ICOT Technical Report: TR-650

TR-650

Evaluation of Parallel Copying Garbage

Collection on a Shared-Memory Multiprocessor

by
A, Imai & Evan Tick

May, 1991

© 1991, 1COT

Mita Kokusai Bldg. 21F (1334503191 5

IG DT :-]f:.iilllcdu %Et:STﬂE Japan frlex 0T o6
Institute for New Generation Computer Technology

Evaluation of Parallel Copying
Garbage Collection on a
Shared-Memory Multiprocessor

Akira Imai Evan Tick
Institute for New Generation Depi. of Computer Science
Computer Technology University of Oregon'

(TCOT)*
Abstract

A parallel copying garbage collection algorithm for symbolic languages execul-
ing on shared-memory multiprocessors is proposed. The algorithm is an extension
of Baker's sequential algorithm with a novel method of heap allecation to pre-
vent fragmentation and facilitate load distribution during garbage collection. An
implementation of the algorithm within a concurrent lugic programming system,
VPIM, has been evaluated and the results, [or a wide selection of benchmarks, are
analyzed here. We show (1) how much the algorithin reduces the contention for
critical sections during garbage collection, (2) how well the load-halancing strategy
works and its expected overheads, sud (3) the expected speedup achieved by the
algorithm.

KEYWORDS: garbage collection, multiprocessing, fragmentation, load distribution,
logic programming,

1 Introduction

Efficient methods of garbage colleclion are especially crucial for the performance of
so-called “fifth generation™ multiprocessors. These machines are designed to execute
high-level, symbolic languages such as parallel Lisp and concurrent logic programming.
Because these langnages are hased on dynamic structure creation, garbage collection

*imaificot.or. jp, 211 Mita Kokusai Bldg, 1-4-28 Mita, Minaio-kn Tokyo 108, Japan
Tticl:llcs.uurngcm.edu, Eugene OR 97403, USA

1

is critical for reclaiming storage during computation. Maoreover, logic programming
Janguages are applicative, so that destructive npdate cannot effectively reduce garbage
production. On top of that, the family of conenrrent logic programming languages do
not backtrack, and as a result cannot antomatically recover storage due to failed proofs.

This article introduces a new parallel garbage collection (GC) algorithin for these
symbolic languages. Based on Baker’s sequential stop-and-copy algorithm [1], our
method is also invoked when ome half of available memory has been exhausted. The
processors (PEs) suspend execution and cooperale performing GC by copying active
data objects to the other half of available memory. The innovative ideas in our algo-
fithm are the methods with which to reduce contention and distribute work among
the PEs during cooperative GC. We concentrate on shared memory multiprocessors
because they constitute the clusters around which several high-performance machines
have been designed (e.g., PIM [5] and DASH [7]).

We have chosen KL1 [17], a concurrent logic programming language based on flat
GHC [16], as a testbed on which to experiment with this GC algorithm. A naive
implementation of KL1 on & multiprocessor consumes memory area rapidly since KI1
has neither destructive updale nor backtracking. lor example, an entire array must
be copied when only a single element is updated. As a result, GC occurs so frequently
that system performance is serlously jeopardized.

Thers have heen several schemes proposcd to deal with this excessive memory
consumption problem. Chikayama and Kimura [2, 10] invented an incremental GC
method based on a single reference bit. Saraswat et al. [13] proposed a logic language
constrained to have single-consumer streams, thes allowing local reuse of memory.
Ueda and Morita [18] ontlined a mode-analysis technique that uncovers single-consumer
streams, also allowing reuse. Abstract interpretation is another method that can be
used, e.g., [8]. These schemes are all promising, yet in general they do not preclude
the necessity of perindically doing a general garbage collection, Unless the scheme can
guarantee Lo recover 100% of all garbage on-the-fly, global GC is needed.

The purpose of this article is to introduce a parallel, global garbage collection
algorithm based on Baker's semi-space algerithm. A complete, detailed description
of the algorithm is given. The performance characteristics of the algorithm executing
with KL1 benchmark programs is also given, These results indicate that the algorithn
effectively avoids critical sections, achieving parallel efliciency of 51% to 497% on eight
PFs. The article is organized as follows. Section 2 reviews Baker’s sequential GC
algorithm. Section 3 explains our parallel algorithm. Section 4 analyzes the empirical
performance characteristics of the algorithm. Conclusions are summarized in Section

h.

copy(P) 4
— I is pir into old heap —
Temp = oldheap|P];
if (Temp is forwarding address)
newheap(S] := Temp;
else |
newheap(5] := B;
Arity 1= arity{Temp),
— mark old heap with forwarding address —
oldheap[P] = B;
for (i=1;i < Arity ; i+4)
— copy contents of old element to new heap —
newheap[B4+] = oldheap[P++]:

}
1
main(} {
S = B := hase of new heap;
for (i:= 1; 1< # roots; i++)
copy(root{i});
while (5 < B) do {
P = newheap[S];
if (P points into old heap)
copy (')
5= 5+1;
}
}

Figure 1: Sketch of Baker’s Sequential Algorithm

2 Baker’s Sequential Algorithm

In this section, Baker's sequential GC algorithm is reviewed. Two heaps are allocated
although only one heap is actively nsed during program execution. When one heap is
exhausted, all of its active data objects are copied to ke other heap during GC. The
advantages of this algorithm are that it is simple and fast because only active objects
are accessed.

Figure 1 illustrates the algorithm, in C-like pseudo-code. Arrays newheap and
oldheap represent the heaps as lincar storage areas. In this and subsequent algorithms,
heaps grow from low to high addresses, described as growing “downwards.” Pointer §
represents the seanning point and B peints to the bottom of the new heap. Copying
is initiated from root pointer(s) into the old heap that are guaranteed to reference,
through some number of indirections, every active object in the prugram state. The

artive structures referenced by the root{s} are traversed and copied to B. A tag per
heap cell can be used to indicate if an old-heap cell has been copled into the new heap,
as described below.

As shown in Figure 1, the scanning function, defined in main(), examines the next
new-heap cell addressed by §. I the cell addressed by S holds a pointer to the old heap,
the referenced structure is copied 1o the new heap at B. Fach cell’ in old heap that
is copied Is overwritlen with a forwarding address, i.e., a pointer to the new heap cell
where the copy is made. This mark operation prevents any cell from being copied more
than once. This procedure continues until § meets B, when all cells in old elements
have been traversed in a breadth-first manner and copied to the new heap.

3 Parallel Extensions to Baker’s Algorithm

There is potential paralielism inherent in Baker’s algorithm in the copying and scanning
actions, i.e.. accessing 5 and H. We limit our view to shared-memory execution models
in this article. In this section, we develop a parallel algorithm by stepwise refinement.
This clarifies both the motivations and mechanisms of the scheme.

