ICOT Technical Report: TR-653

TH-633

A Shared-Memory Multiprocess or Garbage
Collector and its Evaluation for

Committed-Choice Logic Programs

by
A Tmail & E. Tick

June, 190]

@ 1991, ICOT

Mita Kokusail Bldg. 21F (03)3456-3191 ~5

I G DT 4.28 Mita 1-Chome Telex ICOT 132964
Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

A Shared-Memory Multiprocessor
Garbage Collector and its Evaluation

for Committed-Choice Logic Programs

Akira Imai Evan Tick
Institute for New Generation Dept. of Computer Science
Computer Technology University of Oregon!

(ICOT)"
Abstract

A parallel copying garbage collection algorithm for symbolic languages execut-
ing on shared-memory multiprocessors is proposed. The algorithm is an extension
of Baker's sequential algorithm with a novel method of heap allocation to pre-
vent fragmentation and facilitate load distribution during garbage collection, An
implementation of the algorithm within a concurrent logic programming system,
VPIM, has been evaluated and the results, for a wide selection of benchmarks, are
analyzed here. We show (1) how much the algorithm reduces the contention for
critical sections during garbage collection, (2) how well the load-balancing strategy
works and its expected overheads, and (3} the expected speedup achieved by the
a]gnrit.hm.

1 Introduction

Efﬁlf;icut methods of garbage collection are especially crucial for the performance of
so-called “fifth peneration™ multiprocessors. These machines are designed to execute
high-level, symbolic languages such as parallel Lisp and concurrent logic programming,.
Because these languages are based on dynamic structure creation, garbage collection
is critical for reclaiming storage during computation. Moreover, logic programming

languages are applicative, so that destructive update cannot effectively reduce garbage

“imaiticot.or. jp, 21F Mita Kokusai Bldg, 1-4-28 Mita, Minato-ku Tokyo 108, Japan
!please contact: tick@cs.uoregon.edu, Eugene OR 97403, USA (this paper is 4705 words long).

production. On top of that, the family of concurrent logic programming langnages do
not backtrack, and as a result cannot antomatically recover storage due to failed proofs.

This paper introduces a new parallel garbage collection (GC) algorithm for these
symbolic languages. Dased on Baker's sequential stop-and-copy algorithm [1], our
method is also invoked when one half of available memory has been exhausted. The
processors (PEs) suspend execution and cooperate performing GC by copying active
data objects to the other half of available memory. The innovative ideas in our algo-
rithm are the methods with which to reduce contention and distribute work among
the PEs during cooperative GC. We concentrate on shared-memory multiprocessors
because they constitute the clusters around which several high-performance machines
have been designed, specifically the Parallel Inference Machine, PIM [5].

We have chosen KL1 [12], a concurrent logic programming language based cn flat
GHC [11)], as a testbed on which to experiment with this GC algerithm. A naive
implementation of KL1 on a multiprocessor consumes memory area rapidly since KL1
has neither destructive update nor backtracking. For example, an entire array must
be copied when only a single element iz updated. As a result, GC occurs so frequently
that system performance is seriously jeopardized.

There have been several schemes proposed to deal with this excessive memory con-
sumption problem. Some examples are: incremental garbage collection, language con-
straints that force all streams to have a single consumer, static mode analysis and
abstract interpretation to uncover and reuse single-consumer streams. These schemes
are all promising, yet in general they do not preclude the necessity of periodically doing
a general garbage collection, Unless the scheme can guarantee to recover 100% of all
garbage on-the-fly, glabal GC is needed.

The purpose of this paper is to introduce a parallel, global garbage collection algo-
rithm hased on Baker’s semi-space algorithm, A complete, detailed description of the
algorithm is given. The performance characteristics of the algorithm executing with
KL1 benchmark programs is also given. These results indicate that the algorithm effec-
tively avoids critical sections, achieving parallel efficiency of 51% to 97% on eight PEs.
The paper is organized as follows. Section 2 reviews Baker's sequential GC algorithm.
Section 3 explains our parallel algorithm. Section 4 analyzes the empirical performance

characteristics of the algorithm. Conclusions are summarized in Section 5.

