can be translated into first order term equations or more generally
those in the order sorted algebra (O5A)[10]. However it is the behavior of the relation
™, i.e. a logic of ‘compatibility” that the present work is interested in. In fact we give a
record constraint for only ™ relation and thereby we need no new parameters in unification
procedures. Also the proposed record algebra has nonwellfounded structures in general
and the semantics of programs is the maximum semantics. It is interesting but not so
rlear how the initial algebra semantics of OSA, for instance, can be applied to the record
algebras.

PATR-11[24] is a standard computational framework for DAG-based unification gram-
mars. Our unification over the record algebra is equivalent to that of PATR-II over feature
structures, i.e. graph merging, though we includes infinite record structures. The pro-
posed embedding of the standard domain (K, =) into the record unification (R,¥} gives
a mathematical model to a common sense view that Herbrand terms are a degenerated
form of records and a DCG is a compiled form of unification grammar (Shieber). Also we
will show a natural translation of DAGs into constraints in ( £,24) so that the unification
theory over DAGs can be interpreted as a constraint theory over the record algebra in a

2Although the proposed theory of M on records is not exactly an equational theory we still use the word
‘unification’ for such a theory based on a etrong similarity to each other,



natural way. In other words records are considered to be denotations of directed graphs
(DGs), which is an analogy to that hypersets are denotations of directed graphs[1].
Seeing records as partial fanctions the record algebra is related to situation semantics(6]
and situation theory(3, 4). That is, records can be used for representation of state of affairs
which contains a partially specified list of arguments[16]. Pollard[22] proposed the notion
of anadic relations for situation semantics. The record algebra seems to serve as a model

for anadic relations,

In his thesis Ait-Kaci[2] criticizes first order terms from type theoretical point of view
and proposes to see them as records. He uses semi-lattice for the framework. Ait-Kaci[2],
however, gives no declarative semantics of the program over the semi lattice while we give
a declarative semantics for constraint logic programming over record algebras.

Kasper and Rounds[13] proposes automata models of unification theory over feature
structures. Also more recently Smolka[26] formalizes unification theories in feature logic
with subsorts including negation and disjunction. He showed a linear time translation
from constraint language over feature structures into a quantifier free sublanguage of first
order predicate language.

Courcelle[9] treats infinite trees. Maher[13] gives an axiomatization of infinite trees,
However, they treat only trees which have fixed arities. Also the same with case of
Colmerauer[3] while the record has not a fixed arity.

This paper is organized as follows. Section 2 and section 3 are main part of the paper.
In section # we introduce a class of record algebras and give a unification theory over
them. The main goal is the equivalence theorem hetween the solvability and unifiahility.
In section 4 we give a class of unification grammars over record algebras being guided by
the idea that grammars are computer programs[21]. Soundness and completeness results
are obtained. DAGs and the notion of arity will be given a new inferpretation respectively
from the point of the record algebra. In section 4 we give concluding remarks.

2 Record Algebra and Unification

We introduce record algebras and describe a unification theory over them. As things in
record algebras are partial we make a general convention for equations and evaluation in
partial algebras used in the rest of the paper. By ¢| we mean that the expression ¢ is
defined, i.e. has a value, where ¢ is an expression in the constraint language. Details of
‘logic of partial terms’ will be given at appropriate places in the below. An equation | =r
means that if either | or r is defined then both of them have Lthe same value:

[er = [lvrl =1lAarlAal=r]

where I and r are expressions. The use ol terminologies follows standard algebra text
books such as [11, 28, 71,

2.1 Record Algebra

Definition 1 A feature monoid (7 is a monoid such that the following hold:

(1) Each o € G has only a finite number of prefixes, where 3 & (7 is a prefir of a € G
if @ = g% for some v & (7.

(2 (€7,<) is a partial order structure, where < is a binary relation over (¢ defined by
ie = 3 iff o ig & prefix of 3.

(3) (&7, <) forms a tree, ie. the set of {# € (7 | @ < 3 < +} is totally ordered by < for
any @, 3 & (4,



o

Flements of & are called a feature. Every free monoid is a feature monoid. We write
o 0 ifl « and § are incomparable features, ie. a3 &= af£rffain . o and
/# are incompatible iff there is no upper bound of & and 3 in G. As the unit ¢ € G is the
minimum element of ((7, <} it follows from assumption (3) that a and 3 are incomparable
in G iff they are incompatible in G.

The feature monoid is a generalization of monoids of strings over given letters with
the string concatenation. Let L be a set of atomic features. A sequence of atomic features
ai,....a, is written (a;,...,an), where n is a non negative integer and is called the length
of the sequence. As nsual convention the sequence (ay,- -, a,) denotes the empty string
{} when n = 0. Also ¢ denotes the empty string. The length of the empty string is 0. We
write o/ for the concatenation of two sequences a and 3. The concatenation is defined
by the following equations:

Ex = .
g [

(A1, @8u )by, b} = (@1, @By ,bm}

The symbol X* denotes the free monoid generated over a set X. For example with I
being a set of letters L* is the set of words of finite length over letters in L. For the
convenience of notation the string (a) of the length one is written simply a. Clearly from
the definition L™ is a feature monoid.

Remark Condition (3) above is narrow, It is desirable to find more general conditions
for (3) in which a computational unification theory such as one developed in the present
work iz still effective. However this is an open problem.

Definition 2 Let G and M be sets and let F'C {4+, J}. E((+, M, F) is the least set E
of expressions which satisfies the following.

(1) MCE.

(2) If e Fa e G,r e F then (o, x) € E.

() ff e F.e € (7 and z € E then f(r,a)€ E.
(4) T+ e F, 2,y € F then +(z,y) € E.

We use nsual notations:

=
il
L}

ar = a,r)
fa def flz,a).
r+y T+

Given a record term p the set V(p) denotes the set of parameters appearing in p.

Definition 3 A merge system is a partial semi-group (M, +), where M is an associative,
commutative and idempotent under a partial binary operation +: M x M — M. The
axioms follows, where a.b,c € £(0, M, {+]).

Partiality ace M = al.

a+bl = ajAbl.
Associative a+(b+e¢) =~ (a+b)+e
Commutative a+h =~ b+a
Idempotent a+a ™~ o



Note that a merge system may have not a unit.

Example 3 (pow( P),U) is a merge system, where P is a set and pow( P) denotes the set
of subsets of P. o

(M, +) is a trivial merge system if M is aset and +isa binary operation on M such that
r 4+ r =z but z +y is undefined whenever = # y, where z,y € M.

Definition 4 A (G-record algebra is a 6-tuple R = (R, G, +,-, f,¢), where
(1} (R.+) is a merge system with the unit .
(2} G is a feature monoid which acts on R as an operator domain from both left and
right:
(= B — R
J : RBRxG— H

(3) Partiality axioms for R follows, where a € (4, and abe &G R +. )

== al.
= ],

a+bl == a|lAbl
aa] = al.
afee] = al.

(4) The following equations hold, where a € G, a,b, e € £(G, R {~+. /1)

Associative at(b+ec) = (a+bd)+e
Commutative a+b = b+a
ldempotent ata =~ a

Unit a+é =~ e¢+a ~ a.
Left Distributive ala4+b) = oa+ ab

Right Distributive (a+b)fa = afa+bfo.
Cancellation - {oa)fa =~ a.