3.1 How to Exploit Parallelism

A naive method of exploiting this parallelism is to allow multiple processors (PEs) to
scan successive vells at 5, and copy into B. Such a scheme is bottlenecked by the PEs
vying to atomically read and increment 5 by one cell and atomically write B by many
cells, The contention would be unacceptable.

One way to alleviate this bottleneck is to create multiple heaps corresponding to the
multiple 'Es. For example, this is the structure of both the Concert Multilisp [6] and
JAM Parlog [3] garbage collectors. Consider a model wherein each PE(7) is allocated
private sections of the new heap, managed with private §; and B; pointers, Copying
from the old space eould proceed in parallel with each PE copying into its private new
sections. As long as the mark operation in the old space is atomic, there will be no
erroneous duplication of cells. When copying is complete, all private sections of the new
heap are treated as a single shared heap, and the old and new heaps are exchanged.

Managing private heaps during copying presents some significant design problems:

"In reality, and as specified in the algorithm. one need not overwrite forwarding addresses for argu-
mente of & complex structure. For example, when f(A, B) is copied, a forwarding address is written
over functor f, but need not be written over the two arguments of f. Note of course that if A and B
point to nested stroctures, overwriting will be done when they are copied.

o Allocating multiple heaps within the fixed space must be done with minimal loss,
i.e., fragmentation. For example, if for n PEs, each of n heaps is allocated to 1/n
of the total space, and the heaps grow nonuniformly, then some heaps will exceed
their allocation whereas other heaps will not. Thus a mechanism for dynamically

reallocating new heap space during (O is necessary.

o I[& PE finishes scanning the cells in its private heap, ie., § = B, then the PE
becomes idle. There must be & mechanism to distribute the work among the PEs

throughout the GC.

‘Io efficiently allocate the heaps, two criterion must be met, First, the dynamic
allocation must be invoked as infrequently as possible, because it is overhead that
does not contribute anything to the computation. Second, the allocation must not
leave nnusable fragments or create a situation wherein no single fragment can hold the
next structure to be copied. Given a shared-memory model, a scheme that achieves a
balanced trade-oflf between these criteria, is to incrementally grow each heap in chunks.
A chunk is defined to be a unit of contiguous space, a constant HET cells in size (HEU
= Heap Extension Unit),

We first consider a simple model, wherein each PE operates on a single heap, man-
aged by a single pair of § and B pointers. Initially, a single empty chunk is allocated for
cach heap, with the § and B pairs pointing into the top (empty) element of the initial
chunk, The Byjper pointer is a state variable pointing to the global bottom of the new
allocated space. Initially, By points to the entry one below the bottom-most initial
chunk. Allocation of new chunks is always performed at B pp.:.

When a chunk has been completely copied into, the B pointer reaches the top of
the next chunk (possibly not its own!). At this point 2 new chunk must be allocated to
allow copying to continue. As mentioned, new chunks are always allocated at M yiabals
i.2., there is only one locale for heap growth.

There are two cases of B overflowing: either it overflowed from the same chunk as 5§,
or it overfiowed from a discontiguous chunk. In both cases, a new chunk is allocated. In
the former case, nothing more need be done becanse § points into s previens chunk,
permitting its full scan. However, in the latter case, B's previous chunk will be lost if
separated from 5°s by extraneous chunks (nf other Plis for instance).

The problem of how to “link™ the discontignous areas, to allow S to freely scan
the heap, is finessed in the following manner. In fact, the discontiguous areas are not
linked at all. When a new chunk is allocated, the B's previous chunk is simply added
to a global poal. This pool holds chunks for load distribution, to balance the garbage
collection among the PEs. Unscanned chunks in the pool are scanned by idle PEs which

resume work (see Figure 2).

l S bottom

7 N N g”l'_

top

The shaded portions of the heap are owned by a PE({) which manages 5 and B in
the picture. Other portions are owned by any I'E(j) where j £ 7. The two chunks
shaded as /" are referenced by PE(i) via § and B. The other chunks belonging to
PFE(i). shaded as ‘\', are nof referenced. To avoid losing these, they are registered

in the global pool.

Figure 2: Chunk Management in Simple Heap Model

We now extend the previous simple model into a more sophisticated scheme that
reduces the fragmentation caused by dividing the heap into chunks of uniform size.
Data objects (also called “structures”) come in various sizes, large and small (Section
5.4 gives a full characterization for KL1). Imprudent packing of objects into chunks
might cause fragmentation, leaving useless area in the hottom of chunks. To avoid
this problem, each ahject is allocated the closest quantum of 2" cells (for integer n <
log(HEU)}) that will contain it. Otherwise, larger ubjects are allocated the smallest
multiple of HEU chunks that can contain them. When copying objects, with sizes less
than HEU, into the new heap, the following rule is observed: “All objects in a chunk
are always uniform in size.” If HE is an integral power of two, then no portion of any
chunk is wasted. When allocating heap space for objects of size greater than one HEU,
contiguous chunks are used.

In this refined model, chunks are categorized by the size of the objects they contain.
To effectively manage this added complexity, a PE manipulates multiple {5, B} pairs
(called {5, B}, {5z, Ba}, {54, Ba}, ..., and {SHEHFBHEU}}' Luitially, each PE allo-
cates multiple chunks® with §; and H; set to the top of each chunk. Objects with size
HEU and greater are managed by {Sypy, Bypy}- Since it is impossible to initially
allocate contiguous chunks for these large structures (because their sizes are unknown
before GC), they are allocated on demand. Effectively, the poiuter pairs reference suh-
heaps. We refer to the {Sypy, Brppy} pair, which serves much the same function as
{5, B} in Baker's algorithm, as an overflow heap.

Note that allocating structures in this manner trades off unused space within struc-
tures vs. fragmenting space during GC. A degenerate case of allocation can waste up to

*Since fEL = 2", n chunks are alloeated,

hall of available memory; however, this does not happen in practice since mosi struc-
tures are small. To further reduce unused space, the algorithms described here can be
modified to include {§3, By}, {85, Bs}, ete. heaps for small structure sizes. There are
various implementation advantages of “knowing where your wasted space is located,”
such as facilitating the free-list management required by incremental (GC schemes, e.g.,
MRB.

Referring back to Figure 2, recall that shaded chunks of the heap are owned by
PE(i) and non-shaded chunks are owned by other I'Es. The chunks shaded as '/°, in
the extended model, contain objects of some fixed size k, and are managed with pointer
pair {5, B }. Chunks shaded as *\" are either directly referenced by other pointer pairs
of PE(i) (if they hold objects of size m # k), or are kept in the global pool.