2 Parallel Extensions to Baker’s Algorithm

There is potential parallelism inherent in Baker's algorithm in the copying and scanning
actions, i.e., accessing 5 (scan pointer) and B (copy pointer). We limit our view to
shared-memory execution models in this paper. In this section, we develop a parallel

algorithm by stepwise refinement. This clarifies both the motivations and mechanisms

of the scheme.

2.1 How to Exploit Parallelism

A naive method of exploiting this parallelism is to allow multiple processors (PEs) to
scan successive cells at S, and copy into B. Such a scheme is bottlenecked by the PEs
vying to atomically read and increment 5 by one cell and atomically write B by many
cells. The contention would be unacceptable.

One way to alleviate this bottleneck is to create multiple heaps corresponding to the
multiple PEs. For example, this is the structure of both the Concert Multilisp [6] and
JAM Parlog [3] garbage collectors. Consider a model wherein each PE(i) is allocated
private sections of the new heap, managed with private 5; and H; pointers. Copying
from the old space could proceed in parallel with each PE copying into its private new
sections. As long as the mark operation in the old space is atomic, there will be no
erroneous duplication of cells. When copying is complete, all private sections of the new
heap are treated as a single shared heap, and the old and new heaps are exchanged.

Managing private heaps during copying presents some significant design problems:

¢ Allocating multiple heaps within the fixed space must be done with minimal loss,
i.e., fragmentation. For example, if for n PEs, each of n heaps is allocated to 1/n
of the total space, and the heaps grow nonuniformly, then some heaps will exceed
their allocation whereas other heaps will not. Thus a mechanism for dynamically

reallocating new heap space during GC is necessary.

s If a PE finishes scanning the cells in its private heap, i.e., § = B, then the PE
becomes idle. There must be a mechanism to distribute the work among the PEs

throughout the GC.

To efficiently allocate the heaps, two eriterion must he met. First, the dynamic
allacation must he invoked as infrequently as possible, because it is overhead that
does not contribute anything to the computation, Second, the allocation must not

leave unusable fragments or create a situation wherein no single fragment can hold the

next structure to be copied. Given a shared-memory model, a scheme that achieves a
balanced trade-off between these criteria, is to incrementally grow each heap in chunks.
A chunk is defined to be a unit of contiguous space, a constant HEU cells in size (HEU
= Heap Extension Unit).

We first consider a simple model, wherein each PE operates on a single heap, man-
aged by a single pair of § and B pointers. Initially, a single empty chunk is allocated for
each heap, with the S and B pairs pointing into the top (empty) element of the initial
chunk. The By pointer is a state variable pointing to the global bottom of the new
allocated space. Initially, B4, points to the entry one below the bottom-most initial
chunk. Allocation of new chunks is always performed at Bispar.

When a chunk has been completely copied into, the B pointer reaches the top of
the next chunk (possibly not its own!). At this point a new chunk must be allocated to
allow copying to continue. As mentioned, new chunks are always allocated at B jj.l,
i.e., there is only one locale for heap growth.

There are two cases of B overflowing: either it overflowed from the same chunk as 5,
or it overflowed from a discontiguous chunk. In both cases, a new chunk is allocated. In
the former case, nothing more need be done because S points into B's previous chunk,
permitting its full scan. However, in the latter case, B's previous chunk will be lost if
separated from S's by extraneous chunks (of other PEs for instance).

The pruhlc-m'ﬁf how to “link™ the discontignons areas, to allow S to freely scan
the heap, is finessed in the following manner. In fact, the discontiguous areas are not
linked at all. When a new chunk is allocated, the B’s previous chunk is simply added
to a global pool. This pool holds chunks for load distribution, to balance the garbage
collection among the PEs. Unscanned chunks in the pool are scanned by idle PEs which
resume work (see Figure 1).