]

Elements of R are called records. Note that actions by a feature are partial in general.
We abuse R for R. In the record algebra r = y follows from ar = oy by the cancellation
axiom. For any « ¢ R ¢r = z and in particular c¢ = ¢ hold.

Definition 5 Records r € K are atomic il zfa is undefined for any a € G\ {s}. =

The unit ¢ is not always atomic. Such an example will be found in example 4 and 5. We
recall the definition of the feature algebra and show that the record algebra is an extension
of the feature algebra. Roughly speaking a record algebra is a feature algebra which has
an internal merge operation in addition to external ones. Moreover the operators operate
an tecords from both sides not only as ‘field selectors’ but also ‘record constructors’
respectively, whereas operators in feature algebras work only as selectors.

Definition 8 Given a set F of features and C of constants a feature algebra is an ordered
pair (D, (-)*) which satisfies the following, where 1) is a set:

(1) f4 D — D is a partial function if f € F.
(2) cAeDifee .
(3) et £ A ila,beC,a#b



(4) a* ¢ dom(fle Dif fe Fandae C.
o

As distinct constants are interpreted to be distinct we can assume € € D. Assuming the
hyperset theory [1] it is straightforward to show that every feature algebra is a record

algebra.

Proposition 1 Given a set F of features, C' of constants, and a feature algebra A =
(D,(-Y*). Then there is @ F*-record algebra R4 = (R, F*,+,-, [ €} and an injection
W [} = K such that the following hold.

(1) ${C) € R.

(2) w(fAd) = w(d)ff  (deD).
Proof Ford e Dlet §; = {(f.fA(d)) | f € F.d € dom(f*)} and D' = {d € D | 5; # 0}.
Solve the system {d = &4 | d € '} of equations, where by the solution lemma [1] there
is a unique solution ¢ to the system. Let Ry = {¢(d} | d € D'} U D\ D' and ¢ be some
new atom not in . Let B = Bq U {e}. Define a merge system (R, +) so that (Ry,+) is a
trivial merge system and e +r = z+4+¢ = x for all z € K. Then define ¥(z)f f & v fA(z))
and fii(z) daf y{z ). where z; is some element in fYzyC D, ie 2 = flzy) It is clear
that (ar)fo = = and rfol=alzfa)|. Also define so that ¥(c)/ f is undefined for any
ceCand feF. ]

Definition 7 Let (M, +) and (M',+) be merge systems. A total function ot M — M’ is
a merge homomorphism if for all a, b & M

wla 4+ b) ~ pla) + @(h).
0

Definition 8 Let R and R' be G-record algebras over M and M', respectively. A homo-
morphism from R into B is a (total) function h: R — R’ satisfying the following:

hie) = &
hlu) € M (ue M)
hloeu) =~ ohiu).
hlufa) ~ h{u)fo.
hlu+v) = h{u)+ hiv).

O

If the function h is a bijection and the inverse h~! of i is a homomorphism from R’ into
R then B and B’ are called isomorphic to each other.
We define a hinary relation < on R by

nLh = a+hbh=5h

Then it is proved that the binary relation < is a partial order relation on R as follows:
the reflective law a < a follows the idempotent law a + a = a. The transitive law that
a<bib<e—a< cisproved as follows: add ¢ to both sides of the equation b= a + b
and then apply the equation ¢ = b+ ¢, then we obtain the equation ¢ = a + ¢, which
concludes the transitive law, The anti-symmetric law, i.e. a < bA b £ a=2a = b, follows
directly from the commutative law of the record algebra. So we have the proposition:

8



Proposition 2 Let B be a G-record algebra and < the binary relation on R defined by
a<bh & a+b=05b Then (R, <) iz a partial order structure,

Let 5 be a subset of a G-record algebra R. We write [ | § for the supremum of & with
respect to <. Also we call it the sum of §. A non empty subsel § of R is consistent if
there exists the sum for any two elements of §.

Definition & A standard G-record algebra K over M is a G record algebra over M such
that the following hold.
(1) au+ 3vis defined for any u,v € R whenever a £ 3.

(2} For each u £ R there exist aset # C (7 and a family {r, € {¢} UM U X},en such

that u = | J{az, lac H}.
|

Remark The above H is not always an anti-chain, where an anti—chain is a subset H of
(' such that every distinct two elements in H are incomparable in &, For example define
a (G, M)-PTT ¢ by
¢ 3 {a" | n > 0}

where a € G, a # . The PTT t satisfies the constraint = M ar with ¢ = f and has an
exactly one branch at every node. {a” | n > 0} is not an anti-chain. However it is clear
that if t = | J{az, | @ € H) for some H C G and family {r,}.cq then H C {a" | n > 0}
and hence H can not be an anti—chain.

A subset B of R is a (-basis if each » € R is the sum of some subset 5, of G[B], i.e.

z = |5, where G[B] & {gy | y ¢ BU {c}.g € G}. Also we say R is generated over B
when B is a G-basis of K.

Definition 10 Let M be a merge system. R is a G-record algebra over (M, ) if the
following hold.

{1} oo M — R is a merge homomorphism.
(2) @l M) is a G-basis of R.

{3) Every element of @ M) is atomic,
(]

It is clear that condition {3) is equivalent both to that if & £ ¢ then ar @ (M) for any
r & R and to that zfo is not defined for any r € M and o € G. The injection ¢ may be
implicit when the context is clear,

Definition 11 R is complete if every consistent subset of # has a sum and the sum
operation is commutative with both the left and right action of G, Le.

LISl <= &5 is consistent.
ar| <= rl.
e(lJ5) =~ |as|se S}h
USia = Uisfalse S sfal).

0

We define a U b %' |LHe,b}. In the rest of the paper we assume every G-record algebra is

complete,

Y



Proposition 3 If B is a G-record algebra then the following hold in R, where a, b€ R.
(1) a+b=aub
(2) aubl=a] Ab].

Proof (1) Suppose first a + b). We show aUb| and a+b=aUb. As a + b| it follows
thata <a+4+band b < a+b Suppose r € Rand a < r and b < z. Then by definition of
< it follows that # = a + = and z = b + z, whence

r=r+r=(a+z)+i{b+z)=a+b+r

ie. a+ b < r. Therefore by definition of a U b it follows a + b= e U b.

In the second case suppose a Ui bl. By definition of U it follows that @ < auU b and
b < allh. So by definition of < it follows that a + @' = aUband b+ ¥ = a U b for some
b e R Asaublandaub=allb+alibit follows that {a + a') 4+ (b + ¥)]. By the
commutativity law it follows that (a + &)+ (a’ + §')]. Hence by the partiality axiom for
+ it follows that a + b]. Therefore from the first case above we get a+b=aUb.

(2) Suppose a| ]b. Then it follows from (1) that @ + b|. By the partiality axiom of +
we get | and b). o

Proposition 4 ria Ub) = aa Ll ab,

Proof Applving the left action o on both sides of a Ub =~ a+ b, ala Ub) = aa U ab
follows the distributive law between o and +. O

Proposition 5 Let R be a complete G-record algebra. Then if §,5° C R then the follow-
g holds: | |5+ S =|/SuS"

Proof Clearly |5 +[J5'] += |5 U 5] from the partiality hypothesis on | | above.
S0 we can assume that both of them have values. As S C SUS weget | |S <[5 5
Similarly we get | |5 < |50 5. Hence we get | J 5+ ]5 <|JSuUS'. For the converse,
as u < | |5 45 for any element u in U S weget | JSUS' <[5+ 5" o

Proposition 6 Let § be a consistent subset of a (complete ) (G-record algebra R. If 5 =
IS A e A} then | |5 =Sy Ae A

Proof As S5, C 5 we get ]S, < |5, Hence [{JS5: | A € A} £ 5. For the
converse, as every r £ 5 is an element of §y, for some Ay, we get + < | |5,,. Hence we
get x < | J{[JSy| A& A} Therefore ||S < {5y | A€ A). 8]

2.2 Partially Tagged Trees

In this section we introduce a domain of partially tagged trees (PTT) as a canonical record
algebra. A PTT is a kind of unordered possibly nonwellfounded trees which is tagged only
at some of leaf nodes. The set of PTTs will be characterized to be a complete [ree record
algebra with some additional conditions.