3.2 Parallel Algorithm

The parallel algorithm is summarized in detail in Fignres 3, 4, and 5. The pseudo-
code represents the program executed by a single PF during garbage collection (all
PEs follow this routine). In the code, P(var) and V{var) represent mutual exclusion
primitives ensuring that only one process can modify var within that region at any one
time,

Initially, PE(j) copies ohjects, referenced by its own GC root pointer(s), to some
heap at Bi for appropriate size k.* PE(j) then scans the allocated unit of size k {in our
design, k is a power of twa). Figure 3 specifies the top-level scan-all() procedure that
continually scans each private heap owned by PE(j). For each heap of size t that has
as-yet-unscanned cells, scan(i} is invoked. If PE(j) becomes idle, under the condition
that "i‘k{Si = Ei}, then it grabs work from the global pool, and begins scanning again.
Thus the load is distributed between PEs which have many cells to be scanned and
PTs which do not. The algorithm terminates when ¥j, k(53 = ﬂﬁL and the global pool
is empty.

Pracedure scan(n) differs from that in Baker’s algorithm, primarily because the
scanning heap and the copying heap may differ. The cell scanned at S, may point into
the ald heap to an object with a size other than n. Procedure copy(P,5,,) copies the
old structure pointed to by P, leaving a forwarding pointer at the new heap location
indicated hy S,. and returns the size (up to HEU) of the object copied. At this point,
both the B and § pointers involved must be checked for chunk overflow. If no copying |
was necessary (when the size m is cither zero or HEU), then uo B pointer can overflow.

3We do not explicitly indicate the PE superscript 7 in the psendip-code presented. It should be
understood that the eode given is executed on a single PE, which references its own private heaps, via
its own set of heap pointers. Physically, all the heaps are intertwined in shared memory.

Otherwise, By, and 5, are both checked for overflow (described in detail below).

Figure 4 lists the copy(P,5) procedure. There are three main cases buried in this
specification: (1) P points to a forwarding address, ohviating the need for copying, (2)
P points to a structure of size less than HEU, and (3} P points to a large structure of
size HEU or greater. In latter case, the overflow heap is used. In both copying cases,
the scanned cell in the new heap and the head of the structure in the old heap, are over-
written with a forwarding address (4). This forwarding address is the new-heap location
where the structure is now copied into (5).% Large structures must be allocated directly
at B, copied into a multiple of chunks. These chunks are immediately linked into
the global pool (6) with procedure add-te-pool (described below).

Figure 5 lists the procedures for checking § and B pointers for chunk overfiow, as
well as managing the global pool of chunks. Four shorthand macros are used here:

is-at-top-o-HEU(x} = ((x mod HEU) = 0}
Top-of-HEU(x) = {x div HEU) - HEU
Bottom-of-HEU(x) = (Top-of HEU(x) + HEU = 1)
Top-of-prev-HEU(x) = (Top-of-HEU(x) = HEL)
Bottom-of-prev-HEU(x) = (Top-of HEU(x) = 1)

When B, points to the top of a chunk, an overflow from the previous chunk has
occurred. Two actions are performed to service Lhis overflow. As described in the
overview given previously, first the previous chunk must be added to the pool if not
referenced by Sy, to prevent loss (7). Next, a new chunk is allocated at the global
heap bottom, and M., is reassigned there (8). Servicing an S, overflow is simpler: the
pointer is reassigned to the top of the chunk referenced by By (9). This effectively skips
over intervening chunks of size n, that have been explicitly added to the pool.

The global chunk pool is managed as a stack, Pool, that grows upwards from a base
address, Bottom-of-Pool. The top of stack pointer is PoolPtr. In our model, chunks
from all heaps share a single pool (this can be extended to multiple pools in ohvious
ways — we comment abonut single-pool utility in Section 5.3). Full chunks are added
to the pool with the intention of offloading them, at a future time, to idle PEs for
scanning. The scanuning operation is independent of the size of the objocts within the
chunk, so these offloaded chunks can be added to any of the empty heaps owned by
the idie PE. In procedure scan-all{) (Fignre 3), we arbitrarily offload the chunks to the

overflow heap.

% Fach data structure has a frue size, Tor example f(a,b,c,d) has arity five, and a power-of-two
allacated size, in this case, eight. In the psendo-code, Arity i the allocated size. The cells allocated
beyond the true size, which need never be initialized, also need not he copied or scanned by virtue of
a simple optimization. This optimization is not described in the pseudo-code.

scan-all() {
repeat {
— gean each size heap for given PE —
repeat |
Scanning = False;
for (i = HEU; 1 > 1 ;1 := ¢/2})
(S < B
scan(i);
Seanning := True,

¥ ountil mot{Scanming);

— try to get a new chunk from pool —
if { get-from-pool(Sggy, Bueu)) {
— Success getting a new chunk from pool —
— Spgy and Bygy is used to scan the chunk
} else
declare that I'm idle;
} until {all PEs idle);
- GC has terminated here —
}

seanin) {
— scan heap size n for given PE —
while (5, < By) do {
P := newheap[5.];
if { P points into old heap) {
— m is the updated size -
m = copy(P.5,);
if { {m #£ 0} and {m # HEL))
checkB({m);
1
Sp=5 + L;
checkS(n);

Figure 3: Parallel GC Algorithm: Scanning All the Heaps

copy(P,5.) {

— P is pir into old heap —

— 5. i3 current scanning point —

Fi oldheap[P]),

Termnp = oldheap[P];

if { Temp is forwarding address) { (1)
V{ oldheap[P]);
newheap[5.] = Temp;
return(d);

} else {
Arity = arity(Temp):
if { Arity < HEU)

m = Arity; (2)
else {

m = HEU; (3

F [Hfln!m-l‘}i

from := BHEU = -Bg'iu'_lluﬁ
Bgiosat = Bylebar + Arity;
v {B;MME}F

}
newheap[S.] = fy; (4)
— mark old heap with forwarding address —
oldheap[P] := Bm;
V(oldheap[P]);
for (i := 1; 1 < Arity; i+4)
— copy contents of old element to new heap —
newheap[B, ++] = oldheap[P++]; (5)
if (Arity > HEU) {
— add the chunks to pool immediately —
add-to-pool(from, Bygy); (8)
1

return(m);

Figure 4: Parallel GC Algorithm: Copying Cells

10

checkB{m) {
check il B has overflowed chunk —
if { is-at-top-of- HEU(Bn)) {
if [Top-of-HEU (5 # Top-of-prev-HEU{H.,))
add-to-pool{ Top-of-prev-HEU(B,),

Tinttom-of-prev-HEU{ By),

— allocate a new chunk at bottom of heap —

P (Byiapar);

By = ﬂ;ioi!lali

B y1opui = Bypppar + HEU;