We now extend the previous simple model into a more sophisticated scheme that
reduces the fragmentation caused by dividing the heap into chunks of uniform size.
Data objects (also called “structures™) come in various sizes, large and small (Section
4.4 gives a full characterization for KL1). Imprudent packing of objects into chunks
might cause Ira.gmenta.tiﬁn, leaving useless area in the bottom of chunks. To avoid
thiz problem, each object is allocated the closest quantum of 2" cells (for integer n <
log(HEU)) that will contain it. Otherwise, larger objects are allocated the smallest
multiple of HEU chunks that can contain them. When copying objects, with sizes less
than HEU, into the new heap, the following rule is observed: “All objects in a chunk
are always uniform in size.” If HEU is an integral power of two, then no portion of any

I S bottom

L N W\ 7

top [B

The shaded portions of the heap are owned by a PE(i) which manages 5 and B in
the picture. Qther portions are owned by any PE(j) where j % 1. The two chunks
shaded as */" are referenced by PEI:f:I via § and B. The other chunks belonging to
PE(i), shaded as '\’ are notf referenced. To avoid losing these, they are registered
in the global poal.

Figure 1: Chunk Management in Simple Heap Model

chunk is wasted. When allocating heap space for ob jects of size greater than one HEU,
contiguous chunks are used.

In this refined model, chunks are categorized by the size of the objects they contain.
To effectively manage this added complexity, a PE manipulates multiple {5, B} pairs
(called {5y, B1}, {52, B2}, {84, Be}y -, and {Sgpy. Bgpy)) Initially, each PE allo-
cates multiple chunks' with §; and B; set to the top of each chunk. Objects with size
HEU and greater are managed by {Sypy. Bgpy)}- Since it is impossible to initially
allocate contiguous chunks for these large structures (because their sizes are unknown
before GC), they are allocated on demand. Effectively, the pointer pairs reference sub-
heaps. We refer to the {Sgp1y, Bygy) pair, which serves much the same function as
{5, B} in Baker’s algorithm, as an overflow heap.

Note that allocating structures in this manner trades off unused space within strue-
tures vs. fragmenting space during GC. A degenerate case of allocation can waste
up to half of available memory; however, this does not happen in practice since most
structures are small. There are various implementation advantages of “knowing where
your wasted space is located,” such as facilitating the free-list management required by
incremental GC schemes,

Referring back to Figure 1, recall that shaded chunks of the heap are owned hy
PE(i) and non-shaded chunks are owned by other PEs. The chunks shaded as */, in
the extended maodel, contain ohjects of some fixed size k, and are managed with pointer
pair {5k, Bx}. Chunks shaded as *\" are either directly referenced by other pointer pairs
of PE({) (if they hold objects of size m # k), or are kept in the global pool.

"Since HED = 2™, n chunks are allocated.

In the previous algorithm, selecting an optimal HEU, the heap extension unit, is
a difficult choice. As HEU increases, ;. accesses become less frequent (which is
desirable, since contention is reduced); howaver, the average distance between S and B
(in units of chunks) decreases. This means that the chance of load balancing decreases
with increasing HEU.

One solution to this dilemma is to introduce an independent, constant size unit for
load balancing. The load distribution unit (LDU) is this predefined constant, distinct
from HEU,? enabling more frequent load balancing during GC. In general, the optimized
algorithm incorporates a new rule wherein if (B} — 57 > LDU/), then the region between
the two pointers (i.e., the region to be scanned later) is pushed onto the global pool.

This action is illustrated in Figure 2.

3 Relationship to Previously-Published Algorithms

We now compare our parallel algorithm to two previously-published garbage collectors
for Concert Multilisp [6] and JAM Parlog [3]. Both of these garbage collectors statically
divide the entire heap area by the number of PEs, and each PE copies active objects
ohto its private (new heap) area. The main difference between the two algorithms is in
their handling of remote objects, which are objects not in the private area of the old
heap.

In Halstead’s algorithm, remote ohjects are copied by the PE which first encounters
the object, which means that GC changes the “ownership” of an object. On the other
hand, in Crammond’s algorithm, remote ob jects remain remote, even after GC. This is
implemented by asking the owner to copy objects. For this purpose, an indirec! pointer
stack area is statically allocated, and a global remote object counter js maintained.