Lel M be a sel of tags. Substructure of tags are left unanalysed. Let G be a feature
monoid with the unit .

Definition 12 A tree T over (7 is a non empty subset of ¢ which is closed under prefixes,
ie. ifadeTthena e T, (W
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Figure 1: The left action by & on 17 o’

Sfa

Figure 2: 5] .

The singleton {} is the unit tree. By definition the unit tree is the minimum tree over
7. As we have assumed that every feature monoid is a tree the set [y e T |y < 2} s
totally ordered with < for any 5 € T, Clearly if Ty and T3 are trees then Ty U Ty is a tree.
Also Ty N T5 is a tree. Moreover the class of trees over (7 is closed under both of the set
theoretical union and intersection of an arbitrary family of trees.

Let ¢ and T be a feature and tree, respectively, By oT we mean the smallest tree
which has all features o' for any a' € T, (See fignre 1.} For instance let (7 = L* and
T = {e.(b).{c}. (e, d)} with L = {a,b.c,d}. Then aT = {&, {a}, {a,b), a,c},{a,c,d}}.

Let § be a set of features. By 5 e we mean the maximum tree 5/ such that a8 C 5.
By definition of an tree 5§ is a tree whenever it exists, For a tree 5 5fa is a subtree of
5. (Bee figure 2.

3 is called a direct successorofl o T if & < 3, & # 3 and there is no ¥ € T such that
er < < F. A feature as a node of a tree may have infinite number of direct successors. A
feature o of a tree T is a leaf if o has no successor in T'. We write leaf{T') for the set of
leaves., A tag function is a partial function from lea f{7T) into M. In particular the empty
function @ is a tag function.

Definition 13 Apartially fagged tree (PTT) is an ordered pair (T, f) of a tree T and a
tag function of T {See Figure 3.) m|

The unit PTT, denoted by ¢, is the ordered pair of the unit tree and the empty function
o
€= H.‘-}! n”
Civen a PTT t = (T, f)v € M is the tag at v in 2 if flee) =v. We call PTTs a (G, M)-
PTT when the feature monoid (7 and the set M of tags should be explicit. Now for a
feature a we define left actions al (= a - ) and right actions {fo also on PTTs. Let
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White circles n with-
out taE::r, wh ?r:_ blaﬁ ones

with tags.
Figure 3: A partially tagged tree.

t = (T, f)beaPTT, For a feature o we define at = [nT f*), where f“ is a tag function
of T such that dom(f*) = {ey | v € dom(f)} and f*(ay) = f(7) for 7 € dom{ f). For
features o in T the right (partial} action is defined by the following equations:

tfe ' (Tfa. )

where f, is a tag function of T fa defined by f,(3) = flad).

Let t = Tl-fl.':l and iy = sz _fg}l be two P17 s, 1 = {T], UT],I]. u fj} is the mt’fﬂ{‘ﬂf
t, and tp, written #; +#, iff f; U f; is a tag function of the tree T; UT;. By this definition
1, + t is undefined if there is some o € Ty 7Ty such that fi{a) and fi(a) are defined but
are not the same. Also ty + tg is undefined if there is some 3 such that fi(3) is defined
but J is not a leaf of Ty,

A set of PTTs is consistent if any two PTTs in the set have the merge. Let ¢y, = (T3, fi)
and tg = Ty, f2) be PTTs. By {3 < t3 we means that Ty € 73 and f; C fz. Let K be the
set of (G, M)-PTTs. As the set union is complete it is easily checked that the partial order
structure (R, <) is complete. Also it is proved without difficulty that the left and right
actions are commutative with the operation of taking the supremum. M can be embedded
into B by identifving each element a of M with the singleton PTT whose unique tag is
a. We denote this embedding by vt M — K. We show that the set of (G, M)} PTTs is
characterized as the most universal complete G-record algebra over M.

Proposition 7 Let M and (7 be a merge system and a feature monoid respectively. Then
there erisls a unique (R, ) such that the following hold.

(1) It is a complete and standard G -record algebra over (M, ).

(2) For any record algebra R’ and a homomorphism ' : M — R', there exists a complete
(7-homomorphism f from R into R' such that f o ¢ = ¢/, where o is the function
romposition operator.

Proof Lot M be a merge system. Let R be the set of (G,M)}-PTTs and @ an injec-
tion from M into B such that o(z) is the singleton P'I"I whose tag is z, le. @(z) =
{({e}, {le,z)})}. Tt is clear that R is a complete and standard G-record algebra over
(M.¢). As R is standard the function f' from G[p(M)] into G[y'(M)] which assigns
ay'(z) to ayz) maps consistent subsets of R to those of R'. Hence f' determines a
complete (G—record homomorphism f from R into R'. It is easy to see that f o = &',
The unigueness is & routine, (m]

{R.) in the above proposition is called a free complete G-record record algebra over M.

Corollary 8 Let R be the set of (G,M)-PT7Ts and let @ be the embedding injection
@: M = R. Then the G-tuple (#,(,+,-, [, ¢€) is a complete and standard (7 -record algebra
over M with the injection o: M — R.
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Example 4 We show a non trivial record algebra on which features operate totally from
both sides. Let & be a feature monoid and A a non empty set which has sufficient number
of elements. A7 is the set of functions from G into A. Foreach f € A% _f Ja is the function
["in AT defined by f/(3)= &f flag) for each 3 € G. We define tfo = {ffrz | f et} for
each t C AS, Also for each t C AT we define a -1 (= at) to be the largest set ¢ C A”
such that ' fo C .

Let & = {p&w{AG] G, §,A%). Then it is clear that R is a complete G"—recurd
algebra. Note that tfa, af, and ¢ Ut are defined for all 2,1’ C A a e G,ie Ris
totally defined algebra. D

Example 5 Let G, A, R be the same as in example 4. For some indexing set Il we
construct a family {Ras}men of complete G-record subalgebras Rar of R over M. In
fact T is the set of sets M C pow(AY) such that

(1) g M.

(2) freeUM,acCG anda#c then zfa g UM.

(3) Ht.t' € M and t # " then tNt' =@,
We show that [T £ 0. Let § be the set of f € A% such that the image of f is {a,b} C A
for some distinet a.b € A and f~'(a) = {c]). Let Ms = {{f}| f € 5§}. As A has at |east
two elements it follows that § # @ and hence Mg € Il. Therefore Il # @. For any M € II
let Rpyp = (Rag, (7,0, f ear) be the least complete G-record subalgebra of K such that
M C Ras. It is clear that Rps exists and is a totally defined record algebra. As epy is the
unit of Ra it follows that epr Mt = ¢ for all £ € Ryy and hence ey = | Ray. [t is clear
from the construction of Rps that in Ry the following hold.