V (Bylosai);

bl
checkS(n) |

— check if 5, has overflowed chunk —
if{n# HEU)
if [is-at-top-of-HEU{S,.})
Sn := Top-of-HEU B,);
}

add-to-pool{from, to) {
add unscanned chunk to pool (stack) —
P [PoolPir),
Pool{PoolPtr] := from;
Pool[PoclPtr+1] = to;
PoolPtr = PoolPir + 2,
V{ Poolltr);
)

get-from-pool(from, to) {
— ged unscanned chunk from pool (stack)
£ { PoolPtr),
if { PoolPtr > Dottom-of-Fool } {
to := Pool[PoclPtr — 1J;
from := Pool{PaolPtr — 2];
PoolPtr := PoolPtr — 2;
V { PoolPlr);
return(True);
} else { — pool is empty, fail in getting a chunk —
V (PoolPir);
return(False);

Figure 5: Parallel (G’ Algorithm: Load Distribution

11

(7)

(8)

1.3 Optimization for Load Balancing

In the previous algorithm, selecting an optimal HEU, the heap extension unit, is a
difficult choice. As HEU increases, B0 accesses become less frequent (which is
desirable, since contention is reduced); however, the average distance between 5 and B
(in units of chunks) decreases. This means that the chance of load balancing decreases
with increasing HIEL.

One solution to this dilemma is to introduce an independent, constant size unit for
load balancing, The load distribution unit (LDU) is this predefined constant, distinet
from HEU ® enabling more frequent load balancing during GC. In general, the optimized
algorithm incorporates a new rule in procedure checkS, wherein if fﬁ’i Si » LD,
then the region between the two pointers (i.e., the region to be scanned later) is pushed
onto the global pool. The new procedure is summarized in Figure 6.

The optimized procedure checkS is split into three conditions concerning the object
size n of the chunk referenced by the scan pointer: {1) n is not greater than LDU,
(2) if n is between LDU and HEU, and (3) n not less than HEU. The latter two cases
comprise the same function as does the unoptimized version of checkS (Figure 5).° The
first condition is where the optimization is oceurs, for two cases when 5, and B,, either
share the same chunk, or reference different chunks (see Figure 7). In the former case,
all the integral LDUs between 5, and B, can be added to the poal. In the latter case,
all the LDUs remaining in S.'s chunk, and the integral LDUs preceding H,, can be
added to the pool.

4 Relationship to Previously-Published Algorithms

We now compare our parallel algorithm to two previously-published garbage collectors
for Concert Multilisp [6] and JAM Parlog [3]. Both of these garbage collectors statically
divide the entire heap area by the number of PEs, and each PE copies active objects
onto its private (new heap) area. The main difference between the two algorithms is in
their handling of remote objects, which are objects not in the private area of the old
heap.

In Halstead’s algorithm, remote objects are copied by the PE which first encounters
the object, which means that GC changes the “ownership” of an object. On the other
hand, in Crammond’s algorithm, remote objects remain remote, even afier GC. This is

“We assume (HET mod LDU) = 0,
¢ The condition of (LDU < n « HEU) prevenis exploitation of the load balancing optimization

because of a conflicting optimization we are using to avoid extra memory references (Footnote 4). Es-
sentially, for a structure with an allocated size larger than its true size, we must prevent the distribution
of LDUs filled with enly garbage cells.

12

Top-of-LDU(x) = (x div LDU) - LDU
Bottom-of-prev-1L.D1 (%) = {Top-of-LDU{x) — 1}
is-at-top-of-LDU(x) = {(x mod LDU) = 0)

checkSin) {
— check if 5, has overllowed subchunk —
if (is-at-top-of LDU{S,)) {
f{n< LDU }{
switch (distance{Sn Ba)) {
case {within same chunk): {
add-ldu-to-pool(S, Bottom-of-prev-LDU(B,));

vase (in different chunks): {
add-ldwu-to- po-ul[:Sn ,Eul.r.uln-r:rr-HEU[Sn_:l}:
add-ldu-to-pool(Top-of- HEU(B,,),
Bottom-of-prev-LDU{ B,)};

}

1
5y = Top-of-LDU(B,);
1 else
if { LU < n< HEU)
— see Footnote § —
if (is-at-top-ol-HEU(S,))
Sn = Top-of-HEU(B,);
— else (HEU > n) do nothing —

}

add-ldu-to-poal(from, te) {
if { from # to)
add-to-pool{from, to);

Figure 6: Optimized GC Algorithm: Load Distribution When § Overflows

13

s, LDU

> [
n / i,

Case 1t {5q, By | within same chunk. A portion hetween 8, and

Rottnm-nf-prev-LIOLU{ Hy) is pushed into global poal.

Y
7

Sn LDU

oy 7

-Cuac 2: {Sn,Bn} i.n different chunks. .Tm:r portions 'b-:t'lrvlucn L.
and Battom-of-HEU(S,), and betwesn Bottom-of-HEU(H,) and
Top-of-prev-LONU(B,) are pushed into global poal.

Figure 7: Chunk Management in Oplimized Heap Model

14

implemented by asking the owner to copy objects. For this purpose, an indirect pointer
stack area is statically allocated, and a global remote object counter is maintained.

In our algorithm, we do not distinguish between remote and local cells because
automatic load distribution among PEs is implcmented by the mechanisms previously
described. Therefore the distinction between remote and local cells serves no purpose.

The advantages of our algorithm, over these alternatives, are clarified by the fol-
lowing points,

Load Distribution: No dynamic load distribution mechanisms among PEs is given
in Halstead’s or Crammond’s algorithms. We believe that load distribution must
be dane not only during normal execution but also during GC. Otherwise, the
performance of GO largely depends upon the performance of the standard sched-
uler (for user-program execution), which determines the initial load distribution
of GC.

Private Heap Overflow: Halstead comments that Concert Multilisp does exhibit
instances when a single PE exhaunsts its allocated heap space, requiring realloca-
tion of space from either a plobal pool or another PE. He claims this is "only a
minor extension of the basic garbage collection algorithm,” however, we tend to
disagree. Our philosophy is to exploit the shared-memory model, incrementally
growing all heaps by chunks, during GC. This guarantees that fragmentation can-
not occur during GC, ubviating the need to devise a fair heap reallocation policy

among, PEs.

Size of Extra Spaces: Since GC is invoked when memory is full, the extra memory
space required by the algorithms should be as small as possible, In Crammond’s
algorithm, whenever a PE scans a cell holding o remote pointer, a pointer to this
cell {eguivalent Lo the value of our § pointer) is pushed outo the indirect-pointer
stack of the owner of the remote object. It is difficult to statically determine the
necessary size of the indirect-pointer stack area. Crammond concluded {for sinall
benchmarks) that the space required for this stack is relatively small, less than
1% of the heap space. However, considering the worst case when all data objects
consist of all remote reference pointers, the indirect-pointer stack requires the
game gize as the heap to guarantee that GC will terminate. In our algorithm, to
guarantee the termination of G, the global-pool stack needs only 2x (HeapSize
J LDU) worde.