In our algorithm, we do not distinguish between remote and local cells because
automatic load distribution among PEs is implemented by the mechanisms previously
described. Therefore the distinction between remote and local cells serves no purpose.

The advantages of our algorithm, over these alternatives, are clarified by the fol-

lowing points.

Load Distribution: No dynamic load distribution mechanisms among PEs is given
in Halstead's or Crammond’s algorithms. We believe that load distribution must
be done not only during normal execution but also during GC. Otherwise, the

*We assume (HEU mod LDU) = 0,

Lou

By,

HEU__ >
S

%

B,

—

shaded portion
added to pool

Cane 1: {Sn, Bn} within same chunk. A pertion between 5y and

Bnltum—uf—pmv-wul::ﬂﬂ] is pushed into glabal paal.

S, LDU
LDU
B.

Sa

Bn

'cm 2: {5, Ba} i.';'|. different chunks. Two portions betwessn Sn

and Botiom-of-HEU([Sn), and between Bottomeof-HEU({Ey) and

Top-ol-prey-LDU(Bg) are pushed into global pool.

Figure 2: Chunk Management in Optimized Heap Model

performance of GC largely depends upon the performance of the standard sched-
uler (for user-program execution), which determines the initial load distribution
of GC.

Private Heap Overflow: Halstead comments that Concert Multilisp does exhibit
instances when a single PE exhausts its allocated heap space, requiring realloca-
tion of space from either a global poal ar another PE. He claims this is “only a
minor extension of the basic garbage collection algorithm,” however, we tend to
disagree. Our philosophy is to exploit the shared-memory model, incrementally
growing all heaps by chunks, during GC. This guarantees that fragmentation can-
not occur during GC, obviating the need to devise a fair heap reallocation policy

among PEs.

Size of Extra Spaces: Since GC is invoked when memory is full, the extra memory
space required by the algorithms should be as small as possible. In Crammond's
algorithm, whenever a PE scans a cell holding a remote pointer, a pointer to
this cell (equivalent to the value of our 5 pointer) is pushed onto the indireci-
pointer stack of the owner of the remote object, Crammond concluded (for small
benchmarks) that the space required for this stack is relatively small, less than
1% of the heap space. However, considering the worst case when all data objects
consist of all remote reference pointers, the indirect-pointer stack requires the
same size as the heap to gnarantee that GC will terminate. In our algorithm, to
guarantee the termination of GC, the global-pool stack needs only 2x (HeapSize
/[LDTU) words.

4 Ewvaluation

The parallel GC algorithm was evaluated for a large set of medium-sized benchmark
programs (from [10] and other sources), executing on VPIM, a parallel KL1 emulator.
The measurements presented in this paper were collected on a Sequent Symmetry with
16 processors, although we used at most eight. Becaunse of the parallel execution, slight
scheduling differences affect the number of GCs, reductions, suspensions, ete. Statistics
in the tables where measured on eight PEs with HEU=256 words and LDU=32 words,
unless specified otherwise.

The evaluation of all benchmarks was done with the MRB (Multiple Reference
Bit [2]) optimization enabled, facilitated by support from the VPIM system. MRB, a

method of incremental garbage collection, gives us a realistic characterization of the

8

Heap| # |#Red.|#Susp.[#Work
Benchmark!| (Kw)|GCs| x1000| x1000| x1000|comments
BestPath 192 6 384 57 165 | shortest-path problem (30x30 nodes)
Boyer 128 4 529 18 47 [tay theorem prover
Cube 128 B 291 6 139 |logical constraints (7 cubes) t
Life 128 4 353 236 101 | life game sirnulation (38x38 nodes)
MasterMind 128 &) 1525 5 4| game-playing program t
MaxFlow 128 3 40 35 85| max. flow in network (B0 nodes, 123 links)
Pascal 64| 13 285 1 5| Pascal’s triangle (row 250)
Pentomino 4 T 188 9 3|2-D puzzle packing (5x5 square,b pieces) {
Puzzle 128 19| 1254 145 1713-D puzzle packing (7 pieces) 1
SemiGroup 448| 6| 732 12 496 | caleulation of Brandt semigroup (5 tuples)
TP 64| 23 564 47 17 |theorem prover (4-Cook’s wif)
Turtles 320 1| 1178 62 202 | logical constraints (12 cards) t
Waltz . 128/ 6| 1207 19 32|3-D drawing constraints (38 nodes) {
Zebra 320 9 405 2 167 | logical constraints (extended version) {