(1) Ht.t' € M and £ # ' then it = 0.

(2) 1ot = 0 then t = .

(3) I ife =@ then t = ¥

(4) it e M, u € By, and e € G\ {¢} then t Naou= 0.

(5) T {a;},es is an anti-chain in G, and {{; | j € J} is a family of elements of K then

Majt; i€ T} #0.

For M & 11 it follows from these properties that by removing @ from Ry we get a desired
partial (7 record algebra R, aver M, where Ry = (Ha \ {0} G0 - f enr).
O

2.3 The Unification Theory

In this subsection we fix M, R, X as follows unless mentioned otherwise: K is a complete
and standard (7-record algebra over a merge system (M, +) and X is a set of parameters.
Elements of £(G, M U X, {.+./}) are called a record term. It is also called a parametric
record”. Elements of £{¢;. M U X,{-}) are called a basic record term. It is convenient to
have the left action built into the record terms. So we identify elements of £(G, M, F) up
to the following equations:

i

(af)e = o).
Exr = .

IHecord terms are called a pariially .!.pﬂ::'ﬁﬂf term (PST) in [16].



In fact we abuse the symbol £((7, M, F') for the quotient set of £{G, M, F} divided by the
least congruence relation generated by the above three equations. This convention will be
used without mentioning.

MNote that we have no syntactical counter part for ¢. Hence ¢ does not appear in any
record term. In particular ¢ is not a record term. An atomic constraint is an ordered pair
of record terms, written

pHg

where p, g are record terms.

Remark As ufo M vis semantically reduced to u ¥ aw plus w M v with w being a new
parameter we assume p.g € £(G, M U X, {., +}) without loss of generality.

A constraint is a possibly infinite set of atomic constraints, We give a set of constraint
riles in table 1. Fach rule there means a condition on constraints.

Definition 14 A constraint ¢ is clesed if ' satisfies all clauses in the constraint rule
table 1. o

Definition 15 Recalling that R is a complete and standard G-record algebra over M a
pair of v and v in E(G, M U X, {-,+,[}) is a conflict if one of the following hold.

(1) we M and v £ M but w + v is undefined in (M, +).

(2) e M and v = aw for some record term w and o € G {£}.
O

Clearly if w and v are a conflict pair then there is no assignment such that flu + »} is
defined. The set of constraint rules is designed so that every constraint C is selvable iff it
is unifiable, i.e. there is a closed and consistent extension ¢ of .

In table 1 (7 is & constraint, z € X, and o, § € (v are incomparable features appearing
in 7, and w, v, w are record terms appearing in . Note that = appearing in the restricted
transitive rule is a parameterin X,

Table |: Constraint Rules

Merge (0) ubMocCAuveEM = u+uvl.

Base auMfreClad d = uMMaucCoMrel,
Reflexive uEXUM = ubMuel,
Symmetric utlne{ — vMuedl.
Hestricted Transitive sMue(eMee = ubepe ()

Merge (1) (u+viMwe = uMWwel

Merge (2) (u+v)MweC = uMvel
Cancellation auMar e == ubkMMpe

Definition 16 A closed constrainl over B is a sel of alomic constraints satisfying the
rules on table 1. o

From the reflexive, symmetric, and restricled transitive rules on the table every closed
constraint contains an equivalence relation between parameters. However as there is
not a full transitive law the closed constraint gives no equivalence relation on £{G, M U
X, {-.+.f}) in general. The minimum closed extension is called the closure of §. Clearly
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the closure of a finite constraint § is computed effectively. A unification problem is to find
the closure. The input of the unification algorithm is a finite set ¢ of atomic constraints:

C={m N"Ilsr-*-r'i'nmfiﬂ}r

The output is the consistent closure T or ‘conflict’ when €’ has a conflict.

In the following example G = {a,b}" (a # b) and M = {1,2} is a trivial merge system.
That is, 142 is undefined and 1 +1=1,2+2 =12, Let R be a (-record algebra aver
M. Let X = {z,y} be a set of parameters. For saving the space we omit obvious atomic
constraints obtained by, for instance, the reflexive rule or the base rule. Also we make
use of the symmetric rule implicitly.

Example 6 Let () def {ax + bz M by + al}. By merge rule (1) we get ar M al and
bz b4 by. Applying the cancellation rule to the two we get z % 1 and 7 M y. Applying the
restricted transitive rule we get y ™ 1. Thus the closure of ¢y is

{az + bz b by + al,az M al be M by, z 21,204y, 1},
There is no conflict in the closure, o
Example 7 The example gives a cyclic graph.
Cs daf (™ ay + by, y Maz + br,z ™y}

Applying the restricted transitive law to parameter x we get y # ay + by. With this and
applying the restricted transitive law to y M ar + br w.r.t. y we get ar + br ¥ ay + by,
By repeating merge law (1) we get az M ay and bz 2 by. Applying the cancellation law
to cach of them we get r B y. Now no rule is applicable. The closure of €y 1s:

{z ™ ay+ by, y ™ az +br,x My,nz¥ay.br Wby, Mar + br,y ™ ay + by}.

The output of this unification means a singleton graph which has two self-loops with
features a and b. C

2.4 Satisfiability of Record Constraints

M, X, G, R are the same in the previous subsection. Recall the definition of £ {defini-
tion 2}

Definition 17 We define a function = &(G, X U M, {-.+} — pow{E(G. X U M, {-}})
inductively by the following equations:

riz) = |z} ifreMUX,
r(z+y) = wa)un(y)
rlazr) = {oy|ye ={(z)}

a
Example 8 If a.b,c € G and x,y,2 € X then m(albr + e(y + 2))) = {abz,acy,acz}. O

We abuse the 7 as m(5) def LH{m(z) | z € §}. An assignment is a partial uuction from X
into H.
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Proposition 8 If f is an assignment then there is the largest partial function h: (G, MU
X, {+.f}1) — R which satisfies the following.

re X, hiz)] = r € dom(f).
redom{f) = hizy = fiz).
rEM = hiz) = =z
= hiz+y) = hiz)+h(y).
= B{ar} =~ ahiz).
= hizfa) = hlz)fa.
Proof A proof is done by structural induction on record terms. o

We use the assignment f also for the extension h.

Definition 18 Let p be a record term in £(G,M U X, {-.+.f}). f an assignment and ¢
a record in B. Then ¢ is an instance of p with f, written

tipp
if for any az € n{p) the following hold, where r € X UM, a € G:
(1) tfal.
(2) z<tfaifz e M.
(3) flz)=tfaifz € X.

Clearly 7 :; p implies f{p)].

Example 9 ac+ad+betbd :; ax+br is a valid assertion, where a,b € G, e,d € M, c+4d|,
and flx) = c+d. O

Definition 19 f is a solution of p v g (in R)iff t ;5 p and ¢ ;4 ¢ for some record t € R.
Given a constraint ' f is a solution of O (in R)if f is a solution of each atomic constraint
in . ]

f solves w constraint if f 15 solution of the constraint. Recall that R is slandard.
Lemma 1 fletz € X, o4 € G, u,v,w € E(G,M U X, {-.+}), and f an assignment.
Then the following hold.

{1} Hfuve M and f solves u b v then u+ v|.

{2} Ifue X and [ solves z M ou then f(u) = flz)fa.

(3) If ue M and [ solves x ™ au then u < f(z)fa.