15

! Henp| # |#Red.|#Susp.

| Benchmark | (Kw)|GCs| x1000{ x1000|comments
BestPath 142 f 304 57 |shortest-path problem (30x30 nodes)
Bayer 128 4 520 18| toy theorsm prover
Cube 128| 5, 291 f | logical constraints (7 cubes) §
Life 128 4; 353 236 |life game simulation (38x38 nodes)
MasterMind 128 g 1525 5| game-playing program f
MaxFlow 128 3 BO 35 | max. flow in network (80 modes,123 links)
Pascal B4 13 286 1| Pascal’s triangle (row 250)
Pentoming fi4 7 188 9|2-D puzzle packing {5x5 square 6 pieces) t
Puzzle 12s| 19 1254 145 3-D puzzle packing (7 pieces) f
Semilroup 448 fi 732 12| ealenlation of Brandt semigroup (5 tuples)
TP 64| 23 564 47 | theorem prover {4-Cook’s wil)
Turtles 320 1| 1178 62 |logical constraints (12 cards) {
Waltz 128 6| 1207 19|3-D drawing constraints (38 nodes) 1
Zebra 320 9 405 2 |logical constraints (extended version)

t all solutions search

Table 1: Summary of the Benchmarks

5 Ewvaluation

The parallel GC algorithm was evaluated for a large set of medium-sized benchmark
programs (from [15, 14] and other sources), executing on VPIM, a parallel KL1 emula-
tor. The measurements presented in this article were collected on a Sequent Symmetry
with 16 processors, although we used at most eight. Because of the parallel execu-
tion, slight scheduling differences affect the number of GCs, reductions, suspensions,
etc. Statistics in the tables where measured on eight PEs with HEU=256 words and
LD =32 words, unless specified otherwise.

The evaluation of all benchmarks was done with the MRB (Mnultiple Reference
Bit [2]) optimization enabled, facilitated by support from the VPIM system. MRB, a
method of incremental garbage collection, gives us a realistic characterization of the
garbage produced by the programs. Other methods of local memory reuse, as mentioned
in Section 1, differ mainly in their execution overheads, and we believe that the resilts
presented here are informative with respect to those schemes as well.

The benchmarks are summarized in Table 1, where “heap size” is the statically
allocated, maximum size of the old heap (which equals the size of the new heap). Note
that the measurements presented here represent a single execution of each benchmark.
Averages are calculated among the multiple GCs within a benchmark. In the next
sections we analyze, with respect to varying LDU and HEU sizes, various algorithm

16

characteristics: load balancing effectiveness and overhead, speedup, global-heap-bottom
arcess frequency, global-pool access frequency, and active data cell distribution by type.

5.1 Load Balancing and Speedup
To evaluate load balancing during GC, we define the workload of a PE, and the speedup

of a system, as follows:

workload(PE) = number of cells copied + number of cells scanned
peed _ 3 workloads
e maz(workload of PEs)

The workload value appraximates the GO time, which cannot be accurately mea-
sured because it is affected by DYNIX scheduling on Symmetry [11]. Workload is
measured in units of cells referenced.” Speedup is caleulated assuming that the PE
with the marimurm workload determines the total GC time. Note that speedup repre-
sents only how well load balancing is performed, and does not take into account any
extra overheads of load balancing (which are tackled separately in Section 5.3). We
also define the ideal speedup of a system:

3~ workloads

ideal = min [—— T ;
ideal speedup mm(nmx{mrkluad for one object) #PEb)

Ideal speednp is meant to be an approximate measure of the fastest that n PEs can
perform GC. Given a perfect load distribution where 1/n of the sum of the workloads
iz performed on each PE, the ideal speedup is n. This perfect distribution is rarely
achievable in practice. There is an obvious case when in fact an ideal speedup of n
cannot be achieved: when a single data object is so large that its workload is greater
than 1/n of the sum of the workloads. In this case, GC can complete only after the
workload for this object has completed. These intuitions are formulated in the above
definition.

Table 2 summarizes the average workload and speedup metrics for the benchmarks.
Workload is listed as thousands of cells referenced. Awverages are arithmetic means
calculated over the GCs executed. The table shows that benchmarks with larger work-
loads display higher specdups. For instance, benchmarks with workloads over 100,000
cells referenced, achieved speedups greater than six, for any size LDU, This illustrates
that the algorithm is quite practical.

In some benchmarks, such as MasterMind, Puzzle and TP, ideal speedup is limited
{2-3). As explained above, this limitation is due to inability of cooperation among

"We roughly estimate two memory accesses per cell referenced. A scan operation requires one read
{if the ohject is atomic) or one read and one lock-and-read otherwise. A copy operation requires one
read and one write, per cell. Additionally, one write and one write-and-unlock is required per abject.

17

average speedup

worklomd sizge of LDU
Benchmark *1000| 32w | fdw | 128w | 256w | ideal
BestPath 65| 7.16 | 7.06 | 646 | 6.36 A.00
Boyer 47| BT | 583 | 4.38 | 412 2.00
Cube 130 7.74 | 767 | 735 | GBI | BROD
Life 101 _. 710 | G.BG 6.41 6.29 B.00
MasterMind 41 950 | 248 | 258 | 248 287
MaxF low 95| 406 | 384 3.50 2.86 B.0D
Pascal 5| 2.67 | 201 | 345 | 277 | 7.2
Pentomino 3| 434 | 334 | 367 | 421 | 800
Puzzle 17 2.63 | 2.84 2.08 2.61 2.92
SemiGroup 490| 7.75 | T28 | 749 | T.02 | 00
TP 17| 249 | 230 | 243 | 233 | 279
Turtles M3 TTO) T44 | T20 T.22 &.00
Waltz a2 438 | 297 | 231 164 B.O0
Zebra 167 6.27 | 6.04 6.42 6.28 E.0D

Table 2: Average Workload and Speedup (on eight Symmetry PEs, HEU=256 words)

the PEs in accessing a single large structure. The biggest strnclure in each of the
benchmark programs is the program module. A program module is actually a first-class
structure and therefore subject to garbage collection (necessary for a “seli-contained”
KL1 system, including a debugger and incremental compiler). In practice, application
programs consist of many modules, opposed to the benchmarks measured here, witk
only a single module per program. Thus the limitation of ideal speedup in MasterMind
and Puzzle is peculiar to these toy programs.

In benchmarks such as Paseal and Waltz, the achieved speedup is significantly less
than the ideal speedup. These programs create many long, flat lists, When copying
siich lists, 5 and H are incremented at the same rate. The proposed load distribution

mechanism does not work well in this degenerate case. (Jur method works best for
deeper structures, so that I is incremented at a faster rate than § (especially in the

early stage of GC). In this case, ample work is uncovered and added to the global pool
for distribution.