t all solutions search

Table 1: Summary of the Benchmarks

garbage produced by the programs. Other methods of local memory reuse, as mentioned
in Section 1, differ mainly in their execution overheads, and we believe that the results
presented here are informative with respect to those schemes as well.

The benchmarks are summarized in Table 1, where “heap size” is the statically
allocated, maximum size of the old heap (which equals the size of the new hLeap), and
“work” is the average workload in thousands of cells referenced {discussed in the next
section). Note that the measurements presented here represent a single execution of
each benchmark. Averages are calculated among the muitiple GCs within a bench-
mark. In the next sections we analyze, with respect to varying LDU and HEU sizes,
various algorithm characteristics: load balancing effectiveness and overhead, speedup,
global-heap-bottom access frequency, global-pool access frequency, and active data cell
distribution by type.

4.1 Load Balancing and Speedup

To evaluate load balancing during GC, we define the workload of a PE, and the speedup

of a system, as follows:

workload(PE) = number of cells copied + number of cells scanned

Y workloads

maz(workload of PEs)

speedup =

The workload value approximates the GC time, which cannot be accurately mea-
sured becaunse it is affected by DYNIX scheduling on Symmetry [8]. Workload is mea-
sured in units of cells referenced.® Speedup is calculated assuming that the PE with
the marimum workload determines the folal GU time. Note that speedup represents
only how well load balancing is performed, and does not take into account any extra
overheads of load balancing (which are tackled separately in Section 4.3). We also
define the ideal speedup of a system:

2~ workloads
maz(workload for one object)

ideal speedup = min (. #PES)

Ideal speedup is meant to be an approximate measure of the fastest that n PEs can
perform GC. Given a perfect load distribution where 1/n of the sum of the workloads
is performed on each PE, the ideal speedup is n. This perfect distribution is rarely
achievable in practice. There is an obvious case when in fact an ideal speedup of n
cannot be achieved: when a single data object is so large that its workload is greater
than 1/n of the sum of the workloads. In this case, GC can complete only after the
workload for this object has completed. These intunitions are formulated in the above
definition.

Figure 1 summarizes the speedup metrics for the benchmarks. In general, bench-
marks with larger workloads display higher speedups. For instance, benchmarks with
workloads over 100,000 cells referenced, achieved speedups greater than six, for any
size LDU, This illustrates that the algorithm is quite practical.

In some benchmarks, such as MasterMind, Puzzle and TP, ideal speedup is limited
(2-3). As explained above, this imitation is due to inability of cooperation among
the PEs in accessing a single large structure. The biggest structure in each of the
benchmark programs is the program module. A program module is actually a first-ciass
structure and therefore subject to garbage collection (necessary for a “self-contained”
KL1 system, inclading a debugger and incremental compiler). In practice, application
programs consist of many modules, opposed to the benchmarks measured here, with
only a single module per program. Thus the limitation of ideal speedup in MasterMind

and Puzzle is peculiar to these toy programs.

MWe roughly estimate two memory accesses per cell referenced. A scan operation requires one read
(if the object is atomic) or one read and one lock-and-read otherwise. A copy operation reguires one
read and one write, per eell. Additionally, one write and one write-and-unlock is required per object.