(4) If [ solves u ™ v then f solves v M u.

(&) If f solves 2 M uw and & M v then f solves uw b v,

(6) If o & 3 and [ solves cvu M Fo then [ solves both w M u and v M v,

(7) If [ solves (u 4+ v) M w then f solves u M w.

{8) If f solves (u 4 v) B w then [ solves u b v,

(8) If f solves au M av then [ solves u ™ v.

(1) If u,v @ MU X and [ solves u ™M v then there is an extension ' of f such that f'
solves both = M u and £ ™ v for some ¢ € dom{ f'}" dom{ f).
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Proof

(1}
(2)
(3)
(4)

{(5)

{6)
(7}
(8)
(9)

(10)

As f solves u 4 v there is some t € R such that u iyt and vi; t. Hence as u,v € M
we gel u < fand v < t. Hence u 4 v].

Suppose that u € X and f solves z 4 au. Then there is some ¢ € R such that
flz)=tfe =t and u=tfa. Hence flu)= flz}fa.

Suppose that uw € M and f solves x W ou. Then there is some ¢ € R such that
flzy=tfe =tand u < tfo. Hence u < f(r)fo.

It is obvious by definition that f solves u ™ v iff f solves v 4 u. The case follows
from this equivalence.

Suppose that f solves z ™ u and z W v, Then ¢ :y x, £ i u, i iy 2, &' 5 v for some
t,t' € R. Hence we get t = f(r) = t', whence t :;y u and ¢ :;y v. Hence by definition
f solves u ¥ v,

Suppose a + 3 and f solves au ™ Jv. Then t iy au and t :; v for some t € K. 5o
ffe:;uand tfo:;v. Hence f solves ubd u and v ™ v,

Suppose f solves (u+ v} M w. Thent :yu4vandt:; wiorsomet € B Ast:puto
implies § :y u f solves u M w.

Suppose [ solves (w4 v) Mw. Then t :p u+ v for somet. Ast:; v+ vimplies?:5u
and £ ;5 v f solves u M v,

Suppose f solves au M ov. Then t ;; auand t iy av for some ¢ € R, whence tfo g u
and tfor ;5 v. Hence [ solves u M v,

Suppose u,v @ M U X and f solves u M v. Let r be a new parameter not in
dom( fYUV{ujUV(w). Let f' be the extension of f such that dom{ ') = {z}Udom(f)
and f'(z) = flu)+ f(v). It is clear that [ is well-defined, f' solves both x & u and
x v, Hence [’ satisfies condition (10} in the proposition.

[

Definition 20 = is the largest ternary relation which satisfies the following clauses,
where v € X, w,vow e (GG, MUX, {4}, 0,d€ G

(1)
(2)
(4)
(4)
(5)
(6)
(7)
(8)
(9]

(10)

o

u,reE MARfEuMey = w4l
we X AR fE2Han = flu)= fizr)fo
ueEMAR fEzWMar = u< flz)fo
B fEury = R fEvHu
RfsrsrMunB fFEzsHe = R fEuMuv
adAAR fEauMiv = RfFudurR [FovHy
Rf=E(u+r)Mw = RfEudw
R fElu+uv)Muw — HfEuMuy
RfEautar = R, fEumuw
RfEumdy = R fEzrun R jfEsMy (3r € dom(f))

Proposition 10 The relation = erists.

Proof Clearly @ satisfies all clauses in definition 20. Take the union of all such relations.
Then it is clear that the union also saticfies the clanses. o

Remark As the class of complete and standard (-record algebras K can be a proper
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class even if (¥ is fixed the relation k= is a proper class relation in general.

Proposition 11 Lef p,g € £(G, M U X,{:,+}) and f an assignment such that V(p) U
V(g) C domi{ f). Then the following are equivalent.

(1) f is a solution of pM g in R.
(2} R, f' = p™ g for some extension [ of f.

Proof

{1)==(2): Suppose f is a solution of p ™ ¢ in R. Then there is the consistent closure C'
of pMg Let (" = {fuMv e |uvg XUM} and z. be a new and unique parameter for
pach ¢ € (', Let f' be the extension of f such that f(zum,) = flu)+ f(v) forutve O,
Let (" be the consistent closure of C' U J{{z. W u,z. W v} | ¢ = (u M v),c € C'} and
finally let 1 = {{R, f'.¢) | e € C"}. From lemma 1 D as a ternary relation satisfies all
defining clauses for |= in definition 20. As |= is the largest such relation we get D Ci=.

(2)==>(1): Suppose R,g = p gq. If p.g € M U X then it is clear by definition of a
solution and |= that f solves p M g. Otherwise by condition (10) in definition 20 there is
a parameter * € dom{g) such that H.g = r M p and H,g = z ¥ g. Then it follows from
conditions in definition 20 that for any u € 7(p)Un(g) R,¢ = # ™M w. As r is a parameter
and u is a basic record term it follows from the definition of | that g{z) :; u. Hence g
solves pt g in K. a

Example 10 Let 2 € X be a parameter, We show that the constraint
adl + bd2 W az + bz

has no solution, where | and 2 are used as distinct atoms. To see this suppose that a
solution f exists. Then by definition of a solution there exists # € R such that { ;; {er+bz}
and 1 ;5 {adl+ad2}. Then by definition of an instance we have tfa = f(x)and tfb = f(y).
Also adl < t follows from ¢ :; {adl+ad2}. Hence dl < tfa = f(z). Soweget 1 < f(x)fd.
Similarly we get 2 < f{r)fd. This is impossible because the sum 1 + 2 of distinct tags 1
and 2 was assumed to be undefined.

However note that the constraint adl + bd2 04 acd + bed, which is obtained by applying
substitution r — ¢3, is true in the record algebra K. So this example explains why a
restricted notion of a solution is necessary for an equivalence between satisfiability and
unifiability in our constraint language. 0

Definition 21 A record v € R is an initial segment of a basic record term u if one of the
following hold,

o r=ocand u = av, where v € E([G,M U X, {-}), e € (.
o r=y=uocwherea €&, c e M.
a

Theorem 12 (Record Solution Theorem) Every consistent closed constraint has o
sofution.

Proof Given a consistent closed constraint 5 let 5" be a minimal constraint such that
the following hold.
+ SCH.

# 5" is closed under the constraint rules on table 1,
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. Isza-yES’andybd.ﬂzES*theanaﬁzES",whereu.ﬂEG,m,y,zEMUX.

Choose & unigue new parameter, say Tpwg. for each p v g € 5 such that p.q gMuX,
Let C' be the reflexive closure of §' U U{{zm, ¥ p,Zpm; ¥ q} |pPige S\ pg ¢ MUX}
It is clear that C has the same set of solutions as 5. ' may be infinite even when & is
finite. Anyway it suffices to show that C is satisfiable. Let B = fuov|prge Cu,veE
slu)Um{v)}. Clearly B C ' We first construct a salution of B. Forz € M U X let D,
be the set of initial segments of some basic record term u such that z M u € . AsCis
consistent and closed D, has no conflict. We make a convention that D, = {e} if Dy is
empty.

We consider atomic constraints in ¢ of the form ar M y, where z,y € M U X, I
x,y € M then o must be £ and z + y| because (" is consistent. If + € X and y € M then
also & must be £. However this is a special case of the following by changing the role of
r and y.