5.2 Reducing Contention at the Global Heap Bottom

In this section we analyze the frequency with which the global heap-bottom pointer,
B j1obal, i5 updated (for allocation of new chunks). This action is important because
Byishat is shared by all the PEs, which must lock each other out of critical sections

18

J " Size of LDU (words)

J2w fidw | 128w | 256w
Benchmark | Naive | Smart | N/S | N/S | N/ST N/S
BestPath 124 560 | 2,305 54 l] L1H a7
Boyer 22778 287 | 36| 44 3 38
Cube 158,033 | 1,686 84| 90 83 93
Life GEGET | 1326, H2| 52 02 52
MasterMind 3,427 522 7 6 G 7
MaxFlow hh 635 69 RD| Td T2 G2
Pascal 14,437 @17 16| 15 16 16
FPentomino 9,480 3051 31| 32 0 30
Puzzle JEAI [1486 26| 29 a¥ 7
SemiGroup TOR 1RSI | 6,220 114 114 114 114
TP 40455 | 1,738 | 23| 23 23 22
Turtles 28,200 66| 50 40 49 Lt
Waltz 39,476 T1G| Ab| 42 o G0
Zebra 126,761 (3885 33] a2 33 32

Table 3: Average Number of Updates of B s, over all GCs (§ PEs, HEU=256 words)

that manage the pointer. We show that the algorithm described significantly reduces
contention for these critical sections.

The update frequency of By, depends on the value of the heap extension unit
(HEU) and the average size of active ohjects, but is not affected by the size of LDV For
instance, in Zebra (given HEU = 256 words and LDU = 32 words), By,ha is updated
3,885 times within all GCs. If By, were updated whenever a single object was copied
to the new heap, the value would be updated 126,761 times. Thus update frequency is
reduced by over 32 times compared to this naive update scheme.

General results for all the benchmarks are summarized in Table 3. For each LDU
size measured, we show the ratio of the naive updates to the (smart) updates made by
our algorithm. Note that MasterMind achieved the Jeast reduction in update frequency
— only a factor of seven, significantly below that of the other benchmarks. This can be
explained by the small workloads involved. As described in section 3.2, log(HEU) initial
chunks are allocated per PE before GC starts. Thus MasterMind initially allocates 8
{PEs) x 8 (chunks/PE) x 8 (GCs) = 512 chunks, or 98% of all chunks allocated, In
other words, the program is doing the minimum required allocation and so reduction in
updates is limited. Excluding this benchmark, the ratios of the other programs range
from 15-114.

19

! avg # pool access /(GO avg workload /pool access (x1000})
Size of LDU (words) Size of LDU (words)
Benchmark | A2w fdw 128w 256w 32w Gdw 128w 256w
BestPath 42107 1396 LEX 45.8 04 1.2 2.0 36!
Bover 88 1313 243 12.8 0.2 0.4 1.9 AT
Cube GoB4)] 2418 05,3 6.5 0.2 0.6 1.4 2.5
Life 1458 G665 208 14.8 0.3 L3 3.4 6.9
MasterMind 3.4 1.a 1.1 1.0 1.1 2B 3.7 4.2
MaxFlow 2113 Th.0 37.0 IR {4 1.3 2.6 0.5
Pascal ' L& L0 L0 1.0 3.5 5.6 .6 5.6
Pentoming 134.3 6.3 210 7.5 0z 0.5 1.5 41
Puzzle ala 306 10.5 4.9 0.3 0.6 1.7 J.6
SemiGroup 1700.7 7 9108 439.3 20.6 0.3 0.5 1.1 168
|TP 444 19.8 8.8 4.6 0.3 0.8 1.9 3.7
| Turtles 14270 G40.0 314.0| 136.0 0.1 .3 0.6 1.5
Waltz TE.O 36.0 115 1.4 0.4 0.9 2.8 227
Zebra 2270f o202| as77| 2224 01| 02 0.4 0.8

Table 4: Accesses of the Global Pool (8 PEs, HEU=256 words)

5.3 Global-Pool Aecess Behavior

Table 4 shows the average number of global-pool accesses made by the benchmarks, and
the average number of cells referenced (in thousands) by the benchmarks per global-
pool access. These statistics are shown with varying LDU size. The data confirms that,
except for Pascal and MasterMind, the smaller LDU, the more chances to distribute
unscanned regions, as we hypothesized. Grossly, the amount of distribution overhead
is at least two orders of magnitude below the useful GC work, and in most cases, three
orders of magnitude (this observation is made more accurate below).

Table 5 shows the difference in the average number of global-pool accesses made by
PEs with the maximum and minimum workloads. For example in Zebra, with LDU =
32, the maximum-workload PE pushed 142 chunks into the pool, and popped 96 chunks,
on average (differential is 142-96). The minimum-workload PE pushed 293 chunks and
popped 302 chunks, on average (differential is 203—302). The general trends in Table
5 show that the global poal worked effectively to move work from heavily loaded PEs
to lightly loaded PEs, i.e., to balance the workload.

The global pool plays two roles. Oune is for chunk “registration™ to avoid losing
unscanned regions, and the other is to enable load distribution among PPEs. These
two roles can be separated by the introduction of a local pool for registration, but not
distribution (e.g., the JAM Parlog scheduler {4]). The advantage of a local pool is

[Size of LDU Size of LDU
Benchmark 32w | 64w | 128w | 250w || Benchmark 0w | Gdw | 128w | 250w
BestPath max| &5 7.0 22| 140} Pertomino max| B3| 130 53 3.0
min | —27| 48| -3.2(0.5 min |-03}-4.0| =20 -25
Boyer max| 05|13 15| L1.3| Puzzle max| 1.7{ 09| 1.1 0.8
min |-4.3] 13| L6 0.0 lmin [-1.9|-2.6| -09| —0.2
Cube max | -2.2|=1.4] =13 0.8{5emiGroup 'max| L& 48] 11.2| =34
min |[—1.7/-08) 16| 0.0 min {45538 —0.2| 1.4
Life max | 1.0 35| 250 13)TP max | 1.7 1.5] 1.4 1.2
min | 0.8] 3.5 =3.0| =0.5] min [=1.5 =05| =0.5] =.1
MasterMind [max| 10| 09| L0| L0) Turtles max | -90 70} 10[-17.0
mun | 0.1 00 00f-0.1 min | =700 10| 7.0{ —1.0
maxFlow max| 43| 20| 4.0 .50 Waltz max| L& 1.0 1.2 0.2
o ~ |min|—43] [5]/-25]-15 | min|-12|-10{-02] 0.0
Pascal max | (0] 03] 03] 0.3 Zebra max | 46.17 44.4| 43.2] 478
min | —0.2{—0.2| =0.3] -0.1 min |—8.7! -84 -5.T] —6.1

Table 5: Average Global-Pool Access Differential of max-Workload and Min-Workload
PEs (among eight PEs, HEU=256 words)

that it retains spatial localitv. A disadvantage illustrated in our measurements is that
maximum-workload PEs also get unscanned regions from the global pool. If local pools
were available, the max-workload PE could conceivably fetch all work locally. However,
it is difficult to optimally determine when to contribute to the local poal and when to
contribute fo the global pool. This is an area for further research.