10

f
g
LES

i

IEH R

Mastar Max Fenio Sami
Mind Flaw Pascal mina Puzzle iroup

Bast P
Paih Boyer Cuba Lila

L . -4
TP Turles Walz Zebra

Figure 3: GC Speedup on eight Symmetry PEs, HEU=256 words

In benchmarks such as Pascal and Waltz, the achieved speedup is significantly less
than the ideal speedup. These programs create many long, flat lists. When copying
guch lists, § and B are incremented at the same rate, The proposed load distribution
mechanism does not work well in this degenerate case. Our method works best for
deeper structures, so that B is incremented at a faster rate than S (especially in the
early stage of GC). In this case, ample work is uncovered and added to the global pool

for distribution.

4,2 Reducing Contention at the Global Heap Bottom

In this section we analyze the frequency with which the global heap-bottom pointer,
Biotat, is updated (for allocation of new chunks). This action is important hecause
Byiosar is shared by all the PEs, which must lock each other out of critical sections
that manage the pointer. We show that the algorithm described significantly reduces
contention for these critical sections.

The update frequency of B4, depends on the value of the heap extension unit
(HEU) and the average size of active objects, but iz not affected by the size of LDU. For
instance, in Zebra (given HEU = 256 words and LDU = 32 words), B, is updated
3,885 times within all GCs. If Byjysa were updated whenever a single object was copied
to the new heap, the value would be updated 126,761 times. Thus update frequency is
reduced by over 32 times compared to this naive update scheme,

General results for all the benchmarks are summarized in Figure 4. For 32 < LDU
< 256, we show the range of the ratio of the naive updates to the (smart) updates

11

120 T
o
100 ==
(=]
L
BO a
wpdat Lo £ L]
| REiwaS R AT 8 ? ?
- =] L]
Q |
-
=]
40 '
. 8 o 9
.
20 == g
1+
e
a } f —t e I M s ——t f i

bast boyer cube life mm max pascal panio pultie semi Ep turlie walir Tabra

Figure 4: Average Number of Updates of By5ar over all GCs (8 PEs, HEU=256 words)

made by our algorithm. Note that MasterMind achieved the [east reduction in update
frequency — only a factor of seven, significantly below that of the other benchmarks.
This can be explained by the small workloads involved. Initially, log{ HEU) chunks are
allocated par PE before GC starts. Thus MasterMind initially allocates 8 (PEs) x 8
{chunks/PE) % 8 {GCs) = 512 chunks, or 98% of all chunks allocated. In other words,
the program is doing the minimum required allocation and so reduction in updates is
limited. Excluding this benchmark, the ratios of the other programs range from 15-114,
with little effect by LDU.

4.3 Global-Pool Access Behavior

For selected benchmarks, figure 5 shows the average number of global-poal accesses
made by the benchmarks, and the average number of cells referenced (in thousands)

by the benchmarks per global-pool access. These statistics are shown with varying
LDU size. The benchmarks selected display the range of observed program behavior.
The data confirms that, except for Pascal and MasterMind, the smaller LDU, the more
chances to distribute unscanned regions, as we hypothesized. Grossly, the amount of
distribution overhead is at least two orders of magnitude below the useful GC work,
and in most cases, three orders of magnitude (this observation is made more accurate

below).
The global pool plays two roles. One is for chunk “registration” to avoid losing

12

avg # pool accesses/GOC
inormalized)

avg worklcad/pocl access

1 O0E+05 re——

—

1.00
0.80 \“\ - semi 100E04 e
e r———y e —
0.60 " = — —e—
T -== pascal e e

.40 (] fDOE*DS -F—m?:#
o———— o | -5 master e

S o
0.20 “‘x\"ﬁm . h— -

0.00 - ? Doyt 1 BOE+02 4 .
32 G4 128 256 32 B4 128 25

size of LOU [words)

size of LDU [words)

Figure 5: Accesses of the Global Pool (8 PEs, HEU=256 words)

unscanned regions, and the other is to enable load distribution among PEs. These
two roles can be separated by the introduction of a lecal peol for registration, but oot
distribution (e.g., the JAM Parlog scheduler [4]). The advantage of a local pool is
that it retains spatial locality. A disadvantage illustrated in our measurements is that
maximum-workload PEs also get unscanned regions from the global pool. If local pools
were available, the max-workload PE could conceivably fetch all work locally. However,
it is difficult to optimally determine when to contribute to the local pool and when to
contribute to the global pool. This is an area for further research.

