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Abstract

This paper {vcuses on parallel logic simulation. Ao ellicent logic simulation system on a large-scale
multiprocessor is targeted. The Time Warp mechanism, an optimistic approach, was experimented
and evaluated though it has been said that roliback processes costed much., The system is implemented
on the Mulli-PSI, a distributed memory multiprocessor. It includes several new ideas to enhance the
performance, such as local message scheduler, antimessage reduction mechanism and load distribution
scheme. In vur experiment, using 64 processors, about 48-fold speedup was attained and the perfor-
mance of the whole system amounted to about 60 k events/sec that is fairly good as a full software
sitnulator. Then this paper reports the empirical comparison between the Time Warp mechanism
and two conservative mechanisms: an asynchronous approach nsing null messages and a synchronons
approach. The comparizson shows that the Time Warp mechanism will be the most efficient of the
three, and could be the most suitable for large-scale multiprocessors.

1 Introduction

Logic simulation is usually treated as a typical application of discrete event simulation. The time man-
agement mechanism is at the heart of problems of paraliel discrete event simulation. The mechanisms
broadly fall into two categories: conservative approaches and optimistic approaches.

Conservative approaches are classified into two groups: synchronous mechanisms and asynchronous
mechanisms, Synchronous mechanisms need global synchronization which reduces the parallelism in-
cluded in the problem by nature. For this reason, it is hard to apply to the highly parallel processing,
especially on distributed memory multiprocessors[4]. On the other hand, the asynchronous conser-
vative mechanisms can exploit much parallelism, but they tend to deadlock when circuits have loop
structures. 5o a lot of computation power is needed to avoid it[2].

We are targeting an efficient logic simulation system on large-scale multiprocessors, most of which
will be distributed memory machines. Optimistic mechanisms are basically asynchronous, However,
they cannot deadlock, though they do spend eome computation power on rollback processes [1, 8). We
expected the optimistic mechanism that can exploit much parallelism without paying significant cost
for the rollback. That is, it could be the most suitable mechanism for logic simulation on large-scale
multiprocessors,

We have examined a parallel logic simulation system using an optimistic approach, the Time Warp
mechanism [1], on the Multi-PSI — a distributed memory multiprocessor, an experimental parallel
inference machine {3). Efficiency of the system and advantages of the Time Warp mechanism have
heen measured and evaluated.



This paper firstly overviews our system. New ideas to enhance the efficiency, such as local message
scheduler, antimessage reduction mechanism and load distribution scheme are mentioned. Secondly,
fairly good performance and speedup of the system in actual execution are reported. Finally we
compare the performance with systems based on two other ways: the asynchronous conservative
mechanism using null messages and the synchronous way. This comparison clearly shows that the
Time Warp mechanism is more efficient than the conservative ways in the problem domain of logic

simulation.

2 The Time Warp Mechanism

Event simulation can be modeled as that several objects change their states by communicating with
each other. An ohject is a state-automaton. A message has information of an event whose occurrence

time is stamped on the message (time-stamp).
Jefferson proposed the Virtual Time paradigm and its implementation, the Time Warp mecha-
nism [1]. The Time Warp mechanism consists of the local control mechanism and the global control

mechanism.

2.1 The Local Contirol Mechanism

In the Time Warp mechanism, assuming that messages might arrive chronologically, each object is
usually executing and also recording the history of messages and states. But when a message arriving
at an object in the wrong order, the object rewinds its history (this process is called rollback). Then
it executes again from the time at which the message should have arrived. If there are messages which
should not have been sent, the object also sends antimessages in order to cancel those messages.

2.2 The Global Control Mechanism

If all ohjects were to keep their full histories until the execution termination, an enormous amount of
memory would be needed and the Time Warp mechanism wounld be infeasible.
The global control mechanism works in order to get GVT (global virtual time). The time GVT

must satisfy the following two conditions.
1. GVT is not greater than the minimum of simulation time at any object.

2. GVT is not greater than the minimum of time-stamp values in the messages that have been sent
but not vet received.

After the global control mechanism renews GVT, it notifies all objects of the new GVT. As no
objects rewind their histories of the past before GVT, the memory area accupied by histories before
GVT can be released.