So finally we suppose y ™ ax with y € X, r € M U X. Suppose first z € X. Now
we show that D, = D, fa, where Do denotes the set {wfa | w € D.,wfal|}. Suppose
w € D,. By definition of Ds there is some u' such that z # o’ € C and u is an initial
segment of w'. As y Moz e ', x My’ € C and C is closed under ‘unfolding’ y ™ ou'
must be in (. Hence again by definition of the [; we get u € D, fa. For the converse,
suppose u € Dy fo. Then y ¥ au’ € (7 for some u' such that eu is an initial segment of
o', So u is an initial segment of u'. As y M ar € (' after a sequence of several steps of
applying constraint rules we have z b4 o’ € C. Thus u € D;. Hence we get D, = D fe.
Let f be the assignment defined by putting f{z) = || D; for any parameters 2 of 5. As
R is a complete G record algebra over M we get f(z) = f{y}fe.

In the second case suppose = € M. As ux € Dy, we get az < |JD, = f(y) and hence
z < f(y)fe. Therefore [ is a solution of H.

We show that [ is a solution of C. Using the fact that fis a solution of B it is
a romtine to check that the set {(R.f,e) | ¢ € C} satisfies all defining clauses of |= in
definition 20. As k= is the largest such ternary relation we get {(#,f.c) | e € C} CF .
Hence by proposition L1 [ is a solution of ¢ in K. u]

As an obvious corollary of this theorem we get the equivalence hetween the unifiability
and the satisfiability.

Theorem 13 (Unification Theorem) Let p,q € £(G.MUX,{-+}). Then the follow-
ing are equivalent.

(1) p™ g is unifiable, i.e. has a consistent closure.
(3} pM g is satisfiable in H.

Let § be a constraint. It is easy to see that the closure of S is the union of the closures
of all finite sets of 5. The compactness theorem follows directly from this:

Theorem 14 (Compactness Theorem) Let O be a sel of constraints. Then © has a
solution iff every finite subset of € has u solution.

3  Unification Grammar over Records

lu this section we use K, X. (M, 4) for a complete and standard G-record algebra over
M. a set of parameters, and a merge system, respectively.
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3.1 Semantics of the Program

A program clanse over £((GG, M U X, {-,+}) is an ordered pair (p, B) of a record term p
and a finite set B of record terms. A program P is a finite set of program clauses. A
goal is a non—empty finite set of record terms. A program clause (p,{p1,....pa}) (n = 0)
is written

PPy Pue
In the case n = 0 we write
.
for the program clause (p,@) as usual. A program P is fixed throughout this section.

Example 11 The program Py below vonsists of three Horn clauses for a recursive data
type definition for list structures. L is a set of atomic features. Let R = (R, G, +,-, f,¢)
be a record algebra over M, where ¢ = L* and M is a trivial merge system. In the
program we assume that =,/ € X, a,b,nil, atom, list € M, and type,car, edr, form € L.
{1) type atom + form a.
(2} type atom + form b.

(3} type list + form (car x4 cdr ) —
type atom + form z, type list + form L
o

Definition 22 [Model] A subset M of R is a model of the given program P if for each
t € M there exists some program clause p — py,...,pn and assignment [ such that the
following hold:

(1) i

{2) For each 1 <1 < n there exists t; € M such that t; ;5 p.
O

Clearly @ is 2 model of any program. Also M and M’ are models then M U M' is a model.
Hence there exists the maximum model of P.

Definition 23 The semantics Mp of the program P is the maximum model of the pro-
gram . O

Definition 24 We define a transformation $p:pow{R) — pow{R). Given a @ T R
® ()] is the set of records t € H such that 1 :; p for some program clause {p, B) € P and
assignment f such that for any ¢ € B there is ' € @ such that ¢ :; q. 0

Example 12 &5 (5) = 5;U5; where §; = {type atom + form a,type atom + form b}
and 53 is the set of records # € R such that the following hold for some s € 5§ and an
assignment f.

(1) t:f type list + form car z + form edr [

(2} s:f type alom + form x.

(3} s:f type list + form L
Mp, is the largest fixpoint of @5,. o
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As {pow( R),C) is a complete partial ordered structure and ®p is a monotone function
w.r.t. the order it follows from the standard theorem that there is a maximum fixpoint of
&p. Also it is a routine to show that the maximum fixpoint is the maximum semantics
Mp. For more details the reader is referred to Aczel{l], in which the existence theorem of
the minimum and maximum fixpoints of continuous class functors is given in more general
setting,

Definition 25 An assignment f is an answer solution of a goal G in Mp if for each
q € (7 there exists t, € Mp snch that t, 1y ¢. o

We make a convention. Let (D, <) be a partial order structure and let f and f' be
partial functions from some set into D. [’ is an estension of f if dom( f) € dowm( f') and
fiz) < fiz) for any = € dom f).

Definition 26 A support is a consistent and closed constraint. o

Definition 27 A romputation state (state for short) is a pair (Q,E) of a goal & and
support E. 0

Definition 28 A resolution step is an ordered pair {s.¢") written as

']
& =+ 8

of two states s = (€}, ) and ' = (@', E'), where @ = {p1....,pn}, satisfying the following:
(1) There exist copies ¢ = ¢}...., gk, (1 < i < n) of program clauses such that

Q' = {g} e Qhy s or 1 5 eoes Gy}
(2) E'is the consistent closure of {py ™ g1, ... Mg} U E. o

The constraint {py M gy,.c, P ™ g} above is called the constraint associated with the
resolution step. A computation is a finite or countable sequence of states such that if s is
the successor of &' then s — s'. A success compulation is a computation I' such that T is
a countably infinite one or the goal component of the last state of I' is empty. A failure
compulation is a computation which is not a success one.

3.2 Soundness and Completeness

Given a computation T the supports appearing in [ form a monotone increasing sequence.
o the union of these supports is a support, which we call the support of T'. The support of
a finite compntation I is the support at the last state of the computation I'. A computation
for a goal Q is a computation which starts from the state (Q,9).

Theorem 15 (Soundness Theorem) Let I' be a success computation for (} and E the
support of T. Then b is solvable and every solution of E is an answer solution of (.

Proof Suppose T is a success computation for @ and let E be the support of I'. As
E is consistent and closed by the unification theorem 13 there exists a solution f of .
For every element p of @ it follows from the definitions of Mp and the computation that
f(p) € Mp. Hence as p € Q is arbitrary f is an answer solution of §. O
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Lemma 2 (Resolution Step Lemma) If an assignment [ is a solution of £ and an
answer solulion of ¢ (# @) in Mp then there emist an extension f' of f and a resvlution
step (Q,E) — (@', L") such that f' is a solution of E' and an answer solution of Q.

Proof Letp ¢ Q. As fis an answer solution of p in Mp by definition of Mp there
exists an extension f, of f and a fresh copy (hy, Dy} of a program clause such that f is
an solution of p ™ hy and an answer solution of Dy. Let @' = U{D; | p € Q} and let E
be the closure of C U E, where C = {p M hy | p € @}, As (hp, Iy} is a fresh copy the
family {f,}seq is compatible as functions. Hence there is an extension of f which satisfies
both € and E. Therefore by the unification theorem 13 E' is consistent and closed. By
definition 38 of the resolution step we get finally (@, E) — (@', E’). |

The following completeness theorem is obtained by repeating the resolution step lemma 2.

Theorem 16 (Completeness Theorem) If f is an answer solution of a goal {) then
f ertends to a solution of the support of some success computation for ().