To estimate the price of ipad balancing, consider Zebra, the benchmark that accessed
the global pool most frequenﬂy. The average workload size, per PE, is 20,900 cells
referenced (from Table 3). The average number of global-pool accesses, per PE, ranges
from 2128/8 = 266 (LDU=32) to 222/8 = 28 (LDU=256) (from Table 5). Thus on
average (for LDU=32), a PE pushes into {and pops from) the glohal pool once every
20,900/266 = T8 cells referenced. Since one cell reference requires two memory accesses
on average, and one global-pool access also requires two memory accesses, this rate is
acceptable overhead. Hence our previous estimation of at worst about two orders of
magnitude difference is justified.

Table 2 shows the speedup improvement afforded by decreasing LDU gize, with re-
spect to the associated increase in global-pool access frequency. Although not entirely
correlated, the top three speedup improvements (Waltz, MaxFlow, Boyer) correspond to

high frequency increases. Benchmarks showing speedup improvements of 8-13% corre-

13

GP Access| Speadup GP Access| Speedup
Benchmark | 32w /256w | 32w /256w || Benchmark | 32w /256w | 32w /256w
BestPath 9.2 112 | Pentomino 17.9 1.03
Boyer 16.4 1.38 Puzzle 10.6 1.01
Cube 11.0 1.13 SemiGroup 57.5 1.10
Life 8.9 1.12 TP 9.7 1.07
MasterMind 3.9 101 Turtles” 10.5 1.08
MaxFlow 21.1 1.42 Waltz 4.3 2.67
Pascal 1.6 (.96 Zebra 9.6 1.00

Table 2: Relationship Between Global-Pool Access Frequency and GC Speedup, as
LDU Increases (eight PEs, HEU=256 words)

spond to moderate frequency increases.’ The anomaly in these statistics is Pentomino,
which does not improve in speedup with successfully increasing pool-access frequency.
This might be due merely to the smaller workloads.

4.4 Active Data Characteristics

The active data characteristics of the VPIM architecture offer insights into why the
parallel garbage collection algorithm performs as it does. Figure 6 shows the frequency
of data type for each active cell during the execution of the benchmarks. The average
object size ranges from 2.1-6.6 cells, with very high variance in some cases. In general,
benchmarks achieving high-performance GC have structures with high average size and
low variance. For example, types GL and VT are large and therefore good for the load
distribution because they contain multiple pointers. However, type MD significantly
affects the variance because the size is outstandingly large compared to other structures.
Since copying of one structure is always done by a single PE, too-large structures tend
to adversely affact lnad distribution.

To illustrate these observations, we classify the benchmarks into four groups. The
bonndaries of these groups are delimited at 3.0 (average) and 1000 (variance), as shown
in Table 3. For each program, the maximum and minimum speedups are listed. In
general, GC speedup is influenced more by the variance in object size than by the

average object size.

“With the exception of SemiGroup, which has such high speedup even for LDU=256, that im-
provement is limited.

14

Tobra

waltz

iuria

p
8T E ME
puzzia O mo
ponls O a
2asca El v
B s
W=

o g e S D e | =
} : T t T 1 1

40 50 GO 70 80 40 100
Percant Object Type

VaRiable 1 word, represents unbound variable

LiSt 2 words, represents list
VecTor 1-N words, represents array
Goal 16 ar 32 words, holds goal environment with arguments

MoDwule 1-N words (usually big), program code module
MiSec 1-N words, other control, merger records

Figure 6: Active Cells Distribution by Type

abject low high
size variance variance

Cube {7.7-6.8) | Pascal (3.5-2.7)
low Life (7.2=6.3) | MaxFlow (4.1-2.9)

average | SemiGroup (7.8-7.0)