3 System Overview and Implementations

3.1 Hardware and Language

This system is written in a concurrent logic language KL1 [9] on the Multi-PSI. The Multi-P5I[3] is a
MIMD machine where 64 processing elements (PEs) are connected to each other by a 2-dimensional
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mesh network., A PE has a wide micro instruction architecture. The machine cycle time is 200 nsec,
The Multi-PSIis a distributed memory machine, so it costs rather a lot to access data in other PEs,
but it is also easy to scale up. In the Multi-PSI, since the cost for inter-PE communication depends
very slightly on the distance between PFs, we need ndt be sensitive to the connection topology.
KL1 supports the dynamic memory allocation mechanism and garbage collection mechanism sim-
ilar to LISP. It allows programmers to be free from troublesome memory management (e.g. history
recording area of the Time Warp mechanism).

3.2 System Specification

The system simulates combinatorial circuits and sequential circuits that have loop structures. It
handles three values: Hi, Lo, and X (unknown). A different delay time can be assigned to each gate
{non-unit delay model ).

Functions are the minimum set for the experiment, but they can be easily expanded ( handling

more signal values, ete.).

3.3 Local Message Scheduler

In our system, a gate corresponds 1o an object that is mentioned in section 2. Since there are usually
wany more objects than PEs, each PE has to take charge of several objects. In this environment, the
bigger time-stamp a message has, the more likely the message is to be rolled back. For this TEAs0n,
wessage scheduling in each PE is expected to reduce rollback frequency effectively.

Our system has a message scheduler for each PE. When a message is spawned, the message is not
sent to its destination object directly but is first sent to the scheduler which the destination ohject
belongs to. The scheduler is a kind of sorter. It sorts messages according to their time-stamps, and
sends the messages to their destination ohjects at an appropriate time,

The scheduler consists of slots that form a chain. Fach slot corresponds to each unit of time in
simulation. When the scheduler receives a message, it resisters the meseage in the slot corresponding
to the time-stamp of the messages. The current time of a scheduler is defined as the smallest time-
stamp among all the messages that are registered at that moment. The scheduler sends messages that
have the time-stamps equal to the scheduler’s current time.

3.4 Reduction of Antimessages

As long as we follow the original Time Warp mechanism proposed by Jefferson, when rollback occurs,
as many antimessages must be generated as the number of messages that need be canceled {Figure 1).
However, the number of antimessages can be reduced when we assume the following condition.

Order-preserved Condition

¢ lor any objects A and B, messages sent from A to B arrive at B in the same oder as they are
gent by A.

Under this condition, Fukui proposed that a series of messages My, My,..M,, that must be canceled
can be canceled with only one antimessage AM [7]. The basic idea is briefly deseribed below.

Assume that M,, M,, .., M, are messages and AM is an antimessage. Also assume M, Ma,.., M,
are all the messages that satisfy the following three conditions:



Receiver

@ & &
7 &

to be canceled

Sender
Object

Figure 1: Sending antimessages

Receiver

to be canceled

Figure 2: Reduction of antimessages(1)

o My, Mz, .., M, were sent before AM.
» My, My, .., M, were sent along the same channel that AM is sent along.
o My, Ma,.., M, have time-stamp values greater than or equal to AM.

Then it is clear that My, Ma, .., M,, must be canceled. No other messages must be canceled. Only
one antimessage that corresponds to the canceled message with the smallest time-stamp value need
be sent (Figure 2 ).

We improved this idea further as described below. Assume that a sender object(SO) has to cancel
messages My, Mz, .., M, that are already sent in this order, and at the same time SO knows that it
will send & new message Mpey, whose time stamp is equal to or less than that of M.

In this case, SO need not send any antimessages. Imagine that SO sends M, but no antimessage.
When a receiver object (RO) receives My, with a smaller time-stamp than My that the destination
object received just before, RO can easily notice that an invalid situation occurs. RO kuows that
My, M;,.., M, must be canceled (Figure 3).
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Figure 3: Reduction of antimessages(2)

Eventually abjects can cancel the series of messages that must be canceled with enly one antimes-
sage, or sometimes without any antimessages, by checking the time-stamp order of messages when
they arrive.