To estimate the price of load balancing, consider Zebra, the benchmark that accessed
the global pool most frequently. The average workload size, per PE, is 20,500 cells
referenced (from ‘lahle 2). The average number of glohal-pool accesses, per PT, ranges
from 2128/8 = 266 (LDU=12) to 222/8 = 28 (LDU=256) (from Table 4). Thus on
average (for LID1Ui=32), a 'K pushes into (and pops fram) the global pool once every
20,900/ 266 = 78 cells referenced. Since one cell reference requires two memory accesses
on average, and one global-pool access also requires two memory accesses, this rate is
acceptable overhead., Hence our previous estimation of at worst about two orders of
magnitude difference is justified.

Table 6 shows the speedup improvement afforded by decreasing LDU size, with re-
spect to the associated increase in global pool access frequency. Although not entirely
correlated, the top three speedup improvements (Waltz, MaxFlow, Boyer) correspond to
high frequency increases. Beochmarks showing speedup improvements of 8-13% corre-

21

GP Access| Speedup
Benchmark | 32w /256w | 32w /256w
BestPath 0.2 1.12
Boyer 16.4 138
Cube 11.0 1.13
Life 8.9 1.12
MasterMind 3.4 L.o1
MaxFlow 21.1 1.42
Pascal 1.6 0.96
Pentomina 17.9 1.03
Puzzle 10.6 1.01
SemiGroup 57.3 1.10
TP 0.7 1.07
Turtles 10.5 1.08
Waltz 543 | 267
Zebra 9.8 1.00

Table f: HRelationship Between Global-Pool Access Frequency and GC Speedup, as
LDU Increases (eight PEs, HEU=256 words}

spond to moderate frequency increases.® The anomaly in these statistics is Pentomino,
which does not improve in speedup with successfully increasing pool-access frequency.
This might be due merely to the smaller workloads.

5.4 Active Data Characteristics

The active data characteristics of the VPIM architecture offer insights into why the
parallel garbage collection algorithm performs as it does. Table 7 shows the frequency
of data type for each active cell during the execution of the benchmarks. The object
gize given here is frue size, as opposed to allocated size (see Footnote 4). In general,
benchmarks achieving high-performance GC have structures with high average size and
low variance. For example, types GL and VT are large and therefore good for the load
distribution hecause they contain multiple pointers. However, type MDD significantly
affects the variance because the size is outstandingly large compared to other structures.
Since copying of one structure is always done by a single PE, too-large structures tend
to adversely affect load distribution.

To illustrate these observations, we classify the benchmarks into four groups. The
boundaries of these groups are delimited at 3.0 (average) and 1000 {variance), as shown

*With the exception of SemiGroup, which has such high speedup even for LDU=256, that im-
provement is limited,

22

Table 7: Active Cells Distribution by Type

| Object Size Object Type (%)
Benchmark | Avg| o?[VRT [LsT? [vIT3|GLM [MDT® msTe
BestPath 4.13 oeO | 113 64| 1549 446 143 75
Boyer 4 26 4:05!3' LAl 01| 690 1206 16.4 0.1
Cube 219 b E 10| 867 14 HE L. 0.0
Life .94 87 H.Ej 329 030 a0l 21 .1
MasterMind || 6.50 3488 13 215 62 168} 523 1.9
MaxFlow 268 2271 12 241 179(106 13.8] 324
FPascal 2E6(1,326 N8| 633 .8 7.6 238 1.7
Pentomino 5.78] 4639 d.3) 120 173 2232| 334) 118
Puzzle a.60| 16,786 0.9 232 146| 89§ 520; 04
SemiGroup 2.10 57 0.7 813 31, 40 ool 0o
TP .60 | 56,583 08| 2231 157 6.8 539 0.4
Turtles 3.54 172 561 329 32| 562 2.0 0.1
Waltz 2561 366 1.1 726 Ph| <116 127 0.5
i Febra 564 | ni2 0.1 6.9 BRI 0y 39 0.1
1 VaRiable 1 word, represents unbound variable
i2 LiSt 2 words, represents list
fd VecTor 1-N words, represents array
t4 Goal. 16 or 32 words, holds goal environment with arguments
t5 MoDule 1-N words {usually big), program code module
16 MiSe 1-I¥ words, other control, merger records

ol jeek low] high
sime variance . variance

Cube (7.7-6.8) | Pascal (3.5-2.7)
low |Life (7.2-6.3) | MaxFlow (4.1-2.9)
average | SemiGroup {7.8-7.0)

Walte {4.4-1.6) {worst group)

BestPath (7.2 6.4) | Boyer (5.8-4.1)
high Turtles (7.8-7.2) | MasterMind (2.6 2.5)
‘average | Zebra (6.4 6.0) | Pentomine (4.3-3.3)
i [Puzzle (2.8-2.6)
| {best group) I[TF (2.5-2.3)

Table 8: GC Performance Groups, Categorized by Object Size (eight PEs, HEU=256
wards, LDU=32 words)

in Figure 8. For each program, the maximum and minimum speedups are listed. In
general, GC speedup is influenced more by the variance in object size than by the

average object size.

5.5 Characteristics with Varying HEU

In this section we examine the relationship between the GC algorithm characteristics
and the size of the Heap Extension Unit, HELU. Table 9 shows the average speedup
(as defined in Section 5.1) with respect to varying HEU and LDU, for a subset of the
benchmarks.

We find that speedup is affected not by the size of HEU, but by the size of LDU. If
the LDU optimization were not supported, we wonld get the rightmost speedups in the
table {(emphasized). Except for Zebra, this emphasized value decreases with increasing
HEU. These results imply that the LDT optimization works effectively.