In the rest of this section we assume that dom( f} of assignments f is large enough to
include all necessary parameters for evalnating expressions in the context. By sol{ D) we
mean the set of answer solutions of D,

Lemma 3 (Lifting Lemma) Let (Q,F) — (. E') be a resolution step. Let F e a
support such that sol{ E) C sol{ F'). Then there erisl a support F' and a resolution step
(Q,F) Q' F') such that sol{ E'} T sol{ F').

Proof Let C be the constraint associated with the resolution step (¢, F) -+ (@', E'). By
definition of an resolution step E' is the consistent closure of C' U E. Let F' be the closure
of CUF. Clearly sol( E") C sol( F') follows from sol{ E) € sol{ F'). Hence as sol{ E") is not
empty sol{ F') is not empty. Therefare F' is a support. As (), F') and {{, }'") satisfy all
defining clauses in definition 3% of the resclution step we get (@, F) — (@', F'}. o

Let I be a success computation from the state (), E). By repeating application of the
lifting lemma we have a success computation [V starting from the state (¢}, 0). Let (H, D}
and (M, 1)) be corresponding states on the two computations I' and I'". By induction on
the number of resolution steps from the initial state it is proved that [ iz the closure of

E U DV, We call T' the lifting of I,
Definition 28 A parameter z is free in a support F if x W u € E implies « = z. 0

For example in the constraint {r ™ 2.2 M ay, u 4 v} 7,y are free but z, u, v are not free,
The following theorem is a counter part of the theorem in Lloyd[14] having the same title.

Theorem 17 {Display Theorem) Let E be a support such that every solution of E is
an answer solution of i gr{.tfd . Let FLE)} be the sel Df fI'E:E paramelers appearing in F.
Then there erists a success compulation Iy from (Q,0) such that the restriction of each
solution of E to F(E) ecan extends to a solution of the support of the computation.

Proof We assume for the sake of simplicity that there are sufficiently many constants.
For each = € F(#) let ¢, be a new constant such that ¢; # cy{r # y). Let € be the
reflexive closure of {z M e | x € M}. From the assumption £’ = U E is a support.
Hence by the completeness theorem there exists a success compulation T g from (Q, £').
By the lifting lemma there exists a success computation I'g from (¢, £). Applying the
lifting lemma again to I'gr we obtain a success computation [y {rom {(Q.0). We use Xa



for the support of a computation A. By the remark above we can construct 'y and T'p
s that Ep o is the closure of E U Xp, and ErE, is the closure of € U Xpp.

lg: (€.0) -
leg: (@.E) —
Mg (Q.E) —

As EUXp, has the closure Ep . for the proof of the theorem it suffices to show that each
parameter in F( E) is free in Ep . Hence it is sufficient to show that the closure of €U X,
is a support. In fact the closure of " U X, must be a support because the closure of
C'U EUZr, is the support Er_,. o

Theorem 18 (Soundness of NAF) If there is no success computation from (Q,0) then
) has no answer solution.

Proof This is the contraposition of the soundness theorem 15 o

Theorem 19 (Completeness of NAF) [f @ has ne answer solution then there is ne
success computation from (Q.0).

Proof Thisis the contraposition of the completeness theorem 16. a

Due 1o the maximum semantics the proof of soundness and completeness of negation-
as—failure rule has become almost obvious. Infinite computations s always meaningful in
Mg, while' in the least Herbrand model infinite computations are meaningless,

3.3 DAGs as Constraints on Records

In this subsection we show a relationship between DAGs (directed acyclic graphs) used in
unification grammars/25] and record structures. This is done by giving a simple translation
from DAGs into constraints on records. 1o stead of DAGs we treat directed graphs (DGs)
as a more general class than the DAG class,

Let X, L, M be a set of nodes, atomic features, tags, respectively, Let K be a free
complete and standard & record algebra over M, where ¢ “l [ We assume without
loss of generality that X and X are disjoint to each other,

Definition 30 A directed graph (IMG) D is a 5 tuple D = (N, A, f,9.4), where N C X,
AC N« N, fis apartial function from N into M, g is a function from A to L, and s is
the roof node. a

Given a DG D = (N AL f,g.5) let (' be the least set (7 such that the following hold:
(1) If{x.y) € A and g{{r,y)) = a then ¢ May € C.
(2) If fiz)=cthen s e .

Viewing (“p as a binary relation on £(G, M U X, {-,+}) we take C'p as a constraint on G-
record algebra R over M. Thus the DG D is a constraint over the record algebra K. Let
D; = (Ni, A, fi,g0,5) (1 = 1,2) be two DGs. The graph merge of Dy and Iy is the union
of the constraint {s; M 5, }UCH, UCp,. Thus through this translation it is straightforward
to give the proposed record algebra semantics to the unification grammar. Qur semantics
covers some basic part of DAG- based unification grammar theory in Shieber[24].

The notion of structure sharing in DAG-based theory corresponds to that of sharing
parameters in constraint language (R,™). From the view point of this translation the
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Figure 4: A DAG as a constraint on records

notion of structure sharing belongs only to the constraint language. The structure sharing
is not a property of objects but just occurrences of the same parameters.

As records can be infinite or nonwellfounded they can represent more complex struc-
tures than (finite) DAGs can do, lu particular the record domain seems to be suitable for
representing and processing circular situations proposed by Harwise and Etchemendy|5]
in addition to the ordinary linguistic information processing.

3.4 Arity in Record Algebra

In this subsection we show an emhedding of a (complete} Herbrand domain into a record
algebra. This embedding allows us to use nested structures consisting of record terms
and standard terms in a wniform way. Let ¢ be a fealure monoid. A sort (of G} is a
prefix closed subset S of 7, Q.. if ad € 5 then & € 5. The arity of the sart § is defined
to be the set of minimal elements of 5% {c}. & is sorted if there is a family {5;},e7 of
sorts of (' such that & = | {S; | )€ J} and 5, M S5 = {=} for j & "

Let F be aset of function syimbols. We assume each [ € F is assigned a set arg( f) of
argurnent places. Moreover we assume arg{ f1Narg( /') = O for [ # /. GF is a [ree monoid
over | Marg(f) | f€ F}. For fe Flet § = s} U{aa  ac arg(f).a € Gr}. Clearly Gp
is sorted with {5} rep. Let Fy be the set of symbols in # which has no argument place.

Definition 31 Given a set F of function symbol Rr denotes the free complete G5 record
algebra over Py, where | Fy, +) is a trivial merge system. a
Note that it follows from proposition 7 and corollary 8 that Bp is standard.

Definition 32 Given a record r € R [z] denotes the set of records ¥ ¢ R such that
ysa. =
Definition 33 A G-record algebra R is sorted if there 15 a family {R,},er of G-record
algebras such that

(1) R=1H{R;liel}.

(2) fz € BN R, and r £ ¢ then z is atomic, where ¢ £ j.

{3) For r,y € Rif r+ y| then there is some ¢ € [ such that z,y € H;.

(4) ¥z € RWa € G3i € I [z]fal=[z]fa C R;.

O

In harmony with the introduction of sorts we add the following clause 1o the definition 15
of the conflict for the record unification theory.

Definition 34 (In addition to definition 15.) Anyv basic constraint of the form auw & dv
is o conflict, where ¢ and J belong to distinct sorts of the feature moneid G, a £ s, F £ ¢
and u, v are record terms, =
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For example fir M gy is a conflict, whereas fyr M fay is not a conflict, where fi and f;
are distinct argument places of f and g9 15 an argument place of g, provided that f #£ g.