Waltz (4.4-1.6} {worst group)
BestPath (7.2-6.4) | Boyer (5.84.1)
high Turtles {7.8-7.2) | MasterMind (2.6-2.5)
average | Lebra {6.4=6.0) | Pentomine (4.3-3.3)
Puzzle (2.8-2.8)
(best group) TP (2.6-2.3)

Table 3: GC Performance Groups, Categorized by Object Size (eight PEs, HEU=256
words, LDU=32 words)

15

5 Conclusions and Future Work

This paper introduced and analyzed the performance characteristics of a parallel copy-
ing garbage collector on a shared-memory multiprocessor. The system we examined
is a parallel implementation of KL1, a committed-choice logic programming language.
The host multiprocessor was a Sequent Symmetry, with our GC experiments limited
to eight of the available processors.

The advantage of the proposed GC algorithm is that all memory accesses, except
for marking the old heap and accessing the global pool, are performed without mutual
exclusion. This avoids the necessity for costly locking when copying cells. In addition,
a load-balancing mechanism is described that is shown to be quite effective in spreading
the work among a limited number of PEs. Speedups ranging from 2.5 (MasterMind)
to 7.8 (Cube) on eight PEs were achieved by the GC algorithm for the benchmarks
studied., Accounting for limitations in ideal speedup, the parallel GC efficiency of these
benchmarks ranged from 51% (MaxFlow) to 97% (Cube). The overheads of this load
distribution method were shown to be low: Zebra, the program with the most load-
distribution traffic, accessed the global pool on average once every T8 cells referenced,
an acceptable overhead. '

Future areas of research include examining the utility of local pools, and devising
overall systems that can avoid copying program modules. An appropriate extension
of this research is to apply our algorithm to a generation-type garbage collector (e.g.,
[7, 9]). Generation-type GC is based on the lifetimes of data, and its influence on the

algorithm presented should be informative.

Acknowledgements

A. Imai's research was supported by ICOT Director, Dr. Kazuhiro Fuchi, and first re-
search laboratory chief, Dr. Kazuo Taki. E. Tick was supported by an NSF Presidential
Young Investigator award.

References

(1] H. G. Baker. List Processing in Real Time on a Serial Computer. Communications
of the ACM, 21(4):280-294, 1978.

[2] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In
Fourth International Conference on Logic Programming, pages 276-293. University

16

of Melbourne, MIT Press, May 1987,

[3] J. A. Crammond. A Garbage Collection Algorithm for Shared Memory Parallel
Processors. International Journal of Parallel Programming, 17(6):497-522, 1988,

[4] J. A. Crammond. Scheduling and Variable Assignment in the Parallel Parlog
Implementation. In North American Conference on Logic Programming, pages
642-657. Aunstin, MIT Press, October 1930,

[5] A. Goto et al. Overview of the Parallel Inference Machine Architecture (PIM). In
International Conference on Fifth Generation Computer Systems, pages 208-220,
Tokyo, November 1988, ICOT.

[6] R. H. Halstead Jr. Multilisp: A Language for Concurrent Symbelic Computa-
tion. ACM Transactions on Programming Languages and Systems, T(4):501-538,
October 1985.

[7] K. Nakajima. Piling GC: Efficient Garbage Collection for Al Languages. In IFIP
Warking Conference on Parallel Processing, pages 201-204. Pisa, North Holland,
May 1988,

[8] A. Osterhaug, editor. Guide {e Parallel Programming on Sequent Computer Sys-
tems. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1989,

[9] T. Ozawa et al. Generation Type Garbage Collection for Parallel Logic Languages.
In North American Conference on Logic Programming, pages 291-305. Austin,
MIT Press, October 1990,

[10] E. Tick. Parallel Logic Programming. Logic Programming. MIT Press, Cambridge
MA, 1991.

[11] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog:
Collected Papers, volume 1, pages 140-156. MIT Press, Cambridge MA, 1987.

[12] K. Ueda and T. Chikayama. Design of the Kernal Language for the Parallel
Inference Machine. The Computer Journal, 33(6):494-500, December 1990.

17