In our system, messages flow in the streams of KL1. KL1 keeps the order in which data were sent
in the stream when the data are received. As our system satisfies the Order-preserved Condition, we
adopted the above optimization for reducing antimessages.

3.5 Load Distribution Scheme

In parallel logic simulation, since the amount of work per message at an ohject is very small (the grain
size of processing is very small), overhead of inter-PE communication cannot be ignored. Besides, as
our system uses the Time Warp mechanism, rollback happens sometimes. The rollback procedure aleo
may be one of the overheads.

Since rollback is basically caused by insufficient parallelism and load imbalancing, in partitioning
process a given circuit network, we have to consider the following three points so that simulation will
be executed efficiently on a distributed memory machine.

1. Reducing inter-PE communication
2. Deriving a lot of parallelism
3. Load balancing

For getting an optimal solution, we should define an evaluation function that expresses the above
three requirements adequately. Then we have to find a partitioning solution that attains the best
function value. Since such a problem is NP hard, some heuristic algorithms are required.

We propose a new partitioning strategy named “the Cascading-Oriented Partitioning” (in short
COP). This strategy is expected to satisfy the above three points tolerably. It is also expected to
require only a little computation time.

Generally speaking, circuits have sufficient tree parallelism of the multiple fanouts of gates. And
COP intends to exploit parallelism of the multiple fanouts. Besides, this algorithm guarantees that



1. Select gates connected to input terminals of the circuit. Those gates will be the
slarl points of grouping.

2. Form the gates into a quene

9. Choose a new gate from the quene. If the gate does not belong to any clusters,
the gate is called the current gate and will be used as a start point. If the gate
belong to a cluster, then go to 3. If there is no such gate in the queue, then
Sfinish,

4. Allocate some memory urea ready to hold a new cluster
5. Assign the current gale to the memory area

6. List all gates that connect the output of the current gate, except the gates
already included in other clusters. If there is no gate listed, go to 4.

7. Pick an arbitrary gate from the gates listed in 6, and regard that gate as the

ctrrent gate.

8. Engueue the rest of the gales as new slart poinis of grouping, and go to 3.
Figure 4: Algarithm of COFP

Table 1: Targel circuits
Circuits 51494 | s5378 | 59234 | al?ﬂﬂ?_]

No. of gates 683 | 3,853 | 6,965 | 11,965 |
No. of signal lines || 1,490 | 6,588 | 10,057 | 19,983

a gate G has, at lcast, one adjacent gate in the same cluster where G is. This nature contributes
reducing inter-PE communication.

The algorithm is shown in Figure 4. The time complexity of this algorithm is apparently O(n),
where n is the number ol gates,

After the partitioning process is finished, there may be small clusters thal contain very few gates.
They should be merged into adjacent large clnsters. Conversely, extremely long cascade-formed clus-
ters should be cut into several small clusters so that they do not cause load imbalancing,

Finally clusters are assigned to PEs randomly; the only constraint is that each processor should
contain a roughly equal number of gates. This process is expected to attain load balancing.

4 Measurement Results and Discussions

We execnted several experimental simulations on the Multi-PSI. Sequential circuils s1494, 85378,
0234 and 513207 were simulated in our experiment. These circnit data were published by ISCAS’89.
The number of gates and signal lines in these circuits are written in Table 1.

In our experiments, the clock cycie was fixed to be a constant value. Signals to the other input



Table 2: Performance using the Time Warp mechanism {events /sec)
[ PEs [ s1494 [ s5378 | s9234 | s13207 |

1 1,460 | 1,410 | 1,313 | 1,246

2240 | 2,624 | 2,642 | 2.570

3,613 [ 4820 | 4715 | 54M

o702 | BTl T.605 | 10,753
16 || 7,498 | 16,024 | 11,204 | 20,385
32 | 8,857 | 25,210 | 13,855 | 36,930
fid HA80 | 40,034 | 21133 | 59,974

terminals were given randomly. They changed synchronously with the clock rising time.
In the following subsections, we firstly report the system performance and speedup. We make
some comments on them. Secondly we report the frequency and cost of rollback. Finally we report

the frequency and cost of inter-PL communication.