Table 10 shows the average number of updates of By per GC, with varying
HEU. At the bottom of the table is the number of updates needed for initial chunk
allocation. In general, increasing HEU reduces the frequency of 8y, access. Pascal
displays Lthe opposile characleristics because of its small workloads (i.e., most updates
are done during initialization). These results indicate that the size of HEU should be
set proportional to the average workload. Large applications will likely require tuning
HEU and LDU, using the measurements presented here for smaller benchmarks as a

guideline,

24

Size Speedup

of Size of LDU
Benchmark HEU | 32w | 64w | (28w | 236w | 512w
128w| 503] 5737 480 —| —
Boyer Zhw| 667! 583 48| 412
Gl2w| 582! 5817 588 488 3.90
128w| 312] 270| 423 —| -
‘MaxFlow |236w| 406| 3.84| 370 2.86(
512w 447| 242| 4.11| 250| 2.18
128w | 3.31 278 3.19 — —
Pascal 6w | 267 201 343 27T —
Blaw| 302 203 282] 263 2.68
128w| 7.8 776 748 —|
SemiGroup 26w | T.75] 7280 T49| T.02 —
512w| 777| 761| 753 831 6.88
128w| 6.07| 666! 6.65] —| —
Zebra 26w| 627| 604 642] 6.28) —
512w| 644] 618] 644) 649 6.40

Table 9: Average Speedup Varying HEU (eight PEs)

Number of Updates of Hiobal
Size of HEU

Benchmark 128w 26w 312w
Bayer 203 146 1n
MaxFlow 2682 213 143
Pascal 69 70 T3
SemiGroup 2140 1049 600
Zebra 713 428 244
H{for initial allocation) {56) {64) (72

Table 10: Average Number of Updates of Byia Varying HEU (LDU=32 words)

6 Conclusions and Future Work

This article introduced and analyzed the performance characteristics of a parallel copy-
ing parbage collector on a shared-memory multiprocessor. The system we examined
is a parallel implementation of KL1, a committed-choice logic programming language.
The host multiprocessor was a Sequent Symmetry, with our GC experiments Emited
to eight of the available processors.

The advantage of the proposed GC algorithm is that all memory accesses, except
for marking the old heap and accessing the global pool, are performed without mutual
exclusion. This avoids the necessity for costly locking when copying cells. In addition,
a load-balancing mechanism is described that is shown to be quite effective in spreading
the work among a limited number of PEs. Speedups ranging from 2.5 (MasterMind)
to 7.8 (Cube) on eight PEs were achieved by the GC algorithm for the benchmarks
studied. Accounting for limitations in ideal speedup, the parallel GC efficiency of these
benchmarks ranged from 51% (MaxFlew) to 97% (Cube). The overheads of this load
distribution method were shown to be low: Zebra, the program with the most load-
distribution traffic, accessed the global pool on average once every 78 cells referenced,
an acceptable overhead.

Future areas of research include examining the utility of local pools, and devising
overall systems that can avoid copying program modules. An appropriate extension
of this research is to apply our algorithm to a generation-type garbage collector (e.g.,
19, 12]). Generation-type GC is based on the lifetimes of data, and its influence on the
algorithm presented should be informative,

Acknowledgements

A. Imai's research was kindly supported by ICOT Director, Dr. Kazuhiro Fuchi, and
first research laboratory chief, Dr. Kazuo Taki. E. Tick was supported by an NSF
Presidential Young Investigator award. Thanks go to Dr. Atsuhiro Goto of NTT, Mr.
Katsuto Nakajima of Mitsubishi Electric Corp., and Dr. Keiji Hirata of ICOT, for their
advice. Mr. Mark Korsloot of the Delft University of Technology supplied us with his
KL1 version of the Boyer benchmark. Dr. lan Foster of Argonne National Laboratories
kindly gave us his Strand version of the TP benchmark. Finally, we would like to thank
the VPIM staffs of [COT and Fujitsu Social Science Laboratory Ltd.

hr

References

[

2]

[3]

[4]

(5]

(6]

[7]

(8]

[10]

H. G. Daker. List Processing in Real Time on a Serial Computer. Communications
of the ACM, 21(4): pages 280-204, 1978,

T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In
Fourth International Conference on Logic Programming, pages 276-203. University
of Melbourne, MIT Press, May 1947,

1. A. Crammond. A Garbage Collection Algorithm for Shared Memory Parallel
Processors. International Journal of Parallel Programming, 17(6): pages 487-522,
1985,

1. A. Crammoud. Scheduling and Variable Assignment in the Parallel Parlog
Implementation. In North American Conference on Logic Programming, pages
42657, Austin, MIT Press, October 1990,

A. Goto, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto. Overview of the Iar-
allel Inference Machine Architecture (PIM). In International Conference on Fifth
Generution Computer Systems, pages 208-220, Tokyo, November 1988, TCOT.

R. H. Halstead Jr. Multilisp: A Language for Concurrent Symbolic Computation.
ACM Transactions on Programrming Languages and Systerns, 7(4): pages 501-538,
October 1985,

D. Lenoski et al. ‘I'ne Directory-Based Cache Coherence Protocol for the DASH
Multiprocessor. In International Symposium on Computer Architecture, pages
148 159. Seatile, IEEE Computer Society, May 1990,

A. Mulkers, W. Winshorough, and M. Bruynaaghe. Amnalysis of Shared Data Strue-
tures for Compile-Time Garbage Collection in Logic Programs. In International
Conference on Logic Programming, pages TAT-762. Jerusalem, MIT Press, June
1990,

K. Nakajima. P’iling GC: Efficient Garbage Collection for Al Langnages. In IFIP
Working Conference vn Parallel Processing, pages 201-204. Pisa, North Holland,
May 1988,

K. Nishida, Y. Kimura, A. Matsumoto, and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architectures. In 7k International
Conference on Logic Programming, pages 83 95, Jernralem, MIT Press, June 1990.

27

1)

[12]

[13]

[14]

[15]

[16]

(7]

[18]

A. Osterhaug, editor. Guide to Parallel Programming on Sequent Computer Sys-
tems. Prentice Hall, Englewood Cliffs, NJ, 2nd edition, 1989,

T. Ozawa, A. Hosoi, and A. Hattori. Generation Type Garbage Collection for
Parallel Logic Langnages. In North American Conference on Logic Programming,
pages 281=305. Austin, MIT Press, October 1990,

V. A. Saraswat, K. Kahn, and J. Levy. Janus: A Step Towards Distributed
Constraint Programming. In North American Conference on Logic Programming,
pages 431-446. Austin, MIT Press, October 1990,

S. Takagi. A Collection of KL1 Programs — Part I. Technical Memo TM-311,
ICOT, 1-4-28 Mita, Minato-ku Tokyo 108, Japan, May 1987.

E. Tick. Parallel Logic Programming. Logic Programming. MIT Press, Cambridge
MA, 1991.

K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog:
Collected Papers, volume 1, pages 140-156, MIT Press, Cambridge MA, 1987,

K. Ueda and T. Chikayama. Design of the Kernal Language for the Parallel
Inference Machine. The Computer Journal, 33(6): pages 494-500, December 1990,

K. Ueda and M. Morita. A New Implementation Technique for Flat GHC. In In-
ternational Conference on Logic Programming, pages 3—17. Jerusalem, MIT Press,
June 1990,