Let F be a set of function symbols and Fy = F'\ Fy as above. Let Z be the set
of ordered pairs ({S7}ser, , SF) such that 5y C Br and Sp C Rp. We define an order
?Iat_in;: < on Z by ({S;}yer,.SF) € HS;}.FEFuSH iff S C 5 for each f € F; and
S L ;.

Definition 35 {H;} cr, and Hr are a family of sets and a set such that the ordered pair
({Rilrer,  BF)is the largest element in {2, <) which satisfies the following condition:
(1) fzec By then x = {e} U Fyor ¢ = ayzy + - + a, Ty, where {a;,--,a, } T arg{ f)
and {r,---.2,} C Rp.

(2) Rp = Uil | fe Fi}
O

Proposition 20 Given a set of function symbols there is a complete, standard and sorted
Gp-record alycbra (R, Ge,+,-, f.¢) over Fy worit. {Ry | f € Fi} satisfying defini-
tion 4.

Proof It is clear by definition. a

Let L be a set of atomic features, F' a set of function symbols, Fo = {f € F |arg(f) =
0} Lp = (J{arg(f1 | f € F}, and X a set of parameters. To introduce DCG over the
record algebras in the below we define terms over X, L, F expressing records and an
einbedding translation r between standard terms and record terms.

Definition 36 Let L and F be as the above and let P be a set. Then T(L, F, P) is the
lrast set T such that the following hold:

1y FCT,
{2) If ay,....an are features and p.....pn € T then the set {{a;.pm),....(€n,pa )} isin
T.

(3 I f € F is a function symbol of arity n < and py,...,ps € T then the form

flp.....pn)isin T.
]

An element of T(L, FLX}is called a term. Let G = (L U Lg)".

Definition 37 A translation 7 is a partial function from T(L,F, X) into &G,k U
X, {4 1) such that the following hold:

(1) Muwe Fgu X then miu) =

(2} r({lar. ), ... (Gropn)}) =ar7(pid+ -+ anT(pa), where a; € L.

(3 r(fipia.-ns Pod) = birim b4 4 byrip, ), where arg( f) = {by, -+, b, ).
a

Hr denotes the Herbrand universe over F. By (Hp,=) we mean the standard uni-
fication theory over Hp. We take the theory (g, =) as a familiar congruence closure
operation on sets of standard term equations. By (Rp,™) we mean the theory of sorted
record constraints laken as the closure operation given by table 1. Now we are at the
place to state and prove that (Rp, M) is a ‘conservative extension’ of (Hp,=).

Theorem 21 Let s and | be first order terms then the following are eguivalent.

(1) & =1 is solvable in {Hp,=).
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(2) t(s) ¥4 7(t) 15 solvable in (Rp, ™).

Proof Let C beaconstraint in { Hg,=). As the unifiability and satisfiability is equivalent
in (H,=) ([14]) and { #,%) (theorem 13), respectively, it is straightforward to show that
for any standard terms s, t the following are equivalent.

{1} € is the consistent closure of s = ¢ in (H,=)

(2) £(() is the consistent closure of v{s) M 7(t) in (R, ™).

3.5 Definite Clause Grammar over Records

As an application of record algebras we extend definite clanse grammar (DCG) over a
Herhrand universe to that over a record algebra. Let R be a G-record algebra over a
merge system M, where G is a feature monoid. A DCG is a finite set of rules of the
following form:

o=@, G M T | Pry s Pa

where p;, ¢, 7, € E(G.MUX,{-,+}),n 2 0, m 20, and X is a set of parameters. In the
same way as for programs over the record algebra K the semanties of a DCG, say D, over
F is defined to be the largest subset Mp of R such that the following hold: Any t € Mp
there exists some DCG rule p «— € | @ in D and assignment f such that the following
hold:

(1) tis an instance of p with f.
(2} f satisfies the constraint (.

(4) f has some extension [’ such that every element of  has an instance in Mp with
I
Also an operational semantics of a DCG is defined in the same way for the program

sommantics except a slight modification of definition 38 of the constraint associated with
resplution steps as follows:

Definition 38 An ordered pair (s,5') of two states s = (@, F) and &' = (@' E') is a
resolution step, written s — &', if the fullowing hold. where @ = {p1, ... }:

(1) @ = {gls.at), o]+ af, } for some fresh copies g — Cy | giyoy gf, (1 <7< n)
of rules in I,

(2} E'is the consistent closure of {py ™ g1yeyPr M gntU EVC U= 0 Oy
o

The set {p M gy, .opp M gp) U O U -2 U O, is called the constraint associaled with
ihe resolution step. The same results about soundness and completeness are obtained in
almost the same way as in the case of program semantics.

For an illustration we show a simplified interpreter for DCG and a sample DCG. Let
I be a sct of atomic features, F' a set of function symbols, Fo = {f € F | arg(f) = 8}, and
X aset of parameters. Define ' = FU{#} [or some new function symbol # & F so that
arg(#) = L. So by proposition 20 we have the sorted complete and standard G g record
algebra Ky over F) defined for F'.

Thus we can precisely say that the example below is a DCG over the record algebra
Ry and is written in &(Gp, Fy U X, {-,+}). Infix notations are used freely as in the
standard Prolog, Unit clanses (2) and (3) below are for lexical items. The equality = in
the body of (1) means the buillin constraint M. a/b is used for the ordered pair (a,b).
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Each clause r there means a grammar rule ©(r) defined by the following equations, where
7 is the translation in definition 3.4.

Ol(p.C,B)) E (r(p),7(C),™"(B)).
(C) E (rgmMr(r)|g=reC)
(B) = {r(g)| g€ B}.

(1) {cat/s, head/H}<- H={subject/H1} |
{cat/np, head/H1},
{cat/vp, head/E}.
(2) lex(jack, {cat/np, head/jack}).
(3} lex(runs, {cat/vp, head/{subject/X,
pred/run(X)}}}.

The clauses from (4) to (8) describe a simplified interpreter for the DCG grammars.

(4) parse([XIY]-Y, F)<- lex(X, F).
(58) parse(X-Y, (A, B))<-
parsa{X-Z, A},
parsae(Z-Y, B).
(6) parse(X-Y, F)<-
(Fe¢-B),
parse(X-Y, B).

The execution of the grammar looks like this:

?-parse([jack, runs]-[], F}.

F={cat/s,{head/{subject/jack, pred/run(jack)}}}.

4 Concluding Remarks

Several important relevant issues on feature structure such as complement and disjunction
feature constructors are out of place. Also set values as feature values[23] and unification
under inheritance hierarchies[27] are not considered in this paper. In the programming
language CIL{16], from which the record algebra came out, however, full first order terms
possibly with parameters are allowed to be features like brother(1) and brother(2) in

{(brother(1), John), (brother(2), Jack)}.

Also this aspect is not treated in this paper.

We Lave put a condition onto the structure of feature monoids so that they are es-
sentially the same as free monoids. It is an open problem to extend the notion of feature
monoids as wide as possible so that the intuitive notion of feature structures is still pre-
served.

A hyperset theoretical approach to feature structures is discussed to some extent in
[18], which treats the bisimulation and subsumption relations with disjunction and nega-
tion. A unification of this approach and the present work should be studied in the near
future.
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