4.1 Performance and Speedup

Table 2 shows the system performance when the cireuits were simulated using various numbers of
PEs. Figure & indicates speedup.

Our system showed good performance and speedup in certain cases like 513207 and 55378, The
best case was about 60 k events/sec performance and about 45-fold speedup using 64 PEs.

But in the case 51494, comparatively poor performance and speedup were measured. In order to
ascertain the cause of the poor performance, we estimated the upper limit of speedup of each simulation
problem, which was the parallelism of the problem, when the same load distribution scheme and the
same input vectors were applied as used in the actual simulation. Assuming all the costs except the
message processing, that is essential to the simulation, are negligible, the limit of the problem s1494
was only about 19-fold, whereas the limit of 513207 was about 43-fold. We can conclude that the cause
of the poor performance is the lack of parallelism, and our system could show good performance as
long as target problems have sufficient parallelism. The detail is written in [10].

Besides, we notice that super-linear speedup was obtained using 2, 4, 8 and 16 PEs when the
simulation of s13207 was executed. The super-linear speedup is cansed hy the computation for releasing
unnecessary history area after GVT is renewed. The detail is also described in [10].

4.2 Rollback

In this subsection, we focus on the experiment about s13207 using 64 PEs. We measured the frequency
of rollback f, and the average depth of rewinding history d,. f, and d, are defined as follows.

frzﬁrflE

d, = H,/R

where R is the number of rollback occurrences, F is the number of real events, and H, is the number
of messages that were rolled back. In our measurement, f, was 0.0227 and f; was 7.31.
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Figure 5: Speedup

The cost for one rollback process also attracts our interest. As the computation time for rollback
t, is roughly proportional to the number of messages rewound, 1. is represented by the next equation.

t,- - krhr 1 C:r

where h, is number of messages rewound in the history, C; is a constant. Our measurement resulted
that k, was 0.027 msec, and ', was 0.367 msec.

The average cost for rollback can be calculated using fy and the above equation. It amounts to
0.564 msec. As the number of real events was 2,341,374, the average computation time for rollback
per PE was only about 0.468 sec. On the other hand, the execution time using 64 PEs was 39.040 sec.

These results shows that rollback did not happen so often, and when it did, the cost for rollback
was not seriously high. Note that rollback does not always affect the system performance badly. Only
when a PE receives a message from the PE that is farthest behind does rollback affect the performance

directly.



4.3 Inter-PE Communication

We measured [, : the frequency of inter-PE comumunication, in case of 513207, using 64 PEs. We also
measured the cost for inter-PE communication per message. [, is defined as described below.

f-: = JM:IMMI'

where M. is the number of messages that crossed the processor houndaries, Mgy is the number of all
the messages penerated in the simulation.

We got 0.256 msec as the cost for inter-PE communication per message and 0.0222 as f..

The value of f. represents that our load distribution scheme worked efficiently and the frequency
of inter-PE communication was very low., We can certainly say that the inter-PE communication cost

had only a slight effect on the system performance in this experiment,

5 Empirical Comparison between the Time Warp Mechanism and

Conservative Ways

We constructed two other logic simulation systems: one is based on an asynchronous conservative
mechanism using null messages and the other is based on a synchronous mechanism. In this section,

we report the performances of the two systems and compare them with the systemn that uses the Thne

Warp mechanism.

5.1 Asynchronous Conservative Mechanism

Asynchronous conservative mechanisius for time management have been proposed [2].

In asynchronous conservative mechanisms, deadlock is the most significant problem. Using null
messages is one solution for avoiding deadlock. But then there arises another problem that a large
number of null messages are generated.

Some mechanisms for reducing null messages have been proposed [2], For example, consecutive null
messages at a same gate input can be reduced into single null messages. We adopted this mechanism

for the experimental implementation.

5.1.1 Resnlts and Discussion

We simulated s13207 under the same conditions ( load distribution, input vectors, etc.) as in Section
4.

Table 3 shows the system performance when the circuit 813207 was simulated using various numbers
of PEs. Also the numbers of all messages and null messages are written in Table 3.

This system indicated good speedup but poor performance: using 64 PEs, only about 1.7 k
events/sec performance was obtained. Table 3 denotes that most messages generated in the simulation
were null messages. There is no doubt that too many null messages cansed the poor performance.

Generally speaking, the average number of fanouts of a gate in cireuits is more than 1. Without the
mechanism for reducing null message, once an object receives a message, new messages are generated
and sent to all the following objects. So the number of messages does increase exponentially as the

simulation proceeds,



Table 3: Performance and number of messages using an asynchronous conservative mechanism

PEs |! No. of all messages [ No. uf null Inessages ] Performance {E\&nts,ﬂ’bec I
2 94,783,302 !]2 442, 018

4 98,768,309 96,426,935 164

8 101,437,325 99,095,951 291

16 102,163,983 09,822,609 503

a2 102,589,874 100,248,500 933

fid H 104,182,606 101,841,322 1,684

Table 4: Performance vsing & synchronons mechanism

| PEs ” Performance (events /ser) |

1 9,261
2 1,210

4 | 2,307

8 13,756
16 19,748
7 18,493
64 11,320

Of course, in practice, the number of messages has an upper limit. Since the simulation time is
discrete, the number of times at which events may occar in the simulation is finite. Note that two
events never take place at the same time on the same signal line. So the limit is calculated by (Number
of signal lines) x (Simulation span).

Qur system has a mechanism for reducing null messages, but the number of messages amounted
to 104,182,696 using 64 PEs. That is about half of the limit, 199,830,000 !

From the above consideration, it is apparent that logic simulation based on the asynchronous con-
servative mechanism using null messages iz quite impractical unless an invention of such a mechanisms

that can reduce null messages dramatically.

5.2 Synchronous Conservative Mechanism

We constructed another simulation system using a synchronous mechanism.

In the synchronous mechanism, a centralized time management mechanism called a time-wheel is
used. The synchronous mechanism is efficient for single processor execution, but may be difficult to
scale up to a system that uses many PEs. The way to parallelize the synchronous mechanism in our
system is roughly described below.

Each PE has a time-wheel. The time-wheel manages gates assigned to the PE where the time-
wheel js. The time-wheels communicate with each other at avery tick in order to synchronize and

advance their clocks ane step further.
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5.2.1 Hesults and Discussions

We simulated £13207, also under the same conditions as section 4, using the same load distribution
scheme, inputting the same vectors. Table 4 shows the system performance when the circuit was

simulated using various numbers of PEs,
This system indicated good performance using comparatively few PEs. In particnlar, when using .

2to B Plis, the performance was superior to using the Time Warp mechanism. But the performance

peaked at 16 PEs.
Two things limiled the performance,

1. Synchronization overhead
2. Low parallelism

Synchronization overhead is, as already mentioned, cansed by the high frequency of synchronization
operation: all time-wheels have to synchronize at every tick. With respect to parallelism, it is bounded
by the number of events at the same clock. And hence the static load distribution scheme limits the

parallelism much more than using the Time Warp mechanism.

6 Summaries and Conclusions

We examined the Time Warp mechanism, as an efficient time management mechanism for logic simu-
lation on a large-scale multiprocessors. Implementation on the Multi-PSI, a distributed memory mul-
tiprocessor, showed that the system attained pood performance and speedup: about 60 k events [sec
and 48-fold speedup using 64 PEs. The performance obtained here is fairly good for a software logic

simulator.
Also we compared this system with others that used the asynchronous conservative mechanism

with null messages and the synchronous mechanism. The comparison showed that the Time Warp
mechanism was the most efficient of the three when many PEs were used. We conclude that the Time
Warp mechanism could be the most suitable for logic simulation on large scale multiprocessors.
